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Abstract—The core problem of visual multi-robot simultaneous
localization and mapping (MR-SLAM) is how to efficiently and
accurately perform multi-robot global localization (MR-GL). The
difficulties are two-fold. The first is the difficulty of global
localization for significant viewpoint difference. Appearance-
based localization methods tend to fail under large viewpoint
changes. Recently, semantic graphs have been utilized to over-
come the viewpoint variation problem. However, the methods are
highly time-consuming, especially in large-scale environments.
This leads to the second difficulty, which is how to perform real-
time global localization. In this paper, we propose a semantic
histogram based graph matching method that is robust to
viewpoint variation and can achieve real-time global localization.
Based on that, we develop a system that can accurately and
efficiently perform MR-GL for both homogeneous and heteroge-
neous robots. The experimental results show that our approach
is about 30 times faster than Random Walk based semantic
descriptors. Moreover, it achieves an accuracy of 95% for global
localization, while the accuracy of the state-of-the-art method is
85%.

I. INTRODUCTION

Vision based single-robot simultaneous localization and
mapping (SR-SLAM) have gained significant progress over
the past decades. However, it has fundamental limitations
of mapping speed, mission range, localization accuracy, etc.
Thus, it usually performs poorly for large scale environ-
ments. To overcome these problems, multi-robot SLAM (MR-
SLAM) maps large scale unknown environments by exploiting
several collaborating robots [1], [2]. Although it has clear
advantages against SR-SLAM with multi-robot cooperation,
the preliminary difficulty is that we need the multi-robot
global localization to satisfy the requirement of real-world
deployment.

There are mainly two difficulties towards achieving this
goal. First, an urgent problem is the accurate global local-
ization for the large viewpoint difference between individual
robots [3]. It’s known that MR-SLAM is applicable for large
scale environments. The viewpoint differences between robots
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Fig. 1. An example of our semantic based graph matching method. The
method is used for global localization in a large scale environment. The
viewpoint between two robots (UAV and Car) is extremely large. We utilize
semantic maps to build semantic graphs for two robots. Then, the transfor-
mation matrix between them can be simply estimated.

are very large. The difference is more significant for heteroge-
neous robot systems. An example is given in Fig. 1, the images
captured by a vehicle show a clear viewpoint difference from
those captured by a drone. Second, the global localization has
to be computationally efficient [4]; otherwise, the MR-SLAM
will collapse.

In previous studies, traditional appearance-based methods
such as the Bag-of-Word (BoW) [5], [6] are the most widely
used localization methods for MR-SLAM [7], [8]. However,
Under the large viewpoint changes, local image features (e.g.
SIFT [9], SURF [10], ORB [11], FAST [12]) will change
significantly, this cause appearance-based methods to fail. As
semantic information is invariant to the viewpoint changes,
recently, several methods [3], [13], [14] proposed to use
semantics for global localization. In these works, semantic
based graphs are first built for different viewpoints, then the
different view’s graphs are matched by utilizing the semantic
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Fig. 2. An illustration of the semantic histogram based descriptor. Left is
the semantic graph. The searched path is started from the start point (blue).
The path information is recorded as a prearranged histogram on the right.
The similarity score between two descriptors can be obtained through the
normalized dot-product.

information. These methods demonstrate better performance
compared with appearance-based methods for large viewpoint
changes.

In large scale environments, there will be many mismatches
if we directly perform graph matching with only the semantic
label of each node. Hence, for each node, the descriptor
should be extracted to contain the surrounding information.
In the previous methods [3], [13], the Random Walk based
descriptors are utilized for graph matching. On the other hand,
no matter how large the graphs are, the graph matching needs
to be processed in real-time. This requirement eliminates those
Random Walk based descriptors [3], [13], which are highly
time-consuming.

In this paper, we propose a more accurate and computation-
ally efficient method. Our method is based on the semantic
based graph matching. A novel semantic histogram based
descriptor is proposed to enable a real-time matching under the
large viewpoint changes. The descriptor stores the surrounding
paths’ information in the form of a prearranged histogram.
Fig. 2 shows the illustration of the descriptor. Based on
the new descriptor, we further develop a semantic graph-
based global localization system to merge maps for MR-
SLAM. Our method is fairly tested on three datasets, including
two synthesized datasets and a publicly available real-world
dataset. As a result, we show through the experiments that

• Our method outperforms both appearance and semantic
based methods by a large margin. It performs stably and
accurately for large viewpoint differences in large scale
environments.

• Our method is much faster than the state-of-the-art se-
mantic based method [3]. It yields satisfactory perfor-
mance for both homogeneous and heterogeneous robot
systems.

• Our method demonstrates good performance for map
fusion in large scale real-world KITTI dataset in which
we only take RGB images as input, the depth maps
and semantic maps are predicted by deep convolutional
networks.

II. RELATED WORK

A. Appearance-based Approaches

Appearance-based localization methods such as Bag-of-
Words (Bow) use global or local visual features to find the
association of images [9]–[12]. One representative work is
FAB-MAP [6]. These methods work well under the small
viewpoint difference. However, when the viewpoint difference
is large, the localization systems become less reliable.

Recently, convolution neural networks (CNNs) have been
employed to overcome the viewpoint change problem. In
[15]–[17], the viewpoint invariant landmarks are generated by
CNNs. However, these landmarks are not reliable when the
viewpoint change becomes significant (e.g., opposite direction,
viewpoint changes of heterogeneous multi-robots, such as a
car and a UAV). Several approaches are proposed to overcome
the opposite viewpoint problem. LoST [18] uses semantics and
appearance information to recognize the places in the opposite
viewpoint. In [19], the place recognition in the opposite
viewpoint is handled by matching a sequence of depth-filtered
keypoints with a single-query image’s keypoints. However,
these approaches are only focused on place recognition, the
localization is not considered. As the normal approaches such
as ORB-SLAM [20] does not work well for large viewpoint
difference, thus the pose estimation after place recognition has
to be carefully handled [21].

B. Graph-based Approaches

Graph-based methods formulate the global localization
problem as a graph registration problem. The associations
between different graphs are found by extracting the cor-
respondences between nodes across the graphs. Then, the
relative pose between graphs can be calculated. In [22], [23],
each node is labeled by local features based visual word.
However, as mentioned before, the appearance features are
not reliable when the viewpoint changes are significant.

Recently, several methods employ semantics to generate
labels [14], [24]. In [24], brute force is used to match two
graphs based on their semantic labels. Unfortunately, this
method can only work for simple and limited environments
where the number of objects and the environments’ scale
are small. The same problem also exists in [14], in which
semantic graphs are matched with the Hungarian algorithm.
In large scale environments, the same objects frequently ap-
pear in multiple places, such as cars and buildings in city
blocks. Such environments will lead these methods to fail. To
enable more accurate semantic based matching, Random Walk
method is used to generate descriptor for each semantic node
[3], [13]. However, when the matching graphs are large, the
computational complexity becomes extremely high. This will
largely hinder the deployment of these methods to real-world
applications such as multi-robot SLAM. In this paper, we
present a semantic histogram based descriptor, which enables
the graph matching to be performed in real-time and it is even
more accurate compared to Random Walk based methods.
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Fig. 3. The diagram of our global localization system. The system takes semantic maps, depth maps, and odometries as inputs. The 3D semantic graph for
each robot is first built from the inputs. Then, the descriptor of each node is extracted with the semantic histogram method. Next, the two graphs are matched
by comparing the descriptors across the graphs. Finally, the matched correspondences are used to estimate the 6-DoF transformation between the coordinate
systems of two robots.

III. SEMANTIC GRAPH-BASED GLOBAL LOCALIZATION

In this section, we present our semantic histogram based
graph matching system for global localization. Our frame-
work is partially inspired by X-view [3]. Firstly, given two
odometries, related depth maps, and semantic maps. We first
generate semantic graphs. Then, the semantic histogram based
descriptors are extracted. The two graphs are matched with the
extracted descriptors. Finally, the 6-DoF transformation matrix
is calculated. The framework of our global localization system
is shown in Fig. 3.

A. Graph Extraction

Similar to [3], to build the graph, we need to extract nodes
from images. Towards this end, we employ the seed filling
method [25] to segment objects from images. To avoid the
failed segmentation between two neighboring objects with the
same semantics, we use the 3D coordinates of pixels during
the segmentation process. Then, the 3D geometry center of
each object is extracted as a node. It’s noted that nodes with
the same semantic label should be merged if they are highly
close to each other. Therefore, each node contains two types
of information: 1), 3D coordinates value of the node; 2), The
semantic label. The undirected edges between the nodes are
then formed if the distances between nodes are smaller than a
set threshold (connectivity threshold). Finally, nodes and edges
together form the semantic based graph.

B. Semantic Histogram Based Descriptor

In order to describe each node in the graph, the surrounding
information of the node needs to be recorded by extracting the
node’s descriptor. For the semantic graph, histogram based
descriptors are simple and feasible; furthermore, the matching
procedure of this type of descriptors is very fast. Intuitively,
the simplest histogram based descriptor is the Neighbor Vector
descriptor [23]. It describes the node by counting all the
neighbor nodes’ labels. However, due to the lack of topology

Algorithm 1 Descriptor Extraction
Input: G: Semantic Graph;
Output: V : Histogram of path descriptors for G;

1: for i-th node in G do
2: Initialize the histogram vector Vi;
3: Record the node’s label li;
4: for m in neighbor nodes of i do
5: Record the first neighbor node’s label lm;
6: for n in neighbor nodes of m do
7: Record the second neighbor node’s label ln;
8: The Histogram cell Vi(li-lm-ln) plus one;
9: end for

10: end for
11: Add Vi into V ;
12: end for

information, the matching performance of the neighborhood
vector is low 1.

Therefore, we propose to include more surrounding in-
formation for all nodes. To be specific, for each node, the
descriptor stores all possible paths that started from it. We
set the length of the path as 3. Therefore, each path can be
considered as a 3 dimensional vector, recording the three steps’
semantic labels. For a single descriptor, all possible paths are
counted in the form of the prearranged histogram. Therefore,
the topology information of objects and their neighbors are
stored in descriptors. The illustration of our descriptor is
shown in Algorithm 1. The proposed descriptor enables the
graph matching to be much computationally efficient. The
time complexity of one descriptor extraction is O(MN), where
M and N are the numbers of first-order and second-order
neighbors, respectively.

C. Graph Matching

Similar to image matching, the descriptors of nodes are
compared across the graphs by computing the similarity

1We will confirm this through our experiments evaluations in Sec. IV-B
and Sec. IV-C.
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Algorithm 2 Graph matching and ICP-RANSAC rejection
Input: V , V ′: descriptor sets of two graphs; Ni: iteration

number for RANSAC; M0: initial matches set;
Output: M1: final matches set;

1: Initialize M0;
2: for i in V do
3: for j in V ′ do
4: scores = Score(Vi , V ′j );
5: if scores > score threshold Ts then;
6: Add the Correspondence Ci j to M0;
7: end if
8: end for
9: end for

10: Initialize M1;
11: Initialize the Maximum Inlier number A∗;
12: let A∗ = 0;
13: for o = 1 to Ni do
14: Select 4 correspondences M f our Randomly;
15: Ro, to = ICP(M f our);
16: for k in Matches set M0 do
17: Obtain the correspondence Ck;
18: Error = Evaluation(Ck, Ro, to);
19: if Error< Threshold TR then
20: Add Ck to the Inlier set Mo;
21: end if
22: end for
23: Inlier number A = Count(Mo);
24: if A > A∗ then
25: M1 = Mo;
26: A∗ = A;
27: end if
28: end for

scores. In the matching process, only the nodes that have the
same labels will be compared. The similarity score is obtained
by taking the normalized dot-product between two descriptors.
It is formulated as follows:

Score(A, B) =
∑

nd
d=1 Ad×Bd√

∑
nd
d=1 (Ad)

2×
√

∑
nd
d=1 (Bd)

2
(1)

where A and B denote descriptors of nodes from two graphs.
nd is the descriptor dimension, which is equal to the cubic of
the label number nl . The time complexity of one pair nodes’
matching is O(nd), the size of nd is typically on the order of
hundreds.

The similarity score between the two nodes are between 0
and 1, the higher score means higher similarity. The correspon-
dences whose similarity scores are higher than the threshold
Ts are stored as the matching candidates. Note that these
matching candidates still contain many incorrect matches. In
graph-based localization, since the transformation between two
graphs is rigid. The transformation values between the correct
pairs of correspondences should all be similar. This condition
can be utilized to reject the incorrect matches (outliers). In
order to guarantee these consistency of the correspondences,
the ICP-RANSAC algorithm [26], [27] is used to reject the

Fig. 4. Samples of SYNTHIA dataset. images in top row are the forward
view images, including semantics, depths, and RGB images. The images in
bottom row are the backward view images collected at the same time.

outliers. Finally, the remained inlier correspondences are kept
for the pose estimation method. In addition, the rotation matrix
R and the translation vector t, which are obtained from the
ICP-RANSAC method are stored as the initial value of the
pose estimation method. The illustration of the graph matching
is shown in Algorithm 2.

D. Pose Estimation

In this step, the final transformation matrix is computed
with ICP algorithm. In the method, the inlier correspondences
obtained by RANSAC method are used for registration. Hence,
the Rotation matrix R and translation vector t is obtained by
minimizing the sum of squared error:

E(R, t) =
1

Np

Np

∑
k=1

Wk ‖qk−Rpk− t‖2 (2)

The Np is the correspondences number after RANSAC rejec-
tion. qk and pk are the correspondent nodes in two graphs. Wk
is the weight element, which is related to the corresponding
objects’ size.

IV. EXPERIMENT RESULTS

To fairly and fully validate the effectiveness of our method,
we conduct three experiments on multiple datasets. First, we
show the quantitative comparisons between our method and
previous approaches on the SYNTHIA dataset [28]. Second,
we show the performance of our method for multi-robot
global localization, we apply our method to both homogeneous
and heterogeneous multi-robot systems. Thirdly, to verify the
generability of our method, we conduct another experiment
on the real-world KITTI dataset, where we only use RGB
images as input. Finally, we investigate the effect of different
parameter settings and input qualities. All the experiments are
computed on an Intel Core i7-8565U CPU @ 1.80GHz.

A. Performance Comparison

1) Dataset and Implementation Details: The SYNTHIA
dataset collects data from sensors mounted on a simulated
car in a dynamic urban environment. In our experiment,
we use sequence 04-spring as our test sequence. It contains
three types of data, including RGB images, depth maps, and
semantic maps. All these images have four camera directions,
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Fig. 5. Precision-Recall curve of different global localization methods. The
operation points are shown as dots.

i.e., forward, backward, leftward, and rightward. In order to
simulate the viewpoint variation, data of the forward view is
picked to be associated with backward view’s data, as seen in
Fig. 4. The travel distance of the dataset is 950 meters. In the
experiment, graphs generated by 30 backward view’s frames
are matched with the global forward view’s graph.

Several previous methods are taken as baseline methods.
The first is X-view [3], which is the state-of-the-art of semantic
graph-based global localization. The second is an appearance-
based Bag-of-Words (BoW) method that is built on the
DBoW3 library [5]. The third method is a CNN-based method
called NetVLAD [17]. In order to have a fair comparison,
the experiment setting is made completely the same as X-
view. Since there is no available open-source code of X-view,
we directly use the results in its paper [3]. Similarly, the
results of NetVLAD are also taken from [3]. In addition, the
performance of another fast descriptor called Neighbor Vector
[23] is also presented in the plot.

2) Experiment Results: In the experiment, the performance
of the localization is represented by the Precision-Recall curve
(PR-curve). The precision depends on the localization thresh-
old Tp = 20m. The localization is set to true if the translation
error is lower than 20 meters. The recall is controlled by the
variable threshold of Tr. If the inlier number obtained from the
ICP-RANSAC method is higher than Tr, then this localization
gets a positive vote.

The results are shown in Fig. 5, it’s clear that the semantic
graph-based method is more accurate than the appearance-
based method when the viewpoint change is significant. More-
over, our method shows a clear advantage against X-view as
it outperforms it by a large margin. To be consistent with
X-view, we use the same operation point (recall is 0.35) to
compare the success rate of global localization; as a result,
our method gained 95% success rate while the success rate of
BoW, X-view, NetVLAD, and Neighbor Vector are 8%, 85%,
73%,and 79% respectively. In addition, the time complexity
for every component of our method is shown in Table I.

B. Global Localization for Multi-robots

1) Dataset and Implementation Details: We consider yet
another problem that is the global localization for multiple

Fig. 6. The illustration of three simulated trajectories generated from AirSim.
We use them to evaluate the performance of our global localization method
for both homogeneous and heterogeneous robot systems.

TABLE I
TIME-CONSUMING FOR EACH COMPONENT OF OUR METHOD.

Module Time(ms/frame)
Graph Extraction 114.23 ± 4.53

Descriptor Extraction 0.68 ± 0.03
Graph Matching 1.65 ± 0.49
Pose Estimation 0.63 ± 0.14

Total 117.19 ± 5.19

large scale odometries generated by multiple robots. This is
a key step for map fusion of multi-robot SLAM. We evaluate
the performance of our method for both heterogeneous and
homogeneous robot systems.

As there’s no publicly available dataset for this purpose, we
manually create a dataset 2 from the Neighborhood (an urban
block) of AirSim [29]. We generate two Car’s trajectories,
and one UAV trajectory. Therefore, there are three trajectories
in total. Same as the SYNTHIA, the dataset contains three
types of data, i.e. RGB images, depth maps, and semantic
maps. The average travel distance of Car is 420 meters
and the travel distance of the UAV is about 600 meters.
The viewpoint change between them is extremely large. The
detailed illustrations of these trajectories are shown in figure 6.
It’s seen that the different trajectories contain long overlapping
parts (over 200 meters); meanwhile, they have their own non-
overlapping parts.

There are three descriptors compared in the experiment.
The first one is the Random Walk, which is used in X-view.
The second one is Neighbor Vector [23]. The final one is our
semantic histogram based descriptor. In the experiment, we
use the whole graphs to perform localization. The matching
performance is evaluated by using good matches number and
good matches rate. We halve the threshold of correct graph
matching (20 meters) as the criteria to identify good matches,
i.e. 10 meters. The good match rate is the percentage of
the correct matching correspondences represented in the total
correspondences.

2) Experimental Results: The quantitative comparisons are
shown in Table II, where the results are average for 100
times experiments. It’s clear that our method achieves the
lowest translation and rotation error for global localization.
The average translation and rotation error of Random Walk,
Neighbour Vector, and our semantic histogram method are
2.83, 3.89, and 2.62 meters; 2.23, 1.86, and 1.45 degrees,
respectively. The lowest translation and rotation error of our
method is attributable to the highest good matches rate. It is
also observed that although the translation errors are similar,
the rotation errors of heterogeneous system are much higher
than homogeneous system.

2The dataset will be made publicly avaliable.
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TABLE II
THE QUANTITATIVE COMPARISONS OF DIFFERENT DESCRIPTORS FOR GLOBAL LOCALIZATION OF MULTI-ROBOT SYSTEMS ON AIRSIM.

Robot Type
Matching

Graph
Size

Descriptor
Type

Matching
Time
(sec)

Good
Matches

Good
Matches
Rate(%)

Processing
Time
(sec)

Translation
Error
(m)

Rotation
Error

(degree)
Car1
and
Car2

317 points
and

328 points

Random Walk 4.155 125 40.0 4.304 3.44±1.39 0.92 ± 0.49
Neighbor Vector 0.013 120 37.8 0.057 4.55±1.32 0.48 ± 0.31

Ours 0.132 152 49.1 0.184 3.12 ± 0.76 0.30 ± 0.29
Car1
and

UAV

317 points
and

486 points

Random Walk 6.637 136 43.6 6.859 2.23±0.88 2.62 ± 0.46
Neighbor Vector 0.021 100 31.7 0.089 3.23±1.02 3.25 ± 0.54

Ours 0.195 142 45.1 0.248 2.12 ± 0.47 2.61 ± 0.25

(a) The trajectories of KITTI 08
dataset

(b) The successful multi-robots
map fusion

Fig. 7. Trajectories and reconstructed maps of sequence 08 from KITTI
dataset. a) shows the trajectories where each line denotes a trajectory. b)
shows the maps reconstructed and merged from these three trajectories.

By considering the time complexity, the Neighbor Vector
descriptor has the lowest time complexity. However, due to
the less surrounding information, the matching performance
of the Neighbor Vector is the worst. The time complexity
of our descriptor is higher than Neighbor Vector but much
lower than the Random Walk. Hence, by considering the
trade-off between matching performance and time complexity,
our descriptor is the best for semantics graph matching.
Overall, our method demonstrates the best performance for
the large viewpoint difference between both heterogeneous and
homogeneous robot systems.

C. Generability on Real-World Scenarios

1) Dataset and Implementation Details: To evaluate the
generability of our method in real-world environments, we
conduct yet another experiment on the KITTI dataset [30].
To be specific, we evaluate our method on three sequences,
sequence 02, 08, and 19. In the experiment, three trajectories
are split from the sequence 08. The illustration of the three
trajectories are shown in Fig. 7 (a). For simplicity, we use
08A and 08B to represent the alignment between Trajectories
1 and Trajectory 2, Trajectory 2 and Trajectory3. For sequence
02 and 19, there are two trajectories which share overlaps
in opposite directions. The total travel length of sequence
02, 08, and 19 are 260 meters, 850 meters and 1000 meters
respectively. In addition, the overlap of sequence 02, 08A,
08B, and 19 are 30 meters, 200 meters, 50 meters, and 300
meters respectively. Same as the AirSim, we use the whole
graphs to perform the localization.

As the dataset only contains RGB images, there are no
ground truths of depth maps and semantic maps. Therefore, we
apply current advanced algorithms to estimate depth maps and
semantic maps, respectively. The depths are predicted with the

method of [31], and the semantics are estimated with [32]. For
odometry estimation, we use ORB-SLAM3 [20]. For quan-
titative comparisons, we conduct two types of experiments.
The first is the comparison between different descriptors for
graph-based global localization as Sec. IV-B, the second is
the comparison against benchmark methods, including BoW
[5] and NetVLAD [17]. For these benchmark methods, we
simply use the distance between the best matching frames as
the translation errors of global localization.

2) Experimental Results: Table III shows the average
translation errors and their standard deviation on the KITTI
datasets. As seen that BoW method demonstrates the
worst performance. Our semantic histogram based descriptor
archives lowest translation error on all sequences. It’s noted
that when the overlap is small (sequence 02 and sequence
08B), our method shows the clear advantage against others.
We can also observe that within the specific range, the longer
overlap contributes to the higher localization performance.
However, if the overlap length is beyond a specific range, the
localization performance will decrease (sequence 19). It is due
to the larger amount of disturbing objects.

As indicated by the results, the translation error is obviously
large than those on AirSim. This is because of the unavoidable
error of depth and semantic prediction with deep neural
networks. Another intriguing observation is Random Walk
based descriptor is worse than Neighbor Vector on the KITTI
dataset, which is not consistent with the results on AirSim.
Due to the higher quantity of objects and misclassfication
problem, the semantic graphs of KITTI contain higher nodes
density. The higher nodes density brings more possibilities of
walks. Then, the Random Walk descriptor is easier to omit the
possible walks. Therefore, the performance of Random Walk
descriptor is dropped significantly. By considering the unstable
performance of these methods, our method performs robustly
and accurately for both synthesized and real-world scenarios.
Fig. 7 (b) shows the visualization of map fusion of sequence
08 after the global localization performed by our system.

D. Sensitivity Analysis

In this section, we investigate the effect of different pa-
rameter settings and qualities of inputs to the performance of
our method. Specifically, we conduct six ablation studies on
connectivity threshold, path dimension, class amount (with or
without different labels), matching option (all labels or same
labels), segmentation and depth, respectively. The experiments
of segmentation and depth are performed on the sequence 02
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TABLE III
THE TRANSLATION ERROR OF GLOBAL LOCALIZATION ON THE KITTI DATASET (IN METERS)

Sequence 02 Sequence 08A Sequence 08B Sequence 19
Neighbor Vector 14.42±20.02 4.59±0.63 18.42±4.00 15.18±11.45
Random Walk 76.61±36.42 4.83±0.68 25.55±8.72 14.63±13.35

BoW 55.20 ± 42.01 74.12 ± 51.14 32.16 ± 20.79 108.83 ± 54.05
NetVLAD [17] 28.21 ± 19.35 35.02±21.04 24.52±14.41 55.11±20.96

Ours 8.77±11.39 4.42±0.35 7.48±3.67 8.10±6.63

(a) Connectivity (b) Path dimension of descriptors (c) Amount of classes

(d) Matching option (e) Segmentation quality (f) Depth quality

Fig. 8. Sensitivity analysis. (a)-(d) are results on the SYNTHIA dataset, (e) and (f) are results on sequence 02 of KITTI dataset. (a) shows the translation
errors with different distance threshold for setting neighbors. (b) shows localization performance of various path dimensions of descriptors. (c) shows the effect
of removing different classes. (d) shows the effect of using the same label nodes or all nodes for matching. (e) show the effect of semantic maps estimated
by different methods. (f) shows the effect of depth maps estimated by different methods.

of KITTI dataset and the other experiments are performed on
the SYNTHIA dataset.

For evaluating the effect of connectivity, we use 5 meters,
10 meters, and 15 meters as the threshold of adding edges.
The experimental results are shown in Fig. 8 (a). As seen
that the performance is clearly better than others when the
threshold is set to 10 meters. As large threshold causes the
homogenization of the descriptors and small threshold leads to
many isolated nodes, thus, the performance tends to be poor
for both large and small threshold values. Similarly, Fig. 8
(b) shows the performance of different path dimensions for
descriptor extraction. Since the lower path dimension is not
able to capture sufficient surrounding information, 2 steps
descriptors demonstrates the lowest localization performance.
Although the performance is similar between 3 steps and 4
steps descriptors, the matching complexity of 4 steps descrip-
tors is much higher than 3 steps descriptors, e.g. when we use
30 frames for global localization on SYNTHIA dataset, the
matching time for 3 steps descriptors is around 48 ms, while
the time of 4 steps descriptors is about 625 ms.

Effect of amount of classes is compared by removing
different classes including Building, Road, Building and Road.
As a result, the performance of removing Road is lower
than removing Building. It is also shown that removing both
classes leads to further degradation of performance, as seen
in Fig. 8 (c). Note that removing the class of large areas (for
SYNTHIA dataset, the class is Building; for KITTI, the class is

Vegetation) slightly lowers the performance on SYNTHIA. On
the other hand, it leads to slight performance improvement (the
translation error is improved from 8.78 meters to 8.68 meters)
on KITTI. Therefore, we can say that the large areas may
improve or degrade the localization performance, it depends
on the specific scenarios that we use.

The effect of using the same labels and all labels for graph
matching is shown in Fig. 8 (d). It is observed that the
performance of the same labels matching is obviously higher
than the all labels matching. Note that another disadvantage of
using all labels for graph matching is the significant increase
of computation time. The matching time for the same label
matching and all label matching is around 48 ms and 340 ms,
respectively.

For ablation study on semantics, we compare LabelRe-
lax [32] (higher quality), MSeg [33] (medium quality) and
SGDepth [34] (lower quality). For depths, we choose BTS [31]
(higher quality), packnet [35] (medium quality) and SGDepth
[34] (lower quality) for comparison. Fig. 8 (e) and (f) show the
results of different methods for semantic and depth estimation,
respectively. The results show the more accurate semantic and
depth maps we have, the more high localization performance
we can gain. Besides, we find that the localization performance
is more sensitive to semantic quality than depth quality.
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V. CONCLUSIONS

In this paper, we studied the problem of global localization
for vision based multi-robot SLAM. We argue that there are
mainly two difficulties that need to be well handled. The
first is the large viewpoint difference, which is ubiquitous
for multi-robot systems. The second difficulty is the global
localization needs to be performed in real-time. These diffi-
culties motivated us to develop a more effective and efficient
method. In this paper, we proposed a semantic histogram based
descriptor. Thanks to that, the graph matching is formulated
as a dot-product between two descriptor sets, which can be
performed in real-time. Based on the proposed descriptor, we
presented a more accurate and efficient global localization
system. The system is fairly tested on synthesized SYNTHIA,
AirSim datasets as well as a real-world KITTI dataset. The
experimental results show that our method outperforms others
by a good margin, and it is much faster than the previous
semantic based method built on the Random Walk.
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