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Abstract— This paper introduces a novel task-space decom-
posed motion planning framework for multi-robot simultaneous
locomotion and manipulation. When several manipulators hold
an object, closed-chain kinematic constraints are formed, and
it will make the motion planning problems challenging by
inducing lower-dimensional singularities. Unfortunately, the
constrained manifold will be even more complicated when
the manipulators are equipped with mobile bases. We address
the problem by introducing a dual-resolution motion planning
framework which utilizes a convex task region decomposition
method, with each resolution tuned to efficient computation
for their respective roles. Concretely, this dual-resolution ap-
proach enables a global planner to explore the low-dimensional
decomposed task-space regions toward the goal, then a local
planner computes a path in high-dimensional constrained
configuration space. We demonstrate the proposed method in
several simulations, where the robot team transports the object
toward the goal in the obstacle-rich environments.

I. INTRODUCTION

Multi-robot system (MRS) distinguishes itself by promis-
ing solutions to manipulation tasks beyond the capability of
a single robot, such as large or heavy object transportation.
In terms of collaboration, each robot only needs to apply
a portion of effort for the manipulation task. Additionally,
with the natural characteristics of MRS, parallelism and
decentralization, the physical separation and the independent
actions of different robots can potentially generate a group of
dexterity that a single robot can hardly achieve [1]. Besides,
MRS is more resilient to failures, that is the mistake of one
robot has less effect on the task completion [2], [3], [4].

Multi-robot collaborative loco-manipulation tasks always
involve motion planning challenges in high-dimensional
constrained configuration space (C-space). Fortunately, by
decomposing C-space, we can use different representations
for different subsets of the entire C-space, each suited to
efficient computation to reduce overall computation time [5].
This idea has been demonstrated in several works, including
complex motion planning for complex system [6], [7], [8].
McConachie et al. [7] presented a framework for deformable
object manipulation that interleaved planning and control
towards complex manipulation. Recently, in [8], Stouraitis
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Fig. 1. A path from the start to the goal for multi-robot collaborative
loco-manipulation utilizing decomposed task-space.

et al. addressed dyadic collaborative manipulation tasks by
using an efficient bi-level formulation that combines graph
search methods with trajectory optimization. In this work,
we decompose the constrained task space to serve the
corresponding subsets of C-space for the mobile base and
the manipulator and develop an efficient motion planning
framework for multi-robot collaborative loco-manipulation

The space decomposition has been used in several works
and showed excellent performance for MRS. In Kallem et
al.’s work [9], the free workspace was decomposed into
triangular regions, and the controller allows the robot to
move from one cell to the next. Ayanian et al. [10] combined
a triangulation of the environment with a navigation function
to achieve multi-robot control. Alonso-Mora et al. [11]
presented a method that allows a team of robots to navigate
in formation via constrained nonlinear optimization. Their
method first computes the largest obstacle-free convex poly-
hedron based on the work by Deits and Tedrake [12], then
generates a trajectory to fit the formation in an overlapped
convex region. Because of the limitation of convex optimiza-
tion, the planner cannot deal with obstacles passing through
the formation. We attempt to overcome this limitation by
computing the decomposed convex task spaces, which are
used for different subsets of the whole configuration.

In motion planning, sampling-based planning algorithms
have been demonstrated their efficiency for searching high-
dimensional C-space [13], [14]. Karaman et al. [15] ex-
tended their works to present asymptotically optimal motion
planners, RRT* and PRM*. Moreover, some recent works
achieved better performance by explicitly or implicitly guid-
ing sampling [16], [17], [18]. However, efficient motion
planning for multi-robot manipulation tasks requires not
only to sample in collision-free C-space but also to comply
with closed-chain kinematic constraints. As a result, C-
space consists of a set of lower-dimensional points [19].



The most common approaches for sampling closed-chain
constraints fall into two categories: direct sampling and
projection methods. The former uses a parameterization of
the constraint to generate samples in C-space. The Ran-
dom Loop Generators (RLG) [19], [20] is effective direct
sampling method. However, it is difficult to integrate with
other simultaneous constraints and to extend to multi-mobile
manipulators. The latter moves a sample into the constrained
manifold by projection. One of the earliest projection-based
sampling approaches dealing with closed-chain constraints
relied on the Randomized Gradient Descent (RGD) [21].
RGD iteratively moved a random sample toward an arbitrar-
ily constrained manifold. In [22], Stilman et al. demonstrated
that RGD is significantly less efficient than Jacobian pseudo-
inverse projection when it is extended to more general pose
constraints. Berenson et al. [23] presented a Jacobian pseudo-
inverse projection method based on Task Space Region
(TSR), a more general constraint representation for manip-
ulation planning task. Our approach is similar to TSR in
relying on the Jacobian pseudo-inverse projection method to
generate a valid configuration. We differ in generating valid
configuration in smaller space by dynamically switching the
decomposed task region instead of constraining the fixed task
space region.

In this work, we present a novel task-space decomposed
motion planning framework for multi-robot collaborative
loco-manipulation. The central question we address is how
to find motion sequences in constrained C-space for a team
of mobile manipulators by exploiting different configuration
subsets efficiently. The main contributions are:

1) Constrained convex task-space decomposition: com-
pute and decompose obstacle-free convex task spaces
for the different subsets of the entire configuration
through convex optimization;

2) Configuration generation in decomposed task space:
generate valid configurations for multi-mobile ma-
nipulators in different convex sub-spaces instead of
searching in the entire configuration space directly,
which can avoid to be trapped in undesirable local
minima and improve computation efficiency;

3) A dual-resolution motion planning framework for loco-
manipulation: enables efficient motion planning by
exploring low-resolution task-space regions and then
computing a path in the high-dimensional constrained
C-space.

II. PROBLEM STATEMENT

In this paper, we focus on motion planning for multi-robot
manipulation with multiple holonomic homogeneous mobile
bases. The d-dimensional workspace are given by Wd ⊂
SE(d) contains static obstacles Od ⊂ Wd. For a given robot
i, for i ∈ {1, ..., N}, the configuration for mobile base and
manipulator are denoted by qi

b = {qi1, ..., qiMb
} and qi

m =
{qiMb+1, ..., q

i
M}. Therefore, the entire configuration of the

robot i is qi = {qi
b, q

i
m}. The volume occupied by robot i in

the team of N robots with configuration qi is A(qi) ⊂ W3.

The obstacle region including the volumes occupied by
the robots and the obstacles is denoted by Cobs. Then, the
obstacle-free region can be denoted by

Cfree =W3 \ Cobs. (1)

The collision free region for the object is denoted by Cobj ⊂
Cfree. And we define a projection function fp :W3 →W2,
which realizes the projection from 3-dimensional workspace
to 2-dimensional workspace as

Ĉobj = fp(Cobj). (2)

Then, we define another decomposition function fd :W2 →
W2, which computes the largest convex obstacle-free region
for the mobile base of each robot i:

Ĉirob = fd(Ĉobj , i). (3)

Considering forward kinematic function fFK : RM →
W3, the pose of the end-effector is xi

e = [pi
e,Ω

i
e]

T =
fFK(qi) ∈ Cobj ⊂ SE(3). Besides, the pose of object is
denoted by xobj = [pobj ,Ωobj ]

T ∈ Cobj ⊂ SE(3). We
have pi

obj as the grasping position on the object for the end-
effector of robot i. When the end-effector and the object are
in contact, we have ||pi

e−pi
obj || = 0. In this problem, since

all end-effectors and the object should maintain contact, we
can relax the constraint xobj ∈ Cobj .

The problem we address in this paper is how to find
a sequential motion from start configuration at ts to goal
configuration at tg such that each motion is feasible. The
feasible motion is that the planner should not bring either
robot or object into collision with obstacles, and should not
release the object. The problem can be summarized as:

find qi
t, i ∈ [1, N ], t ∈ [ts, tg]

s.t qi
b,t ∈ Ĉiobj,t

xi
e,t ∈ Cobj,t
||pi

e,t − pi
obj,t|| = 0

A(qi) ∩ A(xobj) = ∅.

(4)

III. DECOMPOSED CONSTRAINED MOTION PLANNING

The section introduces our motion planning framework
for multi-robot collaborative loco-manipulation, which is
composed of task-space decomposition and constrained con-
figuration generation. The details of the main procedure and
the task-space decomposition are given in this section. In
the next section, we will introduce how to sample in the
constrained manifold with closed-chain kinematic constraints
by taking advantage of the decomposed convex regions.

A. Method Overview

Our planner searches a valid path using a searching-based
method. As shown in Fig.2, it can be summarized as:

1) The global planner searches for a valid path toward
goal configuration, where the nodes of the path are
presented by convex obstacle-free regions. And, these
convex regions are defined as Decomposed Task-space
Regions (DTRs).
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Fig. 2. A simple space decomposition for two robots with one rectangular
obstacle in 3D environment. One iteration is demonstrated in the second
block.

2) The local planner computes the edge between nodes
by exploiting the entire C-space, including the ma-
nipulator’s joint angles and the pose of mobile base.
The C-space is constrained by closed-chain kinematic
constraints and linear constraints resulted from DTRs.

Alg.1 shows the pseudocode of our main algorithm. Given
a start and goal configuration of object xs

obj and xg
obj , the

planner is initialized by setting the root node of the two
trees T s, T g with DTRs Ps, Pg , which contain convex
regions for mobile bases of each robot (blue and green
regions in Fig.2(d)) and task region for an object (red
region in Fig.2(b)), where for each DTR we have P =
{P1

rob, ... , PN
rob, Ptask}. More details about SpaceDecompo-

sition is in Sec. IV-B. Afterward, two trees start to grow until
either time elapsed or maximum iterations are reached. The
RandomTaskConfig function generates a random sampled
configuration xrand in task space (yellow point in Fig.2(a)),
which is utilized to compute a random DTR that is Prand.
Then, the NearestNeighbor finds not only the neighbor with
minimum dP , but also defines a N × 1 vector of binary
connection status k between two adjacent DTRs. dP is the
distance metric for any two adjacent DTRs:

dP =
N∑
i=1

||pPi
1
− pPi

2
||, (5)

where pPi is the centre position of convex region of robot
i in DTR. When sum(k) = N , the robot region of Pnear

and Prand are fully connected (all robot regions are con-

Algorithm 1 Main (xs
obj ,xg

obj)

1: Ps ← SpaceDecomposition(xs
obj)

2: Pg ← SpaceDecomposition(xg
obj)

3: T s.init(Ps);T g.init(Pg)
4: while TimeRemaining() do
5: xrand ← RandomTaskConfig(W3)
6: Prand ← SpaceDecomposition(xrand)
7: Ps

near,k
s ← NearestNeighbor(T s,Prand)

8: if sum(ks) = N then
9: Ps

reach ← ConstrainedExtend(T s,Ps
near,

qrand,Prand,k
s)

10: W3 ←W3\Ps
near

11: else
12: Ps

reach ← Ps
near

13: Pg
near,k

g ← NearestNeighbor(T g,Prand)
14: if sum(kg) = N then
15: Pg

reach ← ConstrainedExtend(T g,Pg
near,

qrand,Prand,k
g)

16: W3 ←W3\Pg
near

17: else
18: Pg

reach ← Pg
near

19: if Ps
reach = Pg

reach then
20: return ExtractPath(T s,Ps

near, T g,Pg
near)

21: else
22: Swap(T s, T g)
23: return ∅

nected). In this case, we can compute constrained local path
to connect region Pnear and Prand by ConstrainedExtend
method (as shown in Fig.2(h), details in Sec.V). Moreover,
the planner will also shrink the workspace by subtracting
Pnear from W3. As a result, the searching space will
be smaller. Otherwise, when sum(k) < N , two regions
cannot be connected with the current configuration, and the
growing process will not be performed. Lines 13-18 in Alg.1
correspond to the conventional RRT-Connect approach [16],
which grow another tree T g with root of goal node to obtain
Pg
reach. Lastly, when two trees meet each other, we extract

and connect the path from the start node to the goal node. If
not, two trees are swapped, and the above process is repeated.
Note that the start configuration qs and goal configuration
qg of the robot team corresponding to xs

obj and xg
obj can be

computed through inverse kinematics.

B. Space Decomposition

The idea central to our space decomposition algorithm
(Alg.2) is to compute convex polyhedrons, which are rep-
resented by linear constraints, for different subsets of the
entire configuration. Our method, which is built on top of
the fast iterative method IRIS [12], can further reduce space
complexity and avoid deadlock in the local planner (more
details in Sec.V).

This method takes an arbitrary configuration xobj as input
(Fig.2.(a)). Thereafter, our method computes 3-dimensional
(3D) task space P3

task (red convex polyhedron in Fig.2.(b)),
which is restricted by obstacle polyhedron Pobs (gray block



Algorithm 2 SpaceDecomposition (xobj)
1: pobj ,Ωobj ← xobj ;P ← ∅
2: P3

task ← IRIS(pobj ,Pobs,Pbound)
3: P2

task ← Polytope2DProjection(P3
task)

4: Pvir ← SetV irtualObstacle(Ωobj ,P2
task,N)

5: for i = 1 to N do
6: prand ← GetSeed(Ωobj ,P2

task)
7: P[i]← IRIS(prand,PV ir,P2

task)
8: return P

in Fig.2), and bound Pbound. The bound Pbound can be
limited by the maximum allowable distance regarding the
robot team. Because the mobile base operates on W2, we
compute its corresponding 2D task-space P2

task by projecting
P3
task onto W2 (red convex polygon in Fig.2.(c)). Then, we

divide P2
task into N sub-spaces for each robot by setting

N virtual obstacles Pvir and a arbitrary position prand as
seed. Each virtual obstacle is a vector from the center of
2D task-space P2

task to the boundary of P2
task with a given

angle, which is i ∗ 2π/N . The seed prand is an arbitrary
point in the corresponding sub-space. A simple example of
this decomposition process is shown in Fig.2 for two robots.

IV. CONSTRAINED CONFIGURATION GENERATION

To achieve the manipulation task, a local planner is
designed to connect each region through C-space. In addition
to the convex polyhedron represented by its equivalent linear
constraints, there is also a closed-chain kinematic constraint,
which induces parts of varying dimensionality in C-space.
Therefore, we consider the sample projection approach [21],
which has already demonstrated efficiency to generate the
samples in the closed-chain constrained manifold. Addi-
tionally, we extend the idea of constraining task region
by the fixed boundary to dynamically switching bounds
according to given P2

task and P3
task [23]. Then, we intro-

duce a projection-based sampling approach for multi-mobile
manipulators under closed-chain kinematic constraints.

A. Notations

Throughout this section, F t
i represents the task frame

of robot i, which is also its end-effector frame e. The
transformation matrix T 1

2 consists of a 3× 3 rotation matrix
R1

2 and a 3× 1 displacement vector p1
2. The following three

transformation matrices are defined for robot i:
1) T 0

e,i: transformation matrix of the end-effector frame
with respect to the origin;

2) T b,i
e,i : transformation matrix of the end-effector frame

with respect to the base of manipulator;
3) T e,i

e′,i: offset in the end-effector frame e.
We assume the base frame b is where the connection

between the manipulator and mobile base.

B. Satisfaction of closed-chain constraints

In this section, we demonstrate how to generate a valid
random configuration qrand using a projection strategy. This

Fig. 3. Transform and frames for three adjacent end-effectors. The
transparent manipulators are with desired pose.

process is similar to the TSR framework [23], where the
closed-chain constraints are encoded as pose constraints.

Considering two adjacent manipulators in Fig.3, the
frames of their end-effectors are denoted as F t

i and F t
i+1.

Then, we define T e,i+1
e,i , which represents the offset transfor-

mation from the frame F t
i+1 to F t

i . When robots are manipu-
lating an object, the end-effector should be always connected
with the object. Therefore, T e,i+1

e,i will be constant, and it
can be easily computed from initial configuration when two
manipulators formed a closed-chain constraint. We assume
T 0
e,i+1 is fixed. Then, given a random configuration qi

a,rand,
we use forward kinematics to get the current pose of end-
effector T 0

e′,i. The desired pose T 0
e,i of end-effector F t

i can
be obtained from T e,i+1

e,i and T 0
e,i+1 as

T 0
e,i = T 0

e,i+1T
e,i+1
e,i . (6)

The error transformation matrix is obtained as:

T e′,i
e,i = (T 0

e′,i)
−1T 0

e,i. (7)

Next, we calculate the orientation error from the rotation
matrix Re′,i

e,i as the following RPY representation:

Ωe′,i
e,i =

atan2(Re′,i
e,i32

,Re′,i
e,i33

)

−atan2(Re′,i
e,i31

)

atan2(Re′,i
e,i21

,Re′,i
e,i11

)

 . (8)

Then, the distance between frame F t
i and F t

i′ is:

∆xi ≡ T e′,i
e,i ≡

[
pe′,i
e,i

Ωe′,i
e,i

]
. (9)

Finally, once ∆xi is obtained, the end-effector of robot i
will move to obey the closed-chain constraint by using the
pseudo-inverse of Jacobian J†i which can map the task-space
error ∆xi to the joint velocity:

q̇i
m = J†i ∆xi. (10)



C. Closed-chain constraints for multi-mobile manipulators

Next, we extend the sample projection approach to multi-
robot system with N mobile manipulators, that is Gener-
ateValidConfig method in Alg.3. By randomly sampling a
configuration qi

m,rand for each manipulator, the closed-chain
constraint will not be naturally satisfied. We define the error
function as:

de =
N∑
i=1

||∆xi||. (11)

Then, our method iteratively move the pose to the constraint
manifold (as shown in previous section) until de ' 0.
However, robots may reach singularity if two robots are too
far away from each other. Therefore, another joint velocity
is defined for mobile base as:

q̇i
b =

[
pe,i
e′,i[1], pe,i

e′,i[2], Ωe′,i
e,i [3]

]T
, (12)

where pe,i
e′,i[1 : 2] is the relative position between two task

frames in x-y plane, and Ωe′,i
e,i [3] is the relative orientation

about z-axis. q̇i
b is the velocity of the mobile base to escape

singularity. Then, by combining (10) and (12), we have the
projected velocity for the whole configuration:

q̇i =
[
q̇i T
b q̇i T

m

]T
. (13)

Note that if the region P2
task is a non-convex region, there

will be either deadlock or require a long time to find a
constrained configuration because of local minimum. Since
we have already obtained an obstacle-free convex region for
each mobile base by the proposed task-space decomposition
algorithm, the convergence time to get a valid configuration
is significantly decreased.

D. Constrained Extend

Alg.3 tries to establish a connection between the two
configurations, which can be done by incrementally stepping
from qnear to qrand. The ConstrinedConfig function use
the projection method introduced in Sec.V-C to project qext′
onto the constrained manifold. As a result, Alg.3 returns a
list of valid configurations. When every two adjacent regions
are fully connected, the sum of k equals to the robot team’s
size N , we can simply get a valid configuration sequences
in given convex obstacle-free regions. When the adjacent
regions are not fully connected, where sum(k) < N , we
can use a search-based algorithm to get the corresponding
configuration for remaining robots, i.e., RRT, PRM, or A*.
In practice, as long as we keep running a global planner, the
connected regions can always be found.

V. EXPERIMENTS

We validate our method through several different sim-
ulations with the purpose of testing the performance of
collaborative object transportation. These simulations include
the scenario that MRS needs to pass through the interior
door, long-narrow passage and obstacle-rich environment,
respectively. All the simulations are carried out in the Bullet
physics simulation environment with a team of nine DOFs

Algorithm 3 ConstrainedExtend(T ,Pnear, qb,rand,Prand,k)
1: V ← ∅; valid config ← TRUE
2: qnear ← GenerateV alidConfig(qb,rand,Pnear)
3: while valid config do
4: qext′ ← StepToward(qrand, qnear)
5: qext ← ConstrinedConfig(qext′ ,Prand,Pnear,k)
6: if qext = None then
7: valid config ← FALSE
8: V ← qext
9: if qext = qrand then

10: break
11: return V

(three DOFs mobile base and six DOFs manipulator) omni-
directional AIRS lab mobile platforms. All experiments were
executed within five minutes on a desktop with an Intel Core
i7-9700 3.0GHz and 32GB 3000MHz RAM.

In the first simulation, we demonstrate that two mobile
manipulators pass through an interior door and a long-narrow
passage while maintaining contact with the object in order to
transport it from an initial position to the desired position.
As shown in Fig.4, to pass through the interior door, the
robot team needs inevitability to reconfigure to avoid self-
collision and stay in their convex region to avoid collision
with obstacles. The long-narrow passage is used for two
purposes. First, it demonstrates that the robot team can find
a collision-free passage over the obstacle. Second, it can also
evaluate the proposed method’s effectiveness and efficiency
of passing through the long and narrow passage as most of
the sampling-based motion planning methods might have less
performance in this scenario. Fig.4.(b)-(e) are four snapshots
that show the configurations of the robot team satisfy the
constraints while moving toward the goal. As shown in
Fig.4.(c) and (d), the proposed method can enable MRS
to change its base formation and arm configuration to pass
through the interior door and the long-narrow passage while
avoiding collision with the obstacle-rich environment.

Furthermore, we demonstrated that our method could also
work in a team of different size. As shown in Fig.5, three
mobile manipulators are adopted to transport the object
from start to goal while avoiding obstacles and maintaining
closed-chain constraint in the obstacle-rich environment. The
obstacle-rich environment can also evaluate the computation
performance of convex region. As shown in Fig.5.(b)-(d),
our planner can enable the robot team to manipulate the ball
without collision with several obstacles by reconfiguration
and exploiting different convex regions.

In all these experiments, the robot team successfully
achieve simultaneous locomotion and manipulation by re-
configuration according to different scenarios. In TABLE I,
the average planning time with standard deviation over 100
trials is highlighted and the highest and lowest ten trials
are removed. Each trial is collected within 3000 iterations
and the final path is smoothed using the short-cut-smooth
method within 300 iterations. We then compared the execu-
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Fig. 5. Experiment 2: (a) Keyframes of multi-robot collaborative transportation. (b-e) are configurations that pass through obstacles of different heights.

TABLE I
THE TIME COST WITH STANDARD DEVIATIONS (IN SECOND). THE

RESULT IS AVERAGED OVER 100 RUNS FOR EACH SCENARIO.

Scenario Method Space planning Total
Decomposition time

1: Fig.4 RLG - 195.3±169.1 195.3
1: Fig.4 TSR - 137.0±92.6 137.0
1: Fig.4 Ours 26.1±17.4 37.5±14.9 63.6
2: Fig.5 RLG - 171.4±94.1 171.4
2: Fig.5 TSR - 118.12±67.7 118.12
2: Fig.5 Ours 32.9±22.5 47.2±25.1 80.1

tion time of our planner against the RRT-connect algorithm
using RLG and TSR. We used the same parameter for the
RRT-connect algorithm. Our planner exhibits faster planning
time compared with the other methods in both experiments.
The improvements over the closest competitor TSR are
significant, which is approximately decreased by 54% and
32%. Furthermore, the results also show that our planner
is more stable as we have smaller standard deviations.
Therefore, this result indicates that with the local boundary of
decomposed convex regions, dynamic workspace shrinking,
and local minimum avoidance for the local planner, our
planner is faster and more stable. Our method might be
less efficient in the obstacle-rich environment, as it weak-

ens the exploring ability of SpaceDecomposition, and more
computation time for more robots. Note that the exploring
process of our method is done by both searching-based
frameworks explicitly and SpaceDecomposition implicitly.
Besides, using parallel programming might further improve
our planner’s performance. According to [11], their approach
cannot accomplish such dexterous manipulation in SE(3).
Our method’s overall result is effective and efficient for
performing simultaneous locomotion and manipulation tasks
in an obstacle-rich environment.

VI. CONCLUSION

This paper presented a novel task-space decomposed mo-
tion planning framework for multi-robot collaborative loco-
manipulation under closed-chain constraint. By decomposing
the constrained task-space into different convex regions in a
global planner, the local planner can efficiently generate a
valid configuration for a multi-mobile manipulator system
without deadlock. We evaluated the method in two obstacle-
rich simulation environments, including narrow passages and
plenty of obstacles. The results demonstrate that the proposed
method enables a team of mobile manipulators to reconfigure
their configurations for obstacle avoidance while carrying an
object toward the goal. In future work, we plan to extend
our method for articulated object loco-manipulation with a
heterogeneous multi-mobile manipulator system.
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