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Abstract— Modular self-reconfigurable robotic (MSRR) sys-
tems are potentially more robust and more adaptive than
conventional systems. Following our previous work where we
proposed a freeform MSRR module called FreeBOT, this paper
presents a novel configuration detection system for FreeBOT
using a magnetic sensor array. A FreeBOT module can be
connected by up to 11 modules, and the proposed configuration
detection system can locate a variable number of connection
points accurately in real-time. By equipping FreeBOT with
24 magnetic sensors, the magnetic field density produced by
magnets and steel spherical shells can be monitored. The
connectable area is split into 199 non-uniform regions, including
84 uniform regions. Using a Graph Convolutional Network
(GCN) based algorithm, the connection points can be located
accurately under ferromagnetic environments. The system can
locate a variable number of connection points for such a
region division with only single connection point training data.
Finally, the localization algorithm can run faster than 40 Hz on
FreeBOT. With the real-time configuration detection system, the
FreeBOT system has the potential to reconfigure automatically
and accurately.

I. INTRODUCTION

Modular self-reconfigurable robotic (MSRR) system [1]-
[3] can rearrange its repeated modules into different config-
urations, in order to adapt to new circumstances, perform
new tasks, or recover from damage. Many previous MSRR
modules [4]-[8] have been designed, but they are hard to
construct a freeform robotic system due to their physical
constraints.

In our previous work, we present a freeform MSRR called
FreeBOT (Freeform Robot) [9], [10]. The FreeBOT can
move independently, connect/disconnect from other Free-
BOT, and move on other FreeBOT freely. A FreeBOT
system can reconfigure to different configurations freely and
has the potential to realize a freeform robotic system. To
realize automatic reconfiguration, a configuration detection
system without external sensors is needed as the feedback
for reconfiguration control. The system needs to locate all
connection points accurately through a 0.5mm thick low-
carbon steel spherical shell. However, sensors can hardly be
placed at the steel shell surface limited by the free movement
of the internal vehicle. An electronic compass does not work
due to the unknown and variational magnet magnetic field
and steel remanence. Most modern low-power sensors such
as optical, capacitive, and inductive sensors are blocked by
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Fig. 1. Overview of the proposed configuration detection system. (a)
Magnetic field distribution by Ansys Maxwell simulator when two Free-
BOTs connect to a FreeBOT. (b) FreeBOT equipped with a magnetic sensor
array. (c) Graph convolutional network-based localization algorithm, which
estimates the locations of multiple connection points with magnetic sensor
data. (d) Real-time configuration visualization.
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the steel shell. The magnet inside the FreeBOT provides a
strong magnetic force, and the steel shell cannot block such a
strong signal when the FreeBOTs are connected. A magnetic
localization system has the potential to detect the FreeBOT
configuration accurately.

The permanent magnet localization method has been
widely studied in the past decades, which is very popular
for biomedical applications. Many model-based localization
algorithms model magnet behaves as a magnetic dipole,
and various algorithms such as trilateration [11], Levenberg-
Marquardt algorithm (LMA) [12], Trust Region Reflective
algorithm (TRRA) [13], Unscented Kalman Filter (UKF)
[14], and jacobian-based iterative method [15] are proposed
to solve the multiple nonlinear targets tracking problem. Due
to the inaccuracy of the dipole at the surface of the magnet,
some Artificial Neural Network (ANN) based [16]-[19] and
hybrid [20] algorithms are proposed to approximate the
magnetic field and achieve good localization accuracy when



tracking a single magnet. However, ferromagnetic materials
such as low-carbon steel can heavily change the magnetic
field distribution, and the traditional magnetic models fail in
such scenes. It is possible to approximate the magnetic field
in ferromagnetic environments with deep learning models.

This paper presents a novel configuration detection system

using a magnetic sensor array, as shown in Fig. 1. A Graph
Convolutional Network (GCN) [21], [22] based algorithm
is proposed to locate a variable number of connection
points under ferromagnetic environments. The connection
point locations are discretized and divided into 199 non-
uniform sub-regions. The system shows good accuracy and
robustness for multiple connection point localization trained
on single connection point data. The proposed algorithm can
run on a Quad-core Cortex™-A7 Linux-based controller at
40 Hz. Equipped with the configuration detection system, the
FreeBOT has the potential to reconfigure automatically and
accurately. The z-axes of the 6-axis Inertial Measurement
Unit (IMU) in multiple FreeBOT modules can be synchro-
nized by this system. The main contributions of the paper
are:

1) to present the concept of configuration detection for
a freeform modular robot (FreeBOT) with a magnetic
sensor array and propose a magnetic sensor array ar-
rangement for configuration detection under magnetic
hysteresis interference.

2) to propose a Graph Convolutional Network-based mul-
tiple connection point localization algorithm under fer-
romagnetic environments. The network is trained with
only single connection point data. This preliminarily
tries to do magnetic localization with the neural network
under a ferromagnetic environment.

3) to demonstrate the real-time configuration detection
system, which provides necessary feedback for recon-
figuration closed-loop control.

II. METHODS

This section will introduce the FreeBOT equipped with
magnetic sensors, followed by the theoretic modeling of the
magnetic localization problem and the GCN-based localiza-
tion algorithm.

A. Magnetic Localization Module

The prototype of FreeBOT consists of a vehicle, an
internal magnet, and a low-carbon steel spherical shell. The
magnet produces a strong magnetic field, and the surrounding
steel is magnetized. When a FreeBOT approaches the internal
magnet of another FreeBOT, the magnetic attraction is gen-
erated, and the two FreeBOT are connected. In order to auto-
mate the FreeBOT self-reconfiguration, we build a magnetic
sensor array to locate the connection points. As shown in Fig.
2, the sensor array contains 24 Melexis MLX90393 tri-axis
magnetic sensors on the 3D printed framework of the internal
vehicle. The sensors are connected by the flexible flat cable
(FFC) and communicate with an Allwinner H3 (Quad-core
Cortex™-A7) Linux-based controller through I2C-bus. The
specifications of hardware can be found in Table I. The data
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Fig. 2. FreeBOT that equipped with magnetic sensor array and region
division. 24 magnetic sensors are arranged on the internal frame of FreeBOT,
and the region division for our localization algorithm is plotted. Orange
line: region divide line; Yellow line: sub-region divide line; Blue circle:
connectable area divide line; Orange number: region id.

sampling rate is adjustable according to on-chip sampling
and filtering configurations.

To eliminate magnetic field uncertainty caused by the
magnetization history, most sensors are placed close to the
steel shell. The magnetic field uncertainty is caused by the
steel that is not magnetized to saturation. The magnetic field
decreases super-quadratic as the distance from the magnetic
source increases, and the superficial magnetic field of the
external magnet is much larger than the superficial magnetic
field of steel. To locate the connected external magnets free
from steel remanence, the closest several magnetic sensors
should be placed close to the external magnet, where is also
far away from the unsaturated magnetized steel. Following
this principle, the sensors are placed around 5 mm - 8
mm away from the steel shell. As the number of sensors
increases, more sensors are free from steel remanence, and
the sensor array can locate the connection points more
accurately.

B. Configuration Detection Modeling

For a single FreeBOT, the purpose of reconfiguration local-
ization is to detect the connection points of other FreeBOTs
that connect to this robot. The measured magnetic data can
be described as,

Bsens = f(¢1a917 ~-~7¢N;9N)a

where Bg.,s is a set of magnetic field density sampled
inside the surrounding steel spherical shell, the polar angle
¢; and azimuth angle 6; is the polar coordinates of the j,
connection point related to the internal vehicle, and N is the
number of connection points. Once we know the magnetic
field density measured by the sensors, it is possible to find



TABLE I
SPECIFICATIONS OF HARDWARE SETUP

Melexis MLX90393 Triaxis Manetic Sensor 24 counts
- X,Y Axis Sensitivity 3.004 uT/LSB
- Z Axis Sensitivity 4.840 uT/LSB
- X,Y Axis Measurement Range +66.088 mT
- Z Axis Measurement Range +106.480 mT
Low-carbon Steel Spherical Shell
- External Diameter 80.0 mm
- Thickness 0.5 mm
- Saturation Magnetization 1.87T
N52 NdFeB Cylinder Magnet
- Diameter 20 mm
- Height 10 mm
- Superficial Magnetic Field 0.4696 T
- Remanence 137T
- Maximum Energy Product 52 MGOe
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Fig. 3. Magneic field distribution with (a) and without (b) surrounding
steel spherical shells.

f~1, and we can localize the connection points by

(¢11 915 23} ¢N>9N) = f_l(Bsens);

A magnetic sensor perceives a magnetic field both from
the internal magnet, external magnets, and magnetized steel
as

N
Béens = Bint + Bshcll’”" + Z (ngt + the”ezt)

j=1
where B!, is the magnetic field density measured by the
ivn, sensor, Bing, Bgpepint, Bly, Bl jeat are the magnetic

fields produced by the internal magnet, the surrounding steel
spherical shell, the magnet of the j,; external connected
FreeBOT and the steel spherical shell of the j;;, FreeBOT.
The internal magnet is static relative to magnetic sensors,
s0 Bjn¢ is unchanged. The magnetic field produced by
B, is blocked and guided into the steel spherical shell.
This magnetic field distribution is heavily affected, which
is visualized with the Ansys Maxwell simulator in Fig. 3.
The magnetic field density reduces significantly after going
through two steel shells, and the magnetic field direction
is also changed. So, B, cannot be modeled by traditional
magnet models.

The steel spherical shells are magnetized by magnets, and
the sensors will perceive the magnetic field produced by the
steel. BY, ... can be divided into two parts: the steel around
the external magnet that has been magnetized to saturation
and the rest of the shell. The saturated part can be regarded

as a permanent magnet and be modeled together with the
external magnet. The remaining part can be ignored because
the magnetic field decreases super-quadratic with distance,
and this part is too away from the sensors. B, jint can be
approximated by the integral of infinitesimal steel elements:

27 Yo
Bipeipint :/ / Bgteel(Me,0,7¢,0,i),
¢=0.Jo=0

where Bgieer(m, ) is the magnetic field produced by an
infinitesimal steel element at the magnetic sensor, m is the
magnetic moment of the element, and r is the position of
the sensor relative to the element. Such a magnetic field can
be modeled as a magnetic dipole:

wom [ 3r(m - r) m
B(m,r) = -
o) = [TAT St

b

where 1 is the permeability of free space, and m is the nor-
malized vector in the direction of m. However, the magnetic
moment m of an arbitrary infinitesimal steel element depends
on the magnetic field intensity produced by the magnets and
hysteresis loop of steel. The hysteresis loop is nonlinear and
history-dependent.

In a word, the steel spherical shell changes the magnetic
field distribution of magnets. The magnetic field cannot be
modeled by traditional magnet models. Therefore, we use
the neural network to approximate fg ! and estimate the
connection points.

C. Localization

Here, we propose a GCN-based algorithm to locate a
variable number of connection points, which aims to locate
multiple connection points with only single connection point
training data.

In order to simplify the data collection, the connection
point coordinates are discretized. As shown in Fig. 2, the
upper hemisphere is split into 18 large regions, and each
large region contains four sub-regions. When the internal
magnet connects to some steel shell, the azimuth angle of
connection points cannot be larger than 120°. So, the lower
hemisphere except for the region near the internal magnet
is split into 12 regions. There is a magnetic sensor right
below each large region. Due to the narrow space around two
wheels, we do not place magnetic sensors near the wheels for
now. So the regions at the lower hemisphere are not further
split, and these regions contain only one sub-region. The
upper hemisphere is much more frequently connected than
the lower hemisphere. There are 84 uniform sub-regions in
total when collecting data.

A pure multi-layer perceptron (MLP) can hardly learn to
locate multiple connection points with only single connection
point training data. A GCN-based localization algorithm is
proposed, which achieves the multiple connection points lo-
calization by limiting the sensor receptive field. As shown in
Fig. 4, 24 sensors are regarded as 24 nodes in an undirected
graph. Six virtual nodes are added near the wheels. Two
nodes are connected when two regions share one edge. For
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Fig. 4. Localization algorithm. (a) Raw data is fetched from the magnetic
sensor array. (b) The data is stacked as a 24-by-3 matrix, which is then
normalized to [—1, 1]. (¢) A GCN-based network estimates sub-region clas-
sification results. (d) Region merging algorithm that merges classification
results and estimates the non-uniform region ids of all connection points.
(e) Final estimated non-uniform region ids. Full line circle: node (magnetic
sensor); Dotted line circle: virtual node; Black arrow: aggregator; Purple
arrow: MLP.

each node, an aggregator is used to aggregate the magnetic
data from neighbors and generates an embedding. Then the
embedding goes through an MLP, which estimates the labels.
The classification labels contain M sub-region labels and
one label that means no connection point, where M depends
on the region division. In order to decrease the learning
difficulty, the aggregators aggregate the nearest neighbors
once. So, the estimation will not be influenced by remote
sensors, which can hardly be well learned without a massive
number of data. Also, the aggregators and MLPs are only
shared for rotationally symmetric nodes so that the spatial
distribution of sensors can be pre-coded into the network
structure.

In this way, the nodes are divided into three groups for
the upper hemisphere and six for the lower hemisphere. We
can train nine groups of aggregators and MLPs to estimate
the 30 regions, and each group can be trained separately.
The MLP contains several fully connected layers and batch
normalization layers so that the localization algorithm can
run on our embedded controller in real-time.

Then we can get the final connection points position after
merging the classification results of those 30 regions. This
procedure is mainly based on the principle that two adja-
cent regions cannot be connected simultaneously. When two
adjacent regions detect a connection point simultaneously,
the connection point is near the edge of the two regions
if sub-regions match. Otherwise, a predicted connection
point is canceled based on prediction confidences. When
more than two regions that share the same vertex detect a
connection point simultaneously, the connection point is near
the vertex. The sub-regions are also checked to guarantee
better accuracy. In this way, the narrow areas around each

edge and vertex can be regarded as new sub-regions, and 111
boundary sub-regions can be created. Finally, the whole steel
spherical shell contains 199 non-uniform sub-regions. This
procedure called region merging takes the set of estimated
sub-region ids of the 30 large regions and outputs the non-
uniform region ids of all connection points.

Algorithm 1 describes the region merging algorithm in
more details, where R is the set of estimated the sub-
region ids, Mg, is the sub-region adjacent matrix, HC' is
a value means high confidence, GetConnectedSubGraphs
calculates the connected sub-graphs of the sub-region
graph, GetCon fidence gets the classification confidences
of sub-regions in a graph, CheckSubGraphCon flict
checks whether two graphs are too closed, ShareVertex
tells whether two graphs share a vertex, Merge merges
two graphs, ShiftRegionAndMerge merges two graphs
by shift two graphs closer, RemoveGraph removes a
graph (means a wrong classification), UpdateGraph up-
dates the data structure after changing the graphs, and
GraphSubRegionI D gives the non-uniform region ids
based on the regions in the graph.

Algorithm 1 RegionMerging(R)

1: G = GetConnectedSubGraphs(R, Maq;)
2: C = GetConfidence(Q)

3: CT = CheckSubGraphCon flict(G)

4: while len(CT) > 0 do

5: 1, = GC[O]

6: if ShareVertex(Gli], G[j]) then

7: Merge(Gli], G[j])

8: else

9: if C[i] > HC and C[j] > HC then
10: ShiftRegionAndMerge(Gli], G[j])
11 else if C[i] > C[j]) then

12: RemoveGraph(G[j])

13: else

14: RemoveGraph(Gli])

15: end if

16:  end if

17:  UpdateGraph(G,CT)
18: end while
19: return GraphSubRegionI D(Q)

The localization algorithm is summarized in Fig. 4.

III. EXPERIMENTAL RESULTS

Compared with the prototype of FreeBOT [9], more pow-
erful processors and more sensors are added. The details can
be found in Fig. 5.

A. Residual Magnetization Interference

Here, we test the residual magnetization magnitude caused
by the steel spherical shell at different distances and compare
it with the magnetic field of an external FreeBOT. We fixed
a magnetic sensor at the center of the shell and also moved it
near the shell. The steel shell is randomly magnetized. When
the sensor is at the center of the shell, the magnetic field
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Fig. 5. FreeBOT equipped with new generation hardware. A FreeBOT
is equipped with a Quad-core Cortex™-A7 processor, an STM32F103
processor, a magnetic sensor array, and an inertia measurement unit (IMU).
The FreeBOT can communicate with other modules through WiFi and
Bluetooth.

intensity is approximate 0.3 mT, which increases to 0.7 mT at
maximum close to the shell. Then a FreeBOT is connected to
the shell. The magnetic field intensity is approximate 0.8 mT
at the opposite of the connection point, which increases to 3
mT at the center of the shell and 90 mT near the connection
point.

The sensors are placed near the shell because the su-
perposition of multiple connected FreeBOT magnetic fields
can hardly be decomposed. The magnetic field measured far
from the connection point has the same order of magnitude
as residual magnetization. The residual magnetization is
nonlinear and history-dependent, which would cause some
uncertainty to the sensors. So we locate the connection points
only with the sensors near the connection point, which can
significantly reduce the residual magnetization interference.

B. Datasets

To train the neural network proposed in II-C, we need
to collect the connection point coordinates related to the
internal vehicle. Collecting such high-precision data might
be complicated. Here, we use a simple way to collect the
data with relatively low precision, which can meet our basic
localization requirements. The region divide lines of the 84
sub-regions are manually painted on the steel spherical shells,
which helps identify the sub-region id. Then the internal ve-
hicle is placed in the lower hemisphere, and the region divide
lines are aligned with the magnetic sensors manually. After
aligning and fixing the upper hemisphere with the lower
hemisphere, we can start collecting data. Another FreeBOT is
connected to this FreeBOT and controlled carefully to move
inside each sub-region in turn manually. Batches of data are
collected with different order and magnetization history in
this way. The training set and validation set are separately
collected. Finally, the training set contains 50536 samples,
and the validation set contains 21933 samples. Each sample
contains the sub-region id and the magnetic data of the 24
sensors. Each region contains 2200 connected samples on
average. The data order and label of datasets are further
processed for each neural network before training. Due to
the manual alignment error and the manual control error,
the dataset is rough and may cause little region boundary
shifting.

C. Training

The neural network is implemented with TensorFlow [23].
The connected data for a region can be the unconnected data
for other regions, so the unconnected data percentage is more
than 95% for each region, which is heavily imbalanced. So
weighted cross-entropy loss is applied. The training hyper-
parameters are found heuristically: Adam as the optimizer,
learning rate of 0.001, batch size of 128, and epochs of 30
with early stopping.

We need to train nine groups of aggregators and MLPs
as mentioned in II-C. The training accuracy, validation
accuracy, sub-region classification validation accuracy, and
grouping information are shown in Table II. The sub-region
accuracy represents the accuracy of estimating the sub-
region id when there exists a connection point. The lower
hemisphere has only one sub-region, so it has no sub-region
accuracy. The included region id is the region id of large
regions inside the group. Datasets contain some mislabeled
samples caused by human error, which limits the training and
validation accuracy. The boundaries of large regions and sub-
regions are slightly shifted as training dataset distribution,
which mainly decreases validation accuracy. With the region
merging algorithm, the region boundary can be monitored by
multiple networks, which can greatly improve the robustness
for the multiple connection points localization.

TABLE I
TRAINING RESULTS

Training Validation Sub-region Included

Accuracy Accuracy Accuracy Region ID
Group 1 922 91.8 85.2 [0-5]
Group 2 96.8 94.4 85.9 [6-11]
Group 3 96.1 95.3 88.4 [12-17]
Group 4 98.1 97.4 - [18,21]
Group 5 97.4 94.6 - [19,22]
Group 6 98.6 96.2 - [20,23]
Group 7 99.2 97.1 - [24,27]
Group 8 98.1 97.0 - [25,28]
Group 9 98.5 97.5 - [26,29]

D. Multiple Connection Points Localization

The trained model is transformed to TensorFlow TFLite
models and then inference on the controller of FreeBOT.
Finally, the algorithm can run at 40 Hz on FreeBOT.

In this experiment, three connection points localization is
evaluated and demonstrated. Three FreeBOTs are connected
to a FreeBOT equipped with magnetic sensors, and the three
FreeBOTs are remotely controlled to change the system
configuration. The connection point trajectories are manually
observed and recorded, which are compared with localization
results. As shown in Fig. 6, the regions are projected to a
plane, and the region divide lines are distorted for intuitive
visualization. Some observed connection point trajectories
and the corresponding localization results of the three con-
nected FreeBOTs are sampled and plotted on the plane
with different colors. The localization results are discretely
distributed on the region edges, vertices, and the center of
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Fig. 6. Evaluation of multiple connection points localization performance.
Black line: projected region divide line; Blue line: projected sub-region
divide line; Purple line: divide line of the upper and lower hemisphere;
Orange: the trajectory of FreeBOT1; Green: the trajectory of FreeBOT2;
Red: the trajectory of FreeBOT3; Small triangle: discrete localization results;
Small circle: observed connection point locations.

sub-regions. For the 34 localization results, 76.5% of points
are classified to the closest sub-region, while the other points
are classified to the second closest sub-region. Assume that
the sub-region position is at the center of it, and the mean
value of the angles between estimated positions and observed
positions to the center of the sphere is approximate 6.1°, with
the standard deviation of 3.1°.

A real-time configuration display system is also imple-
mented with Python and demonstrated. While the FreeBOTs
reconfiguring, the localization results are transmitted back
to a PC and visualized on the screen. Fig. 7 shows some
captured pictures for the configuration visualization. Three
FreeBOTs connect to a FreeBOT, reconfigure and then
disconnect. The test subject and the visualization show good
synchronization.

IV. DISCUSSIONS

To realize the obstacles crossing tasks proposed in [10],
a minimum of 45 uniform regions classification is required.
The 24 magnetic sensors achieve a good localization result
in our experiments, fulfilling our basic localization precision
requirement. The magnetic field decreases fast with the
distance from the magnetic source. The angle between any
two connection points is larger than 60°. If a sensor is placed
near the steel shell, it will not be influenced much by the steel
and by the connected FreeBOT outside of the region over
the sensor. This is the principle of the configuration detec-
tion system design, and it makes multiple connection point
localization possible with only single connection point data.
The 24 sensors are arranged near the steel shell based on
this principle, and two adjacent regions cannot be connected
simultaneously. This makes the final localization results more
precise and robust. We can also place more magnetic sensors

Fig. 7. Real-time configuration visualization. (a) Four FreeBOTs are placed
on the table, and one FreeBOT has connected to the FreeBOT equipped
with magnetic sensors. (b)-(c) The other two FreeBOTs connect to the
central FreeBOT successively. (d)-(f) The FreeBOTs reconfigure around
the central FreeBOT. (g)-(i) Two FreeBOTs disconnect successively. The
central FreeBOT is fixed to stabilize the center of gravity. The magnet is at
the whitest part of the visualized sphere on the screen.

to achieve higher localization precision.

The proposed system can achieve good accuracy when a
region is split into four sub-regions. However, the data is col-
lected manually, and we can hardly collect higher precision
data in this way. So, we do not test the limit accuracy of our
system and systematically evaluate the localization accuracy
here. The learned region division might also drift a little as
training data distribution.

V. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a localization system for Free-
BOT configuration detection using a magnetic sensor array.
A magnetic sensor array is designed for magnetic localization
under ferromagnetic environments. After collecting enough
data, the proposed system can localize a variable number
of connection points in real-time accurately by applying a
GCN-based algorithm. After synchronizing the localization
systems in each FreeBOT, the whole FreeBOT system con-
figuration can be detected, and the system can reconfigure
automatically and accurately.

In future work, an automatic configuration data collection
system will be introduced to further improve the system
precision and better evaluate the system performance. More
FreeBOTs will be equipped with a magnetic sensors array,
and a distributed FreeBOT configuration detection system
can be evaluated. Some other studies such as reconfigura-
tion identification, localization fused with 6-axis IMU, and
connection points tracking can also be considered.
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