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Abstract— Hand gesture recognition plays an essential role
in the human-robot interaction (HRI) field. Most previous
research only studies hand gesture recognition in a short
distance, which cannot be applied for interaction with mobile
robots like unmanned aerial vehicles (UAVs) at a longer and
safer distance. Therefore, we investigate the challenging long-
range hand gesture recognition problem for the interaction
between humans and UAVs. To this end, we propose a novel
attention-based single shot multibox detector (SSD) model that
incorporates both spatial and channel attention for hand gesture
recognition. We notably extend the recognition distance from
1 meter to 7 meters through the proposed model without
sacrificing speed. Besides, we present a long-range hand gesture
(LRHG) dataset collected by the USB camera mounted on
mobile robots. The hand gestures are collected at discrete
distance levels from 1 meter to 7 meters, where most of the hand
gestures are small and at low resolution. Experiments with the
self-built LRHG dataset show our methods reach the surprising
performance-boosting over the state-of-the-art method like the
SSD network on both short-range (1 meter) and long-range (up
to 7 meters) hand gesture recognition tasks.

I. INTRODUCTION

The hand gesture is an intuitive way for humans to interact
with robots. Recently, the deep learning based techniques
surprisingly boost the hand gesture recognition algorithms
in accuracy over the traditional hand-craft features [1-3].
Therefore, the hand gesture becomes one of the significant
communication bridges in the human-robot interaction.

In the research community, the hand gesture recognition
problem has been studied for decades. Traditional meth-
ods mainly focus on hand-craft features for hand gesture
recognition, which shows promising results in the ideal
conditions. However, these methods are not robust enough
and suffer from sophisticated background clutter, occlusion,
scale problem, various lighting conditions, and viewpoint
problems.

Thanks to the fast development of the graphics processor
unit (GPU) and the massive amount of the human-labeled
dataset like the ImageNet, MS COCO, and the user-friendly
programming library for deep neural network deployment
like the Pytorch [4-6]. Many deep learning based hand ges-
ture recognition systems have been proposed to alleviate the
above-mentioned problems and enhance the robustness and
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efficiency of the traditional hand recognition algorithms. The
hand gesture recognition system based on the SSD network
shows that detection performance on short-range gestures is
significantly outperforming the traditional methods [1, 3, 7].
Notably, the frames per second (FPS) of the one-stage object
detector, like SSD, is faster than models with two-stage
detectors. Hence, the SSD [7] network is suitable for real-
time hand gesture recognition. However, when the SSD
is applied to detect long-range hand gestures, it leads to
poor performance, especially when the interaction distance
between the robot and human is more than 5 meters. Most
existing hand gesture recognition systems are limited on the
recognition distances [1, 8-11].

To recognize the long-range hand gestures, the Joint SSD
[3] is proposed, where the first SSD is designed to detect
the head-shoulder area, and the second SSD is designed for
detection and classification of hand gestures. However, the
bounding box of the hand-shoulder area is required for the
first SSD, making it more labor-intensive and less efficient.
Moreover, the Joint SSD performs worse on the short-range
hand gesture recognition compared with the SSD. Besides,
it demands more GPU memory to deploy the model.

In many industrial applications [12-14], for humans to
interact with the UAVs, a safer and longer distance is
required, and a more lightweight and efficient model is in
demand. To this end, we present an attention-based SSD
for recognizing hand gestures at both short-range and long-
range. Expressly, the convolutional block attention module
(CBAM) that combines both the spatial and channel attention
are incorporated into the SSD, namely CBAM-SSD, which
significantly prolongs the recognition distance from only 1
meter to 7 meters.

In summary, our main contributions of this paper are as
follows:
• We release a dataset, namely Long-range Hand Ges-

ture (LRHG) Dataset ∗, which features the small
hand gestures collected at long-range by a lightweight
USB camera, enabling the interaction between human
and robots at multiple ranges and long-range via hand
gestures.

• To solve the novel long-range hand gesture recognition
problem, we incorporate both the spatial and channel
attention mechanisms into the SSD network with a
CBAM module, namely CBMA-SSD. The performance
of the long-range hand gesture recognition has been
tremendously boosted. Experiment results show the
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proposed CBAM-SSD notably outperforms state-of-the-
art methods and recognizes hand gestures collected up
to 7 meters.

The rest of the paper is structured as follows. Section II
introduces the related works. Section III describes the CBAM
based SSD detector for more reliable hand gesture detection,
which can be used for human-robot interaction at a longer
and safer distance. Section IV shows the experimental results
and demonstrates that the proposed CBAM-SSD notably
increases long-range hand gesture recognition performance
and improves short-range hand gesture recognition. Finally,
the conclusion is summarized in Section V.

II. RELATED WORKS

The literature on hand gesture detection can be divided
into two categories, data gloves-based method (contact) and
non-contact hand gesture detection [15]. In this paper, we
mainly discuss the non-contact hand gesture recognition
methods. Moreover, we discuss the object detectors for
object detection and attention mechanisms for network per-
formance enhancement.

A. Non-Contact Hand Gesture Recognition

In non-contact hand gesture detection, the wireless tech-
nology based method, like the Two-Antenna Doppler Radars,
has a limited sensing range of 0.5 meters and is applied to
detect the hand gestures based on the deep convolutional
neural networks [16]. Moreover, there are many works about
vision-based methods because of their natural and non-
contact features. Xu et al. [9] propose an appearance-based
hand gesture recognition system that utilizes color and depth
images. Marin et al. [1] present a multi-class SVM classifier
to train the dataset based on the ad-hoc feature set, where
the position and orientation of the fingertips are calculated.
Generally, sign language consists of two parts, one is hand
posture, represented by the position and configuration of
fingers, and the other is the hand gesture, which means the
moving trajectory of the hand [17]. However, the algorithm
demands the depth information from Kinect and the hand
points, and features from the Leap Motion to boost the
recognition accuracy [18]. Meanwhile, the sensing distance
of the Leap Motion is relatively small. Moreover, the hand-
crafted feature descriptors are complex and require a lot of
effort to design. Huang et al. [2] integrate the multi-channel
information like the color images, depth images, and body
skeleton images obtained from the Kinect as input to 3D
CNNs. Still, they only investigate short-range hand gesture
recognition. In summary, the above models are limited to the
short-range hand gesture recognition tasks. To make long-
range hand gesture recognition possible, the Joint-SSD [3]
has been proposed, but the performance for short distance
hand gesture detection is decreased [3]. Moreover, the Joint
SSD requires two bounding boxes, one is the head-shoulder
area, and the other is hand gestures, which makes the training
process more complicated. Besides, it introduces an extra
amount of work for the labeling of the head-shoulder area.
Mazhar et al. [11] propose the body skeleton based hand

gesture recognition system for human-robot interaction, but
with a low fps (5.2fps) and limited interaction range (4m).

B. Deep ConvNet Object Detectors

In the object detection area, many deep learning based
models like R-CNN [19], Fast R-CNN [20], Faster R-CNN
[21] have been developed and shows dramatic improvements
in terms of accuracy. The detection process of these methods
includes two steps: region proposal and image classification.
Also, some improved networks do not rely on region pro-
posals such as SSD [7], and YOLO [22, 23]. In general,
models without region proposals have faster speed than
models with region proposals. Compared with the R-CNN,
Fast R-CNN, Faster R-CNN, SSD features a faster speed and
more lightweight network design.

C. Attention Mechanism

Recently, the attention mechanism shows the potential
and effective capabilities in the NLP and computer vision
areas. Self-attention is used for machine translation with a
transformer [24]. Non-local computes the weighted mean of
all pixels as a typical filtering algorithm [25] and Wang et al.
[26] introduced the non-local network for video classification
recently. However, the local information that is essential for
small hand gesture recognition is not considered in non-
local attention. SENet [27] assumes that each channel’s
importance in the feature map of the deep neural network
varies. It utilizes a global pooling method to measure the
importance of each channel in the feature map. The spatial
information is missed when using the SENet. Woo et al.
propose the CBAM [28] module, which combines both the
spatial and channel information of feature map, is more
suitable for recognition of hand gestures.

III. METHODOLOGY

In this section, we introduce the fundamental object
detector SSD for hand gesture recognition that performs
excellently on short-range hand gesture recognition. But it
is not capable of handling the task of long-range hand
gesture recognition. Thus, to improve the performance of
long-range hand gesture recognition, we improve the SSD by
incorporating the spatial and channel attention module with
the CBAM, convolutional block attention module (CBAM),
namely the CBAM-SSD network.

A. Single Shot Multibox Detector (SSD)

1) Basic Network: SSD is a cutting-edge deep neural
network for object detection. The architecture of the SSD
model for hand gesture recognition is depicted in Fig. 1,
where the SSD is the basic object detection model for
hand gesture detection. For the feature extraction part, the
backbone network is the VGG16 network. Unlike the Faster-
RCNN, when localizing the bounding box, the selective
search region proposal method is used to generate the po-
tential bounding boxes. In the SSD, the anchors are applied
to generate bounding box proposals.



Fig. 1. The network structure of the proposed CBAM-SSD model is shown in the Figure. We connect each output feature map with a CBAM module
individually ranging from CBAM0-SSD to CBAM5-SSD, to better capture the feature representations of both the short-range and long-range hand gestures.

2) loss function: The loss function of SSD can be found
in literature [7]. The overall objective loss function is a
combination of the weighted sum of the localization loss
and the confidence loss:

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (1)

where N is the number of default boxes matched (if
N=0, L=0), and the weights term α is set to 1. Lloc is the
localization loss function of smooth L1 between the predicted
box (l) and ground truth box (g):
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(x) =

{
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|x| − 0.5 otherwise (3)

where Xp
ij = {0, 1} is the indicator for matching the i-th

default box to the j-th ground truth box in category p. We
know

∑
iX

p
ij ≥ 1 in the matching strategy. The (cx,cy) is

the center of the bounding box (d), and w, h are the width
and height of the bounding box. The confidence loss Lconf
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Fig. 2. The figure shows the network structure of the CBAM module, where
the top flow shows the channel attention module and the bottom flow shows
the spatial attention module. The Input feature of the CBAM module is the
intermediate feature map of the neural network, and the output feature will
be connected to the next layer of the network. With the CBAM module,
better feature representations of the input object can be learned.

B. Convolutional Block Attention Module (CBAM)

The architecture of the CBAM is depicted in Fig. 2. There
are two essential blocks in CBAM [28]. One is channel
attention, which is tailored for exploiting the inter-channel
relationship of features. The other is spatial attention, which
is designed for capturing the spatial relations of feature maps.
The mathematical expression of Channel Attention is:

Mc(F ) = σ(MLP (AvgPool(F ))+MLP (MaxPool(F )))
(5)

where σ denotes the Sigmoid function and f7x7 represents
a convolution operation with the filter size of 7*7. MLP is the
multilayer perceptron of the three layer fc network share by
features of max pooling and average pooling. The AvgPool
and MaxPool represent the operations of average pooling
and max pooling, respectively. Similarly, the mathematical



Fig. 3. The left figure shows the 10 hand types of the LGRH Dataset. The right figure shows the example images from test sets of the LRHG dataset.

expression of Spatial Attention is:

Ms(F ) = σ(f7x7([AvgPool(F );MaxPool(F )])) (6)

Given an input feature map F ∈ RC×H×W , the channel
attention map will be computed first as Mc((F ) ∈ RC×1×1

and F ′ is the intermediate feature for spatial attention
calculation, where F ′′ is obtained with Ms(F

′) ∈ R1×H×W

as the final output of the CBAM. The CBAM pipeline is
summarized as follows, where ⊗ represents the element-wise
multiplication:

F ′ =Mc(F )⊗ F
F ′′ =Ms(F

′)⊗ F ′
(7)

C. CBAM-SSD

SSD only recognizes the hand gestures collected less than
2m from the robot. Besides, as the distance increases, the
performance of SSD becomes unreliable and dramatically
decreases. In the interest of recognizing the hand gestures
at a longer distance, the CBAM is introduced to improve
the recognition performance of the SSD, based on the
assumption that attention can help the algorithm to focus on
the target objects during the training process automatically.
Therefore, we incorporate the SSD and CBAM, namely
CBAM-SSD for hand gesture recognition depicts in Fig. 1.
One thing that can be noticed is that there are six distinct
feature maps for the box proposal modules. To better capture
the feature maps with the help of the attention mechanism
automatically, we attach the CBAM module to each one of
these six modules individually, ranging from the CBAM0 to
CBAM5. We have conducted the comparison experiments
by adding the CBAM0 to CBAM5 into the SSD model
individually, ranging from the CBAM0-SSD to CBAM5-
SSD. Surprisingly, the proposed method can increase the
performance of hang gesture recognition both in short-range
and long-distance.

IV. EXPERIMENT RESULTS

A. Experimental Settings

In this paper, we aim to increase the recognition accuracy
for the long-range hand gestures, therefore enabling human-
robot interaction at a safer and longer distance via hand
gestures. To this end, we evaluate the proposed method on

TABLE I
LRHG DATASET

LRHG Dataset
Multi-Range Single Range

Training Test Tiny Hand Median HandTrain MX Test MX Test MS Test ML
3024 1296 543 504 1695 1796

the long-range hand gesture dataset. We will introduce the
implementation details and training procedures, and different
experiment settings.

1) Implementation Details: For the models, we deploy
in the experiment, the optimizer used is the Stochastic
Gradient Descent (SGD) with an initial learning rate 0.0001,
the momentum of 0.9, weight decay 0.0005. The backbone
network is VGG16 pretrained on the ImageNet [29]. The
total number of iterations is 20000. The model evaluation
criterion is MultiBoxLoss. The batch size of the training
data is 32. During the learning process, both the VGG16
and the SSD parts of the model are updated based on the
SGD optimizer. The speed of the model is tested on a single
GTX 1080 Ti.

2) LRHG Dataset: In LRHG Dataset, there are 10 differ-
ent types of hand gestures collected from 8 different people
at discrete distance levels, such as 1m,2m,3m as the short-
range and 5m,6m,7m as long-range as Fig. 3 presented. The
images are captured by a lightweight USB camera at a speed
of 25fps in the lab environment without strict illumination
constraints. The size of the captured images is 640×480
pixels, and the type of images is RGB color. Each gesture
is performed by 8 people at discrete distance levels. The
collected dataset is Long Range Hand Gesture Recognition
(LRHG) Dataset. To make the dataset more challenging,
we set the hand gestures performed by people with different
scales, viewpoints, and in-plane rotation.

As Tab. I shows, the LRHG dataset has 4320 images in
total. The LRHG dataset is split into the training dataset
TRAIN MX with 3024 images and test dataset TEST MX
with 1296 images at a ratio of 7:3. There are two extra
test datasets taken from the LRHG dataset. The TEST MX
includes hand gestures collected at both short-range and
long-range. The TEST MS, in which the images are from
the Test MX and are mostly collected at short-range from
the camera. The Test ML, in which the images are from the



Test MX and are mostly collected at long-range from the
camera. Moreover, each dataset contains all types of hand
gestures.

To study the median-range hand gesture recognition prob-
lem that hand size lies between 32x32 and 64x64, one subset
from the LRHG dataset, namely the Median Hand Dataset,
is built. Similarly, to investigate the long-range hand gesture
recognition task, where the hand area is less than 32x32, one
subset from the LRHG dataset, namely Tiny Hand Dataset,
is built.

As histograms presented in Fig. 4, compared with the
existing dataset [1, 17], our dataset features 5x smaller hand
gestures in the area and more than 10x smaller on average,
which indicates hand gestures are collected at a much longer
distance, and more hand gestures have been collected at
multiple discrete distances, thus achieving the long-range
human-robot interaction using the RGB camera mounted on
mobile robots.

B. Comparison with Hand Gesture Recognition Systems

Fig. 4. Histograms of LRHG Dataset and previous dataset, where the x-axis
is the size of hand gesture in pixels, and the y-axis is the number of images.
We separate LRHG into the training set and test set, namely TRAIN MX
and TEST MX, where two extract test sets, TEST MS and TEST ML, are
taken from Test MX. Besides, we also separate two datasets, namely Tiny
Hand Dataset, Median Hand Dataset, to test the small hand and median
hand recognition ability of the proposed method. The size of a tiny hand
is less than 1000 pixels and mostly are less than 512 pixels. The size of
median hands is between 1000 and 4000 pixels, which are much smaller
than the Hand Gesture Recognition Dataset in [1].

As Tab. II shows that the proposed hand gesture recog-
nition system has three benefits compared to other hand
gesture recognition systems. The first one is that the proposed

TABLE III
COMPARISON ON THE MAP FOR DIFFERENT CONFIGURATION OF THE

CBAM BASED SSD

TEST ML TEST MS TEST MX
SSD 32.1 96.1 68.7

CBAM0-SSD 91.0 98.3 93.6
CBAM1-SSD 91.2 99.1 93.7
CBAM2-SSD 90.9 97.4 93.4
CBAM3-SSD 93.3 97.9 94.0
CBAM4-SSD 92.8 97.5 93.2
CBAM5-SSD 93.7 98.1 94.5

system features the recognition of small hand gestures and
recognizes the hand gesture up to 7 meters, while most of
the previous systems are mainly interact with hand gestures
within 1 meter. Compare with the Skeleton+CNN that reach-
es up to 4 meters, which is limited for interaction with mobile
robots. Besides, the Kinect V2 sensor is required, which
is not lightweight and has a limited depth-sensing ability
(4.5 meters). In contrast, our system can interact with hand
gestures up to 7 meters, which is long enough and safer
for interaction with UAVs. The third benefit is the speed
of our system reaches 28.3 fps, which is 5x faster than the
Skeleton+CNN system.

The qualitative samples are displayed in Fig. 5. The input
image is captured by a small UAV at 5 meters away from
a person, where the hand gesture is relatively small, as
we observed (17*19 in pixels). The proposed CBAM-SSD
accurately localizes the small hand gesture while the SSD
and JointSSD fail, showing that the proposed method can
produce high-quality hand recognition results.

C. Experiment Results

(a) Input (b) SSD

(c) Joint SSD (d) CBAM-SSD
Fig. 5. Qualitative results comparison with various methods is shown
in this figure. The input image is captured by a UAV at 5 meters away
from the person, where the hand gesture is in a relatively small resolution
(17*19 in pixels). The green is the bounding box predicted, while the blue
is the ground truth bounding box. The proposed CBAM-SSD network can
accurately predict the small hand gesture’s bounding box at the long-range,
while the Joint SSD and SSD network fail.

To evaluate how the performance is affected by the posi-
tion of the CBAM in the SSD network. We have conducted



TABLE II
SYSTEM CONFIGURATIONS AND PERFORMANCE COMPARISON OF PROPOSED HAND GESTURE RECOGNITION SYSTEM WITH OTHERS

Methods Recognition Range Accuracy mAP Speed Person number Data Type Sensors
ANNs [8] 0m 99.0 - Real-time - - Glove

SRC+Joint Feature [9] 1m 93.8 - Slow - RGB+RGB-D Kinect
multi-class SVM [1] 1m 91.3 - Slow 14 RGB-D Kinect+Leap Motion

HMM [10] 1m 87.5 - - - RGB-D Kinect + Glove
Joint SSD [3] 5m - 83.6 13.5 fps 8 RGB USB Camera

Skeleton+CNN [11] 4m 95.7 - 5.2 fps - RGB-D Kinect V2
Ours 7m - 94.5 28.6 fps 8 RGB USB Camera

TABLE IV
COMPARISON ON THE TOTAL PARAMETERS AND MAP WITH THE

STATE-OF-THE-ART METHODS

Params TEST ML TEST MS TEST MX
SSD [7] 24.95M 31.7 95.4 68.7

Joint SSD [3] 49.90M 83.4 91.0 83.6
CBAM5-SSD 24.96M 93.7 98.1 94.5

ablation studies on the different configurations of the CBAM
based SSD in Tab. III. The experiment result shows that as
the CBAM is attached to the deeper feature maps, the de-
tection performance will be better, based on the assumption
that the more deep feature representations of the network
are, the better representations about the hand gestures can
be generated for detection and classification.

Based on the LRHG Dataset hand gesture dataset, we
conduct comparison experiments with other state-of-the-art
methods. In comparison with state of the art, Tab. IV shows
that CBAM5-SSD significantly boosts the mAP of SSD by
60.0 and Joint SSD by 10.3 on the Test ML dataset, and it
reaches 93.7 mAP. Besides, the CBAM5-SSD outperforms
the Joint SSD by 7.1 on the TEST MS and 10.9 on the
TEST MX dataset, showing the superior performance of
CBAM5-SSD over the SSD and Joint SSD. These results
demonstrate that CBAM-SSD is successful in hand gesture
recognition at both short and long distances with competitive
performance. This considerable improvement in the effec-
tiveness of the CBAM5-SSD over state-of-the-art surprises
our reasonable assumption of attention would be a perfor-
mance increment for long-range hand gesture recognition
algorithm.

To evaluate the proposed method’s performance on the
long-range hand gesture recognition, we split the Tiny Hand
Dataset into training and test dataset as 8:2. The experiment
result is shown as Tab. V, where G1 to G10 represents the
gesture 1 to 10 as Fig. 3 shows. The proposed algorithm
reaches 97.7 mAP, surpasses the SSD with 25.3 on the Tiny
Hand Dataset.

Similarly, to evaluate the proposed method’s performance
on median-range hand gesture recognition, we split the
Median Hand Dataset into training and test dataset as 8:2.
The experiment result is listed in Tab. VI. The proposed
algorithm reaches 98.5 mAP, surpasses the SSD with 4.5
on the Median Hand Dataset. Both experiments validate the
effectiveness of the proposed method in recognizing both the
median-range and long-range hand gestures.

TABLE V
PERFORMANCE OF THE PROPOSED METHOD ON TINY HAND DATASET

SSD CBAM5-SSD
G1 73.4 100.0
G2 70.9 89.0
G3 41.7 88.5
G4 76.5 100.0
G5 89.4 100.0
G6 57.1 99.4
G7 64.2 100.0
G8 64.2 99.6
G9 72.1 100.0

G10 88.7 100.0
mAP 72.4 97.7

TABLE VI
PERFORMANCE OF THE PROPOSED METHOD ON THE MEDIAN HAND

DATASET

SSD CBAM5-SSD
G1 96.8 99.6
G2 89.0 98.4
G3 82.0 89.9
G4 96.0 99.4
G5 94.2 99.3
G6 92.0 99.8
G7 99.5 100.0
G8 98.6 100.0
G9 99.4 100.0

G10 92.7 100.0
mAP 94.0 98.5

V. CONCLUSION

The SSD is mainly applicable for hand gesture recog-
nition in a short-range. i.e., when the hand gestures are
collected at a long-range, the recognition performance of the
SSD is suffering from a dramatic decrease. To recognize
the hand gestures at a long distance, we incorporate an
attention mechanism with the SSD network based on the
assumption that the attention mechanism helps the model to
focus on the region of interest in an unsupervised manner
during training. Concretely, we attach the CBAM to the
six feature maps of the SSD, ranging from the CBAM0-
SSD to CBAM5-SSD. We test the SSD and CBAMx-SSD
on both self-built short-range and long-range hand gesture
datasets. Experiment results show CBAM-SSD dramatically
improves the recognition performance at both short and long
distances over the state-of-the-art methods. In the future, the
proposed system will be applied to conduct the human-robot
interaction task with the indoor service robots or UAVs at a
longer distance.
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