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Adaptive Flow Planning of Modular Spherical
Robot Considering Static Gravity Stability

Haobo Luo and Tin Lun Lam

Abstract—Modular robots have a unique obstacle-crossing
method, flow. Flow is realized by constantly changing the connec-
tion relationship between modules, namely reconfiguration. Ex-
isting flow planning methods do not consider the static stability in
their adaptation to obstacles. This letter proposes a flow planning
method with scalability, adaptability, and static gravity stability.
The criterion of static gravity stability is always satisfied through
the following two innovations. First, each target configuration in
the flow process is designed to grasp obstacles like vines. Second,
in motion planning, each module maintains contact with the
obstacle or a fixed module to maximize the supporting polygon
of the configuration. What’s more, the simplified path output by
the connection planning and the precise calculation based on the
mesh model realize the scalability and adaptability of the flow
planning method. In simulation, we evaluate the adaptability to
various obstacles and the margin of static gravity stability.

Index Terms—Cellular and modular robots; planning, schedul-
ing and coordination; path planning for multiple mobile robots
or agents

I. INTRODUCTION

MODULAR robots can change the connection relation-
ship between modules according to the requirements

of the environment and tasks. The configuration of modular
robots can be quadruped, snake, lizard, etc. The sequence of
actions to transform the current configuration of the modular
robot into the target configuration is called the reconfigu-
ration process. Modular Self-Reconfigurable Robot (MSRR)
performs better than traditional fixed robots in versatility
and adaptability [1] [2]. MSRR can move in three ways:
wheeled locomotion, footed locomotion and flow. For wheeled
locomotion, some modules need to be equipped with wheels
[3] or tracks [4]. Footed locomotion is achieved by changing
the angle between the modules [5]. These two locomotion
ways generally do not require disconnection or connection be-
tween modules. Flow is a locomotion method implemented by
modular robots through multiple consecutive reconfiguration
processes [6]. This letter focuses on the planning of flow. The
flow process of MSRR simulates the adaptability of water to
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different surfaces, which embodies the unique advantage of
MSRR in exploration.

MSRR can be divided into two types, chain-type and lattice-
type. Chain-type MSRR includes FreeBot [7], M-TRAN III
[8] and SuperBot [9]. Lattice-type MSRR includes Telecube
[10], ATRON [11] and Vacuubes [12]. Since the hardware
modules of different MSRR have diverse structures and drives,
algorithm research is usually based on general kinematic mod-
els, such as Proteo [13], SlidingCube [14] and RollingSphere
[15]. The shapes of Proteo and SlidingCube are rhombic
dodecahedron and cube respectively, while RollingSphere is
spherical. The connection of spherical modules can better
adapt to uneven obstacle surfaces [15], so this letter focuses
on hardware modules that can be abstracted as RollingSphere
models, such as 3D Catoms [16], FireAnt-3D [17] and FreeBot
[7].

The flow planning method is based on reconfiguration
algorithms. The research directions of reconfiguration algo-
rithms can be divided into search-based approaches, agent-
based approaches, and control-based approaches [6]. Search-
based approaches estimate the path distances between initial,
current, and final configurations by some metrics such as
the minimal number of steps [18] to search for the shortest
path. Search-based approaches consume a lot of memory and
computing time to traverse the entire configuration space,
which grows exponentially as the number of modules increases
[19]. In agent-based approaches, each module in MSRR is
regarded as an agent that can observe the local environment
and act independently. For example, Million Module March
[14] inspired by reinforcement learning can direct a large-scale
configuration composed of SlidingCube modules to flow over
obstacles composed of cubes in a decentralized manner. Agent-
based approaches have a certain degree of randomness and are
difficult to debug on the hardware. Control-based approaches
simulate the feedback control loop to navigate the sequence
of configuration changes converging to the target one. In the
gradient-based [20] method, the non-source module calculates
the steepest descent gradient following the density of nearby
attractors broadcast by the source module. Further, Luo et al.
[15] proposed a reconfiguration algorithm that calculates large
gradients through three-step minimization and a flow strategy
that uses the connection of spherical RollingSphere modules
to adapt to obstacles. However, the motion planning in [15]
still relies on centralized calculation in discrete space, and its
target configuration extracted from OctoMap is not accurate
enough. More importantly, the basic actions in [15] do not
consider the static gravity stability, so that many configurations
may be turned over by gravity in practical applications.

This letter proposes a flow planning method superior to
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existing work in terms of scalability, adaptability, and static
stability. First, we divide the reconfiguration planning into
connection planning and motion planning. The connection
planning outputs a simplified path to each module, which
enables computationally intensive motion planning to be exe-
cuted in a distributed and scalable manner. Second, our flow
planning method uses calculations based on the mesh model
instead of Octomap [15], which improves the adaptability
of the output trajectory to rugged and complex obstacles.
Third, we considered how to satisfy the criterion of static
gravity stability during the entire flow process. If the vertical
projection point of the Center of Gravity (CoG) is within the
2D convex hull of the vertical projection points of the 3D
contact points between MSRR and the obstacle, MSRR can
move stably without tipping. This is called the criterion of
static gravity stability [21]. The above-mentioned 2D convex
hull is also called the supporting polygon. In motion planning,
each module maintains contact with the obstacle or a fixed
module to expand the supporting polygon of the configuration.
In the target configuration design, the branches that grow
from the appropriate vacancies in the trunk path of the target
configuration grab obstacles like the feet of vines. These two
innovations make each configuration in the reconfiguration
process statically stable, as proven in Section V.

The remaining content of this letter is organized as follows.
Section II describes the abstract kinematic model and the
definition of configuration. Section III introduces the flow
planning method including target configuration design, con-
nection planning and motion planning. The simulation results
are shown in Section IV. Section V provides theoretical proof
and discussion. Section VI finishes this letter by conclusions.

II. PROBLEM FORMULATION

A. Basic Actions and Prerequisites

The method proposed in this letter applies to a kinematics
model, RollingSphere [15]. The RollingSphere model has
three basic actions, {Y aw,Rotation,Revolution}. To de-
scribe those actions, two perpendicular unit vectors, Ms and
W s, are defined to represent the direction of connection and
the direction of connection change respectively in step s. Take
FreeBOT as an example. FreeBOT consists of a spherical iron
shell and an internal trolley that has differential wheels and
a permanent magnet, as shown in Fig. 1(a). Ms of FreeBOT
represents the direction of the permanent magnet attracting
the spherical shell of another module, and W s represents the
advancing direction of the differential wheels of the internal
trolley. In simulation, Ms and W s are indicated by the normal
vectors of the red circle and the green circle as shown in Fig.
1(b). The inner trolley of FreeBOT has two driving forces, as
shown in Fig. 1(b), yaw and roll. With the Y aw force, the
advancing direction W s can be any unit vector on the plane
perpendicular to Ms. With the roll force, the trolley can per-
form two basic actions, {Rotation,Revolution}. Rotation
means that the inner trolley rolls around the center of the
module itself without changing the position of the module, as
shown in Fig. 1(c). Revolution refers to the position change of
the entire module around the center of the connected module,
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Fig. 1. The RollingSphere kinematics model. (a)FreeBOT; (b) Simulation in
Gazebo; (c) Rotation action; (d) Revolution action.

as shown in Figs. 1(d). These basic actions have different
dynamic gravity stability when executed by different hardware
implementations of RollingSphere, involving the driving force
of the module or the friction on the ground. In this letter,
we focus on the static gravity stability and assume that the
applied hardware module has fulfilled the four prerequisites:
(1) 3D global positioning capability, (2) 3D local perception
capability, (3) distributed identifier assignment capability [22],
and (4) normal static friction coefficient.

B. Definition of configuration

The configuration of MSRR is composed of the positions
of all modules and an adjacency matrix as shown in Eq. (1).
In the adjacent matrix, the element xuv = 1 means that the
module Mu is connected to the module Mv , as shown by
Mu → Mv in Eq. 2 where u and v represent two module IDs.

CFG = {[X(u, :), Pu] | u = 1, . . . , n} (1)

X : xuv =

{
1 Mu → Mv

0 others
u, v = 1, · · · , n (2)

For the sake of distinction, we call the member of the
current configuration as module and the member of the target
configuration as vacancy. The purpose of the reconfiguration
planning is to fill all the vacancies in the target configuration
by adjusting the 3D position of each module in the current
configuration. A splicing action may be required between two
consecutive reconfiguration processes, which varies according
to different hardware implementations. For example, the splic-
ing action applicable to FreeBOT is to uniformly reverse the
connection sequence between modules on the entire path. For
more details, please refer to [15].
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III. FLOW PLANNING

The proposed flow planning method consists of three parts:
target configuration design, connection planning and motion
planning. The distributed framework and the input of each
part are shown in Fig. 2. Each module Mu can perform
motion planning and perception locally according to the ID
sequence of the modules to be passed, denoted as IDSu. In the
initialization phase of the reconfiguration process, each module
Mu sends the local mesh model Meshu, its 3D position PC

u

and current connection relationship XC(u, :) to a global node
for target configuration design and connection planning. The
global node can run on any module and receive the overall
goal direction g⃗ on the X-Y plane input by the user.

A. Target Configuration Design

A target configuration and a current configuration are shown
in Fig. 3 as an example. On the right side of Fig. 3, the orange
transparent spheres represent vacancies Vv, v = 1, · · · , n. On
the left side of Fig. 3, the white spheres with ribbons represent
modules Mu, u = 1, · · · , n. The g⃗ in Fig. 3 is a goal direction
vector on the X-Y plane pointing to the destination of the
entire MSRR. The design of the target configuration mainly
includes the calculation of the next vacancy and the selection
of bifurcation vacancies.

1) Calculate the Next Vacancy: The 3D positions of all
modules in the current configuration are projected to g⃗ to
select the farthest module, called the anchor module, which
is matched with the root vacancy such as the M1 = V1 in
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Fig. 4. Target configuration Design. (a) The calculation method of the next
vacancy. (b) The supporting polygon of the target configuration.

Fig. 3. Recursively, V1 triggers the calculation of the new
vacancy V2. The 3D position of the new vacancy PT

u+1 should
be at a distance 2R from PT

u and at a distance R from the
contact triangle △(Oc

u+1, n⃗
c
u+1) in the mesh model of the

environment. These two constraints are expressed as Eq. 3
and 4, where R represents the radius of each module.

∥ PT
u+1 − PT

u ∥= 2R (3)

∥ (PT
u+1 −Oc

u+1) · n⃗c
u+1 ∥= R (4)

The two constraints in Eq. 3 and 4 have not completely
restricted the 3D position PT

u+1. We add a constraint about
g⃗α to calculate candidate positions. g⃗α represents the vector
obtained by rotating g⃗ around the Z axis of the world co-
ordinate system by an angle α ∈ [−180◦, 180◦). A candidate
position is restricted to the plane where PT

u and g⃗α are located,
denoted as

∏
(PT

u , g⃗α). The constraint of Eq. 4 can be satisfied
by offsetting the local mesh near PT

u by a distance of R
outward along the normal of vertices [23]. The constraint
of Eq. 3 can be satisfied by solving the intersection of the
offset mesh and the sphere

⊙
(PT

u , 2R) with PT
u as the

center and 2R as the radius. In order to meet the above
three constraints simultaneously, we use the plane

∏
(PT

u , g⃗α)
to cut the sphere

⊙
(PT

u , 2R) and the offset mesh to find
the intersection points, as shown in Fig. 4(a). From these
intersection points, the point with the farthest projection to
g⃗α is chosen as a candidate position. For example, g⃗α can has
13 values with α = i ∗ 10◦, i = [−6, 6], i ∈ Z, corresponding
to 13 candidate positions. We define the supportability of a
contact point within the contact triangle △(Oc, n⃗c) as S =
sign ∗ cos(∠(n⃗c, g⃗α)), where sign outputs +1 when MSRR
climbs up, otherwise −1. Among all candidate positions, a
position with the maximum S is selected as the 3D position
of the next vacancy.

2) Select Bifurcation Vacancies: All the vacancies in the
trunk path shown in Fig. 3 can be calculated by the method in
Subsection III-A1. Next, we attach branches to the appropriate
vacancies in the trunk path, just like the feet of a vine. If
the contact points of the x consecutive vacancies in the trunk
path of the target configuration have S < 0, the two vacancies
before and after these vacancies grow two branches with a
total length of x based on the method in Subsection III-A1.
The specific number of vacancies in the left or right branch is
adjusted according to the supportability of the contact point in
their respective directions. For example, the four consecutive
vacancies, V2, V3, V4 and V5 in Fig. 3 are on a steep surface,
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Fig. 5. An example of connection planning between two configurations.

and the vacancy V1 on a flat surface in front of these four
modules is selected as a bifurcation vacancy. As shown in Fig.
4(b), the two branches can expand the supporting polygon into
a triangle, a quadrilateral, and so on. The distance between
the vertical projection point of the CoG and one edge of the
supporting polygon that is closest to the CoG is defined as the
margin of static gravity stability, denoted as M. The margin of
static gravity stability is increased by the designed branches.

B. Connection Planning

The adjacency matrix input to the connection planning can
be used to draw the graph of the connection relationship of the
configuration. Fig. 5 shows an example of the drawn graphs
based on two adjacency matrices in another reconfiguration
process. In Fig. 5, we define four types of modules: if in the
adjacency matrix,
(1) Row u has no 1 → root module Mu;
(2) Column u has no 1 → leaf module Mu;
(3) Row u and Column u has 1 → stem module Mu;
(4) Column u has multiple 1’s → bifurcation module Mu.

We define a module path in the configuration as the path
composed of all intermediate modules that connect one module
to another. It can be seen in Fig. 5 that the directions of all
module paths eventually converge to a unique circuit of the
current configuration or a unique root vacancy of the target
configuration. One attribute of the RollingShere module is
single out-degree which means that the module has only one
active connection point, such as FreeBOT. Generally, we have
theorem 1 as follows:

Theorem 1. A connected component composed of single out-
degree modules either contains one root module or one circuit.

Theorem 1 can be proved by knowledge in [24]. Theorem
1 is explained as that the fully connected configuration com-
posed of single out-degree modules, such as RollingSphere
modules, can be transformed into a tree through at most one
disconnection. As shown by the current configuration in Fig.
5, two arbitrary modules in the circuit are disconnected and
transformed into a root module and a leaf module. If the root
module of the current configuration is not the anchor module
matched with the root vacancy, all intermediate modules in the

Algorithm 1 Connection planning
1: Disconnect the circuit in the current configuration
2: Reverse the connection sequence
3: for LV L in LevelGroupOrderIter() do
4: Calculate the List of Leaf Modules LLM
5: Bipartite matching
6: Ignore the matched leaf modules
7: end for
8: Update the IDs of the vacancies

module path between the root module and the anchor module
uniformly reverse the connection sequence, as indicated in
Fig. 5. Reversing the connection sequence is completed by the
Rotation of each module and is used to splice two consecutive
reconfiguration processes [15].

The algorithm for connection planning is summarized in
Algorithm 1. As introduced above, Line 1-2 in Algorithm 1
transform the current configuration into a tree-like configu-
ration whose root module is matched with the root vacancy
of the target configuration. The next step is to match the
remaining vacancies in the target configuration with the re-
maining modules in the current configuration one by one.
Line-3 of Algorithm 1 iterates over the tree of the target
configuration applying level-order strategy [25]. The LV L
in Line-3 represents a List of Vacancies for each Level.
For example, the vacancies LV L = [V2, V6, V8] in Fig. 3
are at the same level. In Line-4 of Algorithm 1, all leaf
modules in the current configuration are calculated, such as
LLM = [M2,M3,M4] in Fig. 3. In Line-5 of Algorithm
1, the minimum weight full bipartite matching [26] between
LV L and LLM is performed using the weight defined in Eq.
5. In Eq. 5, the module distance dmodule(Mu, Vv) represents
the number of intermediate modules included in the module
path. The Euclidean distance deuc(P

C
u , PT

v ) is standardized by
the maximum Euclidean distance in the current iteration. For
example, M3 in Fig. 3 will be matched with V8, even though
M3 has the same dmodule with the other two vacancies in
LV L. Once some modules are matched, they will be ignored
in Line-6 of Algorithm 1 to expose their connected modules as
leaf modules for the next iteration. These iterations of bipartite
matching make the total path of all modules the shortest. After
all iterations, the vacancies are sorted according to their level
in the tree and their weights. The sorting result updates the
IDs of the vacancies to indicate the priorities. Finally, the IDs
of modules or vacancies in the path between each module Mu

and its matching vacancy are output as the simplified path
IDSu for the motion planning of each module Mu.

W(Mu, Vv) = dmodule(Mu, Vv) +
deuc(P

C
u , PT

v )

dmax
(5)

One attribute of the configuration of MSRR is connectivity
[13] which means that any two modules in the configuration
can be connected by a path composed of other modules. Our
connection planning algorithm always maintains the connec-
tivity of each successive configuration in the flow process.
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C. Motion Planning

The current configuration contains two types of modules:
fixed and free modules. Free modules refer to leaf modules
that have not reached their target vacancy. Modules other than
leaf modules and leaf modules that have reached the target
vacancies are fixed. A free module can have two types of
collisions, one with other free modules and one with fixed
modules or obstacles. The first type of collision is avoided
by using the updated ID of the matched target vacancy
as a priority. Modules with lower priority will stop at the
appropriate step when they foresee a collision, until the module
with higher priority has left the collision range.

The second type of collision is avoided by setting the
passing points of the trajectory. Fig. 6 shows how to calculate
the passing points that are in contact with obstacles or fixed
modules without colliding. In the top view shown in Fig.
6(a), M1 is a free module. M2 is the connected module
of M1. M3 is the next module to be connected by M1

according to the connection planning result. M4 is a fixed
module that has reached its target vacancy. First, we take
10 points uniformly on the 3D line segment between PC

2

and PC
3 , denoted as P via

i , i = 1, · · · , 10. The plane crossing
P via
i and with (PC

3 − PC
2 ) as the normal vector is called the

passing plane, as shown in Fig 6. The passing plane is used
to cut obstacles and fixed modules for their profile. Second,
the profiles of the mesh model and the fixed modules such
as M4 are offset outward by a radius R. Third, a passing
point P pass

i is selected from the intersection points between
the offset profiles of mesh or fixed modules and the circle with
P via
i as the center and 2R as the radius, as shown in Fig. 6(b).
The trajectory between two consecutive passing points con-

sists of three basic actions. The orientation of Mu changes
according to Eq. 6, where the from rotvec function calcu-
lates the incremental rotation matrix based on the rotation
axis Axis and the rotation angle ∆Θ. For the Y aw action,
Axis is the Ms of Mu, and ∆Θ is the angle between the
3D vector (P pass

i −PC
u ) and the plane where W s and Ms of

Mu are located. The role of Y aw is to adjust the W s of Mu

to point to the next passing point. For the Rotation action,
Axis and ∆Θ change according to the collision angle and the
position of the next module in the simplified path output by
the connection planning. The role of Rotation is to adjust
the Ms of Mu to point to the next module to connect. For
the Revolution action, Axis is the cross product of the two
direction vectors Ms and W s of Mu, and ∆Θ = 1◦ is user-
defined. In addition to the orientation change, the translation

change of Revolution is calculated based on Eq. 7, where
P s
center represents the 3D position of the currently connected

module.

∆R = from rotvec(Axis,∆Θ)

Rs+1 = ∆R×Rs (6)

P s+1 = (∆R)× (P s − P s
center) + P s

center (7)

When a module moves along the trajectory controlled by
the passing points calculated above, it can just touch the mesh
model or other fixed modules without colliding. This feature of
the trajectory enables the module to maintain contact with the
obstacle or a fixed module. The more contact points, the larger
the supporting polygon of the configuration. For example,
humans can increase the area of the supporting polygon by
touching their hands with the ground. We explained this
intuition in detail in the proof in Section V.

IV. SIMULATION

This section introduces the simulation results when the
proposed flow planning method is used to control the spherical
MSRR crossing five representative obstacles. MSRR shows
adaptability and static stability in these processes.

A. Settings

Gazebo is used to demonstrate the trajectories output by
the flow planning method. Each module of MSRR in Gazebo
is controlled by a ROS node. Each ROS node runs motion
planning code and exchanges information with a master node
that performs target configuration design and connection plan-
ning according to the distributed framework described in Fig.
2. The motion planning code contains functions for collision
detection and obstacle avoidance. As a result, Gazebo’s built-
in collision detection and gravity can be canceled to focus on
planning. In other words, each module in Gazebo perfectly
follows the trajectory output by the flow planning method.
The mesh model of the obstacle is considered to be perfectly
reconstructed [27].

In this letter, one step refers to the Revolution of a
single module by an angle ∆Θ = 1◦ or the Rotation of a
single module by an angle ∆Θ = [60◦, 180◦). The action of
Rotation does not change the 3D position of the module and
can be executed much faster than the action of Revolution.
Therefore, the action of Rotation is considered to be finished
in one step. The action of Y aw is considered to be completed
instantly, not counted as one step.

B. Evaluation Index

The evaluation indicators of the experiment include the
margin of static gravity stability M introduced in Subsection
III-A2 and the adaptability calculated by Eq. 8. Eq. 8 evaluates
the adaptability of the configuration to obstacles in each step
of the trajectory. In Eq. 8, (PC

u − Ou) · n⃗u represents the
distance between the 3D position PC

u of the module Mu and its
nearest triangle △(Ou, n⃗u) in the mesh model of the obstacle.
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TABLE I
ADAPTABILITY TO FIVE OBSTACLES

Obstacle (difficulty) Total steps Average adaptability, σ
Ours Baseline Ours Baseline

Rocky Hill (100%) 9242 / 6.546 /
Stair (23.4%) 11411 10937 3.922 15.439
Fence (45.9%) 2624 2468 4.587 16.791
Stone (56.8%) 2374 2194 4.249 20.863

Cobbles (89.2%) 2475 2201 5.213 33.854

Under perfect adaptation, this distance should be equal to the
radius R of the module. This distance is calculated by trimesh
[28] and normalized by the diameter 2R of the module. The
calculation is repeated for n modules to get the σ for a
configuration.

σ =
1

n

n∑
u=0

∥ (PC
u −Ou) · n⃗u −R

2R
∥ (8)

C. Results

Table I summarizes the total steps and the average adaptabil-
ity of each step’s configuration when the flow planning method
is applied to five obstacle environments with different relative
difficulties. The five obstacles are Rocky Hill, Stair, Fence,
Stone, and Cobbles. The difficulty of the obstacle is defined
as the relative percentage of the number of triangles with an
area less than πR2 in the mesh model. The baseline in Table
I refers to the flow planning method proposed in [15] based
on OctoMap. The baseline method emphasizes the rapidity
of the flow process but does not consider the static gravity
stability of each configuration in the flow process. This lack
of consideration makes the baseline method fail in the face of
complex and rugged obstacles, which means that MSRR will
frequently tip over. For example, the baseline method fails in
the face of RockyHill. The flow planning method proposed
in this letter can ensure that each configuration in the flow
process meets the criterion of static gravity stability, thereby
avoiding the overturning of MSRR. As for more comparisons,
the proposed method uses about 10% more steps to climb
over the same obstacle in exchange for static gravity stability,
and improves the adaptability by about 15% using the mesh
model, as shown in Table I. Fig. 7 shows the flow processes
of MSRR crossing three obstacles, Rocky Hill in Row-1, Stair
in Row-2 and Fence in Row-3. The larger obstacles, Rocky
Hill and Stair, take three and four reconfiguration processes
respectively, while the other three obstacles only take one
reconfiguration process.

Fig. 8(a)(b)(c) show the trajectories of a particular reconfig-
uration process in the flow process of crossing three obstacles,
Rocky Hill, Stair and Fence. It can be seen that the trajectories
adapt to the obstacles like vines entwined together. Please
refer to the appendix video to recognize the adaptability of
the trajectory output by the flow planning method. Fig. 8(d)(e)
show how MSRR adapts to the other two obstacles, Stone and
Cobbles, during the flow process. Fig. 8(f)(g)(h)(i)(j) show the
margin of static gravity stability of the configuration at each
step in the five flow processes of crossing five obstacles. It
can be seen that all the margins M are larger than zero, and

the trend of M falls as the steepness of the local triangles
in the mesh model of the obstacle increases. For example,
when MSRR crosses a fence, the configuration riding on the
fence, as shown in the third picture of Row-3 in Fig. 7, has
a small margin M, so a trough is produced in Fig. 8(h).
Similarly, when MSRR crosses the rocky hill and the stair,
there are corresponding 5 and 4 troughs in Fig. 8(f)(g). For
example, every 90-degree corner in the stair makes the M of
the configuration smaller.

In summary, the flow planning method proposed in this
letter can always satisfy the criterion of static gravity stability
and better adapt to obstacles.

V. ANALYSIS AND DISCUSSION

This section summarizes and proves the three sufficient con-
ditions used in the flow planning method to satisfy the criterion
of static gravity stability, and discusses the assumptions and
limitations of the method.

Theorem 2. The sufficient conditions for the configurations
in the reconfiguration process to satisfy the criterion of static
gravity stability are:
(1) MSRR maintains connectivity;
(2) Each free module Mu maintains contact with the obstacle

or a fixed module Mv whose v /∈ IDSu;
(3) If the contact points of the x consecutive vacancies in

the trunk path of the target configuration have S < 0,
the two vacancies before and after these vacancies grow
two branches with a total length of x.

Proof. In the following, P⊥
u represents the vertical projection

point of the center of the sphere of Mu, and C⊥
j represents

the vertical projection point of the j-th contact point between
the configuration and the obstacle.

Because of condition (1), the vertical projection point of

the CoG of the configuration is P⊥
G = ( 1n

n∑
u=1

xu,
1
n

n∑
u=1

yu) =

1
n

n∑
u=1

P⊥
u . This equation shows that P⊥

G is a convex combina-

tion of points in the set X⊥
P = {P⊥

u | u = 1, · · · , n}. There-
fore, P⊥

G must be in the convex hull of the point set X⊥
P . If the

convex hull of all contact points X⊥
C = {C⊥

j | j = 1, · · · ,∞}
contains the convex hull of X⊥

P , the criterion of static gravity
stability is sufficiently satisfied, as written in Eq. 9.

P⊥
G ∈ Hull(X⊥

P ) ⊂ Hull(X⊥
C ) (9)

Condition (3) makes the unstable vacancies in the trunk path
of the target configuration supported. Taking Fig. 9 as an
example, V2 is supported by V1 and V1 will grow two branches
similar to Fig. 3. In Fig. 9, the contact point C1 whose S > 0
ensures that the convex hull of X⊥

C = {C⊥
1 , C⊥

2 , C⊥
3 } contains

the convex hull of X⊥
P = {P⊥

1 , P⊥
2 }. By analogy, the designed

target configuration satisfies Eq. 9.
Condition (2) makes the configuration of each step in the

reconfiguration process statically stable. When the free module
Mu maintains contact with the obstacle, Mu proceeds along
the trunk path or the two branches designed in condition (3).
Therefore, the change of P⊥

G of the configuration is limited to
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Fig. 7. Screenshots of the flow processes of crossing various obstacles by MSRR. Row-1: Rocky hill. Row-2: Stair. Row-3: Fence.

(a) Rocky hill (b) Stair (c) Fence (d) Stone (e) Cobbles

(f) Rocky hill (g) Stair (h) Fence (i) Stone (j) Cobbles

Fig. 8. The trajectories of crossing three obstacles and the margin of static gravity stability of the configuration of each step in five flow processes.
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Fig. 9. Two examples for the proof of Theorem 2.

the interior of the supporting polygon of the designed target
configuration of the previous reconfiguration process. When
the free module Mu maintains contact with a fixed module

Mv whose v /∈ IDSu, these two modules and their respective
connected modules locally form a parallelogram as shown in
Fig. 9 (b). When Mu is continually being lifted and kept in
contact with Mv , the vertical projection of the contact points of
the sub-configuration composed of these four modules changes
from a parallelogram to a triangle, and the P⊥

G of this sub-
configuration gradually moves to the inside of the triangle.

The method proposed in this letter still has assumptions
and limitations to be studied before being applicable outdoors.
The hypothetical positioning and perception are not perfect
in an outdoor environment. In our previous work, the 3D
position of each module is obtained by fusing the information
of IMU, UWB [29] and magnetic sensor array [30]. The
local environmental information is reconstructed by multi-
robot SLAM [31] and depth estimation [32]. Our future work
will focus on dynamic gravity stability which studies the
physical interaction between the module and the environment,
such as pressure and friction, and will also explore repair
methods to deal with failures or damages of some modules.
In addition to these two future studies, the third limitation to
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be tackled is the global clock used for target configuration
design and connection planning in the initialization phase of
the reconfiguration process.

VI. CONCLUSIONS

This letter proposes a flow planning method with scalability,
adaptability and static gravity stability. The flow planning
method includes three parts: target configuration design, con-
nection planning and motion planning. In target configura-
tion design, appropriate vacancies on the trunk path of the
configuration are attached branches. In motion planning, each
module maintains contact with the obstacle or a fixed module.
These two parts make configurations in the flow process
satisfy the criterion of static gravity stability. Furthermore,
the simplified path output by the connection planning and
the precise calculation based on the mesh model achieve the
scalability and adaptability of the flow planning method.

REFERENCES

[1] G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full,
N. Jacobstein, V. Kumar, M. McNutt, R. Merrifield et al., “The grand
challenges of science robotics,” Science robotics, vol. 3, no. 14, p.
eaar7650, 2018.

[2] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [grand challenges of robotics],” IEEE Robotics & Automation
Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[3] F. Hou, N. Ranasinghe, B. Salemi, and W.-M. Shen, “Wheeled loco-
motion for payload carrying with modular robot,” in 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2008, pp. 1331–1337.

[4] S. Kernbach, O. Scholz, K. Harada, S. Popesku, J. Liedke, H. Raja,
W. Liu, F. Caparrelli, J. Jemai, J. Havlik et al., “Multi-robot organisms:
State of the art,” arXiv preprint arXiv:1108.5543, 2011.
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