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A Two-stage Unsupervised Approach for Low Light
Image Enhancement

Junjie Hu, Xiyue Guo, Junfeng Chen, Guanqi Liang, Fuqin Deng, and Tin Lun Lam

Abstract—As vision based perception methods are usually built
on the normal light assumption, there will be a serious safety
issue when deploying them into low light environments. Recently,
deep learning based methods have been proposed to enhance
low light images by penalizing the pixel-wise loss of low light
and normal light images. However, most of them suffer from
the following problems: 1) the need of pairs of low light and
normal light images for training, 2) the poor performance for
dark images, 3) the amplification of noise. To alleviate these
problems, in this paper, we propose a two-stage unsupervised
method that decomposes the low light image enhancement into
a pre-enhancement and a post-refinement problem. In the first
stage, we pre-enhance a low light image with a conventional
Retinex based method. In the second stage, we use a refinement
network learned with adversarial training for further improve-
ment of the image quality. The experimental results show that
our method outperforms previous methods on four benchmark
datasets. In addition, we show that our method can significantly
improve feature points matching and simultaneous localization
and mapping in low light conditions.

Index Terms—Low light image enhancement, unsupervised
method, SLAM, robot’s perception

I. INTRODUCTION
In recent years, vision based algorithms have brought sig-

nificant progresses for robot’s perception on various tasks such
as simultaneous localization and mapping (SLAM) [2], object
recognition [10], depth estimation [12], [18], and semantic
segmentation [23], [21], [20], etc. However, these algorithms
are built upon the assumption that images are captured in
a good illumination condition. It captures a serious concern
when deploying them into real-world low light environments.
As known that low light images especially dark images suffer
from poor visibility and high noise, and thus only a little
or non-useful information can be used to perform high level
perception from them even using powerful deep neural net-
works. Therefore, it’s necessary to enhance low light images
in advance.

Recently, deep learning based methods have been continu-
ously proposed to enhance low light images. These methods

Manuscript received: October, 15, 2020; Accepted December, 13, 2020.
This paper was recommended for publication by Editor Cesar Cadena

Lerma upon evaluation of the Associate Editor and Reviewers’ comments.
This work was supported by the National Natural Science Foundation of
China (62073274), and the funding 2019-INT008 from the Shenzhen Institute
of Artificial Intelligence and Robotics for Society. (Corresponding author: Tin
Lun Lam.)

Authors are with the Shenzhen Institute of Artificial Intelligence and
Robotics for Society (AIRS), The Chinese University of Hong Kong, Shen-
zhen, Guangdong, China. (e-mail: hujunjie@cuhk.edu.cn; guoxiyue@cuhk.ed
u.cn; chenjunfeng@cuhk.edu.cn; guanqiliang@link.cuhk.edu.cn; dengfuqin@
cuhk.edu.cn; tllam@cuhk.edu.cn)

Digital Object Identifier (DOI): see top of this page.

(a) Low light inputs. (b) Ground truth. (c) Our results.

Fig. 1. Results of enhancement for three dark images. Our method demon-
strates superior performance of enhancement for dark images, as seen that the
perceptual quality after enhancement is even better than the ground truth.

learn a convolutional network with paired low light and
corresponding normal light images in a supervised fashion.
Although we have seen great progress made by them, there are
mainly three problems that hinder the real-world deployment
of those learning based methods. 1) First, it’s a challenge
to simultaneously acquire low light images from real-world
scenes with their corresponding normal light images. Alterna-
tively, researchers have introduced the use of synthesized low
light images, however, the model learned from them cannot
be directly deployed into real-world scenarios due to domain
shift. 2) Second, it’s difficult to deal with extremely low light
conditions. Deep learning based methods have demonstrated
satisfactory performance for slightly low light images, how-
ever, they don’t perform well for dark images. 3) Besides,
low light images usually suffer from strong noise due to the
low signal-to-noise ratio, this also brings a difficulty when
enhancing low illumination images.

Most of the previous studies for low light image enhance-
ment are focused on handling one of the above problems.
For the first problem, researchers have begun to propose
unsupervised low light image enhancement approaches. Jiang
et al. proposed EnlightenGAN [14] that enhances low light
images with a generative adversarial network. Zhang et al.
[35] proposed a self-supervised learning based method that
can complete the training with even one single low light image
based on maximum entropy. For the second problem, Chen
et al.[4] propose to recover normal images from extremely
dark images by learning a convolutional network with raw
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Fig. 2. Diagram of the proposed two-stage framework for low light image enhancement. Given a low light image, in the first stage, we employ the tone
mapping method proposed in [1] to pre-enhance the image. In the second stage, we use a refinement network for further improvement of image quality.

data. There are also many approaches have been proposed
for denoising of low light images. Remez et al.[25] proposed
a method that utilizes deep convolutional neural networks
for Poisson denoising for low light images. Chatterjee [3]
et al. used a locally linear embedding framework where a
linear embedding is learned for denoising. It’s noted that
although previous approaches have demonstrated satisfactory
performance for any of the above problems, it would be a
difficult challenge when attempting to tackle them at the same
time. We argue that simultaneously enhancing illumination as
well as denoising is a non-trivial problem as they are usually
formulated and solved in different paradigms.

To alleviate the above difficulties, in this paper, we de-
compose the low light into two sub-problems, i.e., the pre-
enhancement and post-refinement, and propose a two-stage
method to more accurately enhance low light images. To be
specific, in the first stage, we enhance the illumination map
decomposed from a low light image based on the Retinex
theory. We employ a tone mapping based method [1] for
the purpose. In the second stage, we design a refinement
network to further improve the image quality from the pre-
enhanced image obtained in the first stage. We design a
comprehensive loss function that combines the loss of image
content, perceptual quality, total variation, and adversarial loss.
This stage contributes to the improvement of image qual-
ity, especially for noise suppression. Our two-stage strategy
demonstrates satisfactory performance even for dark image
inputs, an example is given in Fig.1 where the results are even
better than the ground truth.

To summarize, the main contribution of this paper is the
proposal of a simple two-stage unsupervised approach that
performs pre-enhancement and post-refinement for low light
image enhancement. It outperforms state-of-the-art methods,
including both supervised learning based methods and unsu-
pervised learning based methods on four benchmark datasets.
Furthermore, we show two applications of our method in
which we demonstrate that it can archive much accurate
feature points matching and can be further seamlessly applied
to SLAM in low light conditions.

II. RELATED WORKS

A. Traditional Methods

Traditional approaches can basically be separated into two
categories: histogram equalization based methods and Retinex
theory based methods. Among them, histogram equalization
[6], [37] are the most simply and widely used methods.
There are also many Retinex based approaches. Guo et al.

proposed a method called LIME [9] which first initializes
the illumination map with the maximum value in its RGB
channels, then imposes a structure prior on the illumination
map. [16] proposed a robust Retinex model that formulates
low light image enhancement as an optimization problem.
They additionally applied the l1 norm on the illumination map
to constrain the piece-wise smoothness of the illumination.
However, these traditional approaches tend to cause color
distortion and amply noise in enhanced images.

B. Supervised Based Methods

[29] proposed to learn a deep convolutional network that
directly formulates the low light image enhancement as a ma-
chine learning problem. The network is learned by penalizing
the error between low light images and their corresponding
normal light images. [26] proposed a two-stream framework
which consists of a content stream network and an edge stream
network. [5] proposed to use a neural network to decompose a
low light image into two components, i.e. an illumination map
and a reflectance map based on the Retinex theory, then the
enhancement is applied on the two components with ground
truth illumination and reflectance map. A similar idea is also
adopted in [34], where a more accurate network is introduced.
It’s noted that supervised learning based methods have brought
significant progress on the task, however, the need of image
pairs of low light and normal light images for learning makes
them hard to be applied to real-world scenarios.

C. Unsupervised Based Methods

Unsupervised based methods attempt to enhance low light
images without pairs of low light and normal light images. To
this end, [17] proposed a deep auto-encoder based approach
that learns to enhance from low light images in an unsu-
pervised fashion where the low light images are synthesized
with different dark conditions. Previous methods have also
attempted to utilize generative adversarial network (GAN).
[14] proposed EnlightenGAN which can be trained in an end-
to-end fashion, it achieved competitive performance compared
with supervised learning based methods. [33] further pro-
posed decoupled networks where illumination enhancement
and noise reduction are handled with contrast enhancement
and image denoising network, respectively. Besides, Zhang et
al.[35] assumed that the maximum channel of the reflectance
should conform to the maximum channel of the low light
image and has the maximum entropy. Based on the assump-
tion, they introduced a maximum entropy based Retinex model
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which can be trained with low light images only. However, the
method didn’t demonstrate competitive performance against
others such as EnlightenGAN.

III. METHODOLOGY

As discussed above, it’s difficult to get satisfactory per-
formance by directly formulating the low light image en-
hancement as a learning problem considering the difficulty of
simultaneous illumination enhancement and denoising. There-
fore, we propose a two-stage framework that performs pre-
enhancement and post-refinement to gain better performance.
The proposed framework is shown in Fig. 2. Given a low light
image, we first enhance an illumination map decomposed from
the low light input. Then the pre-enhanced image is inputted
to a refinement network to further suppress noise and improve
the overall quality. The details of our two-stage method are
shown below.

A. Pre-enhancement

According to Retinex theory, an image can be decomposed
into an illumination map and a reflectance map, i.e.,

X = I ◦R, (1)

where X is an RGB image, I and R are illumination and
reflectance map, respectively. In the first stage, we employ the
adaptive tone mapping [1] to enhance the illumination map.
It’s represented as:

Y ′ =
Lg

Lw
◦X (2)

where Y ′ denotes the pre-enhanced image from X , Lw is
the gray scale of X; Lg is the global adaptation output, it is
calculated by:

Lg =
log(Lw/Lw + 1)

log(Lwmax/Lw + 1)
, (3)

where Lwmax denotes the maximum of Lw. Lw is the log-
average luminance which can be formulated as:

Lw = exp (
1

m ∗ n
∑

(log(σ + Lw))) (4)

where m,n denotes the width and height of image, σ is a
small constant number.

Note that the pre-enhancement can yield competitive perfor-
mance compared with many deep learning based approaches
in terms of illumination enhancement. However, on the other
hand, it will largely amplify noise, as seen in the second row
of Fig. 3. To cope with this problem, we employ a network
for further refinement to improve image quality.

B. Post-refinement

The refinement network is an encoder-decoder network
which is built on U-net [27]. The encoder consists of four con-
volutional layers, four downsampling layers. The downsam-
pling layer consists of two convolutional layers followed by a
max pooling layer. The encoder extracts features at multiple
scales: 1/4, 1/8, 1/16, and 1/32. The decoder employs four

Fig. 3. The enhanced results from dark images. The first row denotes the
original low light images, the second row shows the results of the pre-
enhancement. The third row denotes the results of the two-stage method.
It’s clear that the post-refinement can effectively suppress noise.

TABLE I
INPUT/OUTPUT, SIZES OF OUTPUT FEATURES, AND INPUT/OUTPUT

CHANNELS OF EACH LAYER FOR THE REFINEMENT NETWORK ON THE
TRAINING SET OF UNPAIRED ENHANCEMENT DATASET.

Layer Input/Output Output Size Input/C Output/C
conv1 Y ′/x1 128×128 3 32
conv2 x1/x2 128×128 32 32
down1 x2/x3 64×64 32 32
down2 x3/x4 32×32 32 64
down3 x4/x5 16×16 64 128
down4 x5/x6 8×8 128 256
conv3 x6/x7 8×8 256 512
conv4 x7/x8 8×8 512 512
up1 x8/x9 16×16 512 256
fusion1 x9, x5/x10 16×16 384 256
up2 x10/x11 32×32 256 128
fusion2 x11, x4/x12 32×32 192 128
up3 x12/x13 64×64 128 64
fusion3 x13, x3/x14 64×64 96 64
up4 x14/x15 128×128 64 32
fusion4 x15, x2/x16 128×128 64 32
conv5 x16/Y 128×128 32 3

upsampling layers to gradually up-scale the final features from
the encoder and yields the final output with a convolutional
layer. For upsampling, we employ the upsampling strategy
used in [13], [11]. The details of the refinement net are given in
Table I, where conv1 to conv5 are convolutional layers, down1
to down4 are downsampling layers, up1 to up4 are upsampling
layers, respectively; Layers of fusion1 to fusion4 are used
to concatenate and fuse the features of encoder layers and
decoder layers at multi-scales. It consists of two convolutional
layers.

As the difficulty to obtain the paired images of low light
and normal light in real-world applications, we design a
comprehensive loss function that can be used to train the
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network in an unsupervised fashion. The loss function consists
of four loss terms. The first term is a reconstruction loss
that minimizes the pixel-wise loss of image. It ensures the
consistency of image contents between the refined image and
the pre-enhanced image. It is represented as:

lrec = ‖Y − Y ′‖1, (5)

where Y ′ denotes a pre-enhanced image, Y is a refined image
from Y ′, it is calculated by the refinement network N , i.e. Y =
N(Y ′). In addition, we employ a perceptual loss to constrain
the loss in feature space of VGG [30], it is represented as:

lper = ‖φ(Y )− φ(Y ′)‖2, (6)

where φ denotes VGG network, φ(Y ′) is the feature maps
extracted from Y ′. The reconstruction loss and perceptual loss
work in a complementary fashion to avoid color distortion and
loss of image contents.

To suppress noise, we additionally apply total variation to
the refined image,

ltv = ‖∇Y ‖1, (7)

ltv contributes to the reduction of noise, however, it will
also lead to the blurred effect on image structure. Therefore,
we use an adversarial loss to encourage the refined image
to be as close as the clear normal light image. Following
[14], we use the relativistic discriminator structure [15] as the
discriminative network which is fully convolutional and can
handle the input with any size. Then the adversarial loss is
given by:

ladv = ((D(Y )−D(Ŷ ))− 1)2 + (D(Ŷ )−D(Y ))2, (8)

where D is the discriminator, Ŷ denotes normal light images.
As a result, the final loss function for training the refinement
network is:

L = lrec + λlper + µltv + βladv, (9)

where λ, µ and β are weighting coefficients.

IV. EXPERIMENTS

A. Datasets

a) Unpaired Enhancement Dataset: The unpaired en-
hancement dataset [14] is collected from several public
datasets. The training set is composed of 914 low light images
and 1016 normal light images. The test set is composed of 148
pairs of low light and normal light images. All the images have
a resolution of 600 × 400. We compare our method with the
benchmark method [14], i.e. EnlightenGAN on this dataset.

b) Benchmark Evaluation Datasets: For a fair com-
parison with previous methods, we report more quantitative
results on real-world benchmark datasets. We evaluate our
method on MEF[19], LIME[9], NPE[31]. The three datasets
are frequently used in previous studies for evaluation, in which
MEF, LIME, and NPE have 17, 8, and 10 images, respectively.

TABLE II
QUANTITATIVE COMPARISONS ON THE UNPAIRED DATASET.

PSNR ↑ SSIM↑ NIQE ↓
Input 10.370 0.275 5.299
EnlightenGAN [5] 17.314 0.711 4.591
Pre-enhancement [1] 17.337 0.698 7.012
Post-refinement 18.064 0.720 4.474

TABLE III
QUANTITATIVE COMPARISONS OF DIFFERENT METHODS ON THE

BENCHMARK DATASETS.

MEF LIME NPE
Input 4.265 4.438 4.319
RetinexNet [5] 4.149 4.420 4.485
LIME [9] 3.720 4.155 4.268
SRIE [8] 3.475 3.788 3.986
NPE [31] 3.524 3.905 3.953
GLAD [32] 3.344 4.128 3.970
EnlightenGAN [14] 3.232 3.719 4.113
KinD [34] 3.343 3.724 3.883
Ours 3.027 3.599 3.014

B. Implementation Details

For learning the refinement network, we employ the training
set from the unpaired enhancement dataset. During the training
phase, we randomly crop 128× 128 patches from the original
640× 400 resolution images pixels.

We use Adam optimizer with a learning rate of 0.0001. We
set β1 = 0.9, β2 = 0.999, and use weight decay of 0.0001. The
weights λ of lper, µ of ltv and β of ladv are set as λ = 1, µ =
0.01 and β = 1, respectively, in all experiments throughout
the paper. We train the refinement network for 1000 epochs.
We conducted all the experiments using PyTorch [24] with
batch size of 64.

C. Performance Comparison

We first show the quantitative comparison of our method
against EnlightenGAN [14] on the unpaired enhancement
dataset. Three metrics are adopted for quantitative comparison,
which are PSNR, SSIM, and NIQE. For PSNR and SSIM, a
higher value indicates a better quality, while for NIQE, the
lower is better. As seen in Table II, the pre-enhancement yields
a little better PSNR than EnlightenGAN, but the results are a
little worse on SSIM, moreover, it is observed a 33.3% error
increase of NIQE. On the other hand, our two-stage method
achieves the best performance for all metrics, which indi-
cates the superiority of the configuration of pre-enhancement
and post-refinement. Fig. 4 shows the qualitative comparison
against EnlightenGAN. It’s observed that both EnlightenGAN
and our method can achieve satisfactory performance if there
are valuable clues that exist in the inputs as seen in Fig. 4
(1) and (3), however, it’s difficult to get the same results if
the inputs are extremely dark, as seen in Fig. 4 (2) and (4).
Nevertheless, our method demonstrates better performance for
dark images, as also seen in Fig. 4 (5) and (6).

For more comparisons against other methods, we provide
the results of quantitative comparisons on the MEF, LIME, and
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(1)

(2)

(3)

(4)

(5)

(6)

(a) Input images (b) Ground truth (c) EnlightenGAN (d) Ours
Fig. 4. Qualitative comparison between EnlightenGAN and our method on the unpaired enhancement dataset for different methods. From the left to the right;
input low light images, ground truth images, results of EnlightenGAN, and results of our method. (1) - (2), (3) - (4) show the results for same scenes under
different light conditions. (5) and (6) show results for other dark scenes. Our method outperforms EnlightenGAN for all eight images.

NPE datasets. It is noted that we do not train a new model
for these three datasets. To evaluate the generability of our
method, we use the trained model on the unpaired dataset and
test it on the MEF, LIME, and NPE datasets. As there are no
reference images are available for these datasets, we use the
NIQE value as image quality evaluation in compliance with
previous methods [14], [34]. We compare our method against
RetinexNet [5], LIME [9],SRIE [8], NPE [31], GLAD [32],
KinD [34], and EnlightenGAN [14]. The numerical results are
shown in Table III, it is seen that our method shows a clear
advantage against the others as it outperforms them for all
datasets. Besides, we conduct an ablation study to compare the
performance of different loss functions on the all mixed images
of MEF, LIME and NPE. As a result, the NIQE is 3.187, 3.328,
3.203 and 3.586 for lrec+ lper+µltv+ ladv, lper+µltv+ ladv,
lper + ladv and lper, respectively. Note that the weights λ, β
for lper and ladv are set to 1, thus we omit them here. The
experimental results show that the combination of full loss

terms demonstrates the best enhancement performance.

D. Application: Low Light and Normal Light Image Matching
Image matching is one of the fundamental techniques in

robot vision and it plays an indispensable role in many
applications such as image retrieval, structure from motion,
image based localization, etc. Unsurprisingly, the low light
condition easily leads algorithms of feature points matching
to malfunction. Zhou et al.[36] also discussed the necessity of
image matching between a low light image and a normal light
image.

We show that our method can be applied to low light
and normal light image matching. To be specific, we con-
duct the image matching between a low light image and
its corresponded normal light image on the test set of the
unpaired dataset. We use SIFT to detect feature points and
generate descriptors. Then, they are matched with the 2-nearest
neighbor algorithm. To get more accurate matching, we use a
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(a) Feature points 
from low light images

(b) Feature points 
from normal light images

(c) Low light - normal light
image matching

(d) Enhanced image - normal light
image matching

Fig. 5. Qualitative results of feature points detection and matching. (a) shows results of detected points with SIFT from low light images, (b) shows results
of detected points with SIFT from enhanced images of low light images, (c) is the results of image matching between low light images and normal light
images, (d) is the results between enhanced images from low light images and normal light images.

TABLE IV
RESULTS FOR FEATURE POINTS DETECTION AND MATCHING WITH AND

WITHOUT THE ENHANCEMENT OF LOW LIGHT IMAGES.

Detected points Matches Match rate
Low light images 22195 17424 13.85%
EnlightenGAN 185930 38152 30.32%
Ours 172554 40676 32.33%

small number for distance ratio. In our experiment, we set it to
0.3. To further eliminate mismatches, we apply the RANSAC
algorithm [7] to remove outliers.

The quantitative results are given in Table IV. As a result,
22195 points are detected from the low light images (there are
125825 feature points detected from the normal light images).
From that, we can only get 17424 matches, i.e. the match
rate1 is only 13.85%. On the other hand, after applying the
enhancement with our method, the number of matched points
is 40676 and the match rate is significantly improved from
13.85% to 32.33%. It’s noted that EnlightenGAN detected
more feature points than our method though, the match rate is
lower than ours. It suggests that there are many noisy points
detected by EnlightenGAN and the quality of enhanced images
by EnlightenGAN are not as good as ours. A qualitative
comparison is shown in Fig. 5 (c), as seen that there is almost
no successful matching for the original low light images. This
is because it’s extremely difficult to detect feature points from
low light images (Fig. 5 (a)). After applying low light image
enhancement (Fig. 5 (b)), a large amount of feature points are
detected and they can be correctly matched (Fig. 5 (d)).

E. Application: SLAM in Low Light Conditions

Vision based monocular SLAM tends to fail in low light
environments. To evaluate the application of our method
for SLAM, we test it on the ETH3D SLAM benchmark
[28]. Specifically, we use the ORB-SLAM2 [22] to perform
RGBD based monocular SLAM. We evaluate our method as
well as EnlightenGAN sfm lab room 1, sfm lab room 2,
large loop 1 and plant scene 1 taken from ETH3D SLAM

1the match rate is the rate of the number of final matches divided by points
detected from normal light images.

TABLE V
SE3 ATE RMSE(cm) ON sfm lab room 1, sfm lab room 2,

large loop 1 AND plant scene 1.

Original EnlightenGAN Ours
sfm lab room 1 3.134 1.907 1.764
sfm lab room 2 Fail 5.824 2.956
large loop 1 Fail 10.401 4.552
plant scene 1 Fail 3.356 1.428

benchmark [28]. They are captured in low light conditions but
not completely dark. An example is given in Fig. 6, where
the first row shows the original low light images taken from
the above sequences, and the second row shows the images
enhanced by our method.

Table V shows the quantitative comparisons. It’s
seen that ORB-SLAM2 only successfully performed on
sfm lab room 12 without the low light image enhancement.
However it failed on sfm lab room 2, large loop 1 and
plant scene 1 which is consistent with the results given
in the benchmark [28]. On the other hand, the SLAM
can be improved significantly if we apply low light image
enhancement. As seen that our method performs better than
EnlightenGAN for all of these four sequences. It is slightly
better on sfm lab room 1 and outperforms EnlightenGAN
on sfm lab room 2, large loop 1 and plant scene 1
by a good margin (achieving 49.50%, 56.23% and 57.45%
improvement of the accuracy). In our experiments, our
method takes 95 ms to enhance a 739× 458 resolution image
on a computer with Intel(R) Xeon(R) CPU E5-2690 v3 and
a GT1080Ti GPU card. Fig. 7 shows camera trajectories for
different inputs. As there are several pieces of ground truth
trajectories are missing for the sequences of plant scene 1
and large loop 1, we only show the correct ground truths.
They are shown in green and the results from the original
images, enhanced images by EnlightenGAN and our method
are shown in red, orange and blue, respectively.

2The SE3 ATE RMSE is 1.850 given in the official benchmark while
the result is 3.134 performed by us. The reason is considered as the difference
of setting of parameters for ORB-SLAM2.
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Original
images

Enhanced
images

sfm lab room 1 sfm lab room 2 plant scene 1 large loop 1

Fig. 6. Selected images from ETH3D SLAM benchmark dataset. The first row shows the original low light images, the second row shows the enhanced
images with our method.

large_loop_1

sfm_lab_room_1

plant_scene_1

sfm_lab_room2

Ground Truth

Ours

EnlightenGAN

Original

Fig. 7. Camera trajectories for the four sequences of ETH3D dataset, where the ground truths are shown in green and the results of our method are shown
in blue.
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V. CONCLUSION

In this paper, we revisited the problem of real-world low
light image enhancement. We point out that there are mainly
three challenges that hinder the deployment of most of pre-
vious learning based methods. The first is the need of low
light and normal light image pairs for learning. To overcome
this difficulty, we proposed an unsupervised method that
can be implemented with unpaired images using adversarial
training. Other challenges are the difficulty of handling very
dark input images and the poor ability of denoising. To
alleviate the difficulties, we take a two-stage strategy that
first pre-enhances a low light image and further refines it
with a refinement network. Experimental results show that
our two-stage approach outperforms previous methods on four
benchmark datasets. We argue that the proposed method can
be used as an effective image pre-processing tool for low
light image enhancement. In experiments, we demonstrate two
useful applications of our method. The first is image matching
and the second is SLAM. We show that both of them are
vulnerable to low light conditions, nevertheless, they can be
significantly improved with the image enhancement performed
by our method. In the future, we will speed up our method
with some compression techniques for deep neural networks
and explore more applications for the perception of robots.
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[37] T. Çelik and T. Tjahjadi, “Contextual and variational contrast enhance-
ment,” IEEE Transactions on Image Processing, vol. 20, pp. 3431–3441,
2011.


