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Abstract— Stable walking in real-world environments is a
challenging task for humanoid robots, especially when con-
sidering the dynamic disturbances, e.g., caused by external
perturbations that may be encountered during locomotion. The
varying nature of disturbance necessitates high adaptability.
In this paper, we propose an enhanced Nonlinear Model
Predictive Control (NMPC) approach for robust and adaptable
walking – we term it versatile locomotion, by limiting both the
Center of Pressure (CoP) and Divergent Component of Motion
(DCM) movements. Due to utilization of the Nonlinear Inverted
Pendulum plus Flywheel model, the robot is endowed with
the capabilities of CoP manipulation (if equipped with finite-
sized feet), step location adjustment, upper body rotation, and
vertical height variation. Considering the feasibility constraints,
especially the usage of relaxed CoP constraints, the NMPC
scheme is established as a Quadratically Constrained Quadratic
Programming problem, which is solved efficiently by Sequential
Quadratic Programming with enhanced solvability. Simulation
experiments demonstrate the effectiveness of our method to
recruit optimal hybrid strategies in order to realize versatile
locomotion, for the robot with finite-sized or point feet.

I. INTRODUCTION

A versatile walking skill is highly desired for humanoid
robots to operate in real-world environments. This demands
robustness against dynamic disturbances, including mod-
elling errors and external disturbances, and adaptability to
different tasks, such as climbing stairs and crouching pass
low passages. To this end, schemes that make use of various
balance strategies such as the ankle, hip, stepping, and height
variation strategies [1] (see Fig. 1) have been developed by
the robotics community in recent years.

In [2], the ankle, hip and stepping strategies were inte-
grated in a Nonlinear Model Predictive Control (NMPC)
framework, leading to a time-consuming optimization pro-
cess. To address this issue, time-efficient algorithms were
developed in [3]–[5]. However, [2]–[5] assumed a constant
plane for the Center of Mass (CoM) motion, which could not
meet the height variation demand in particular cases, such
as walking in the space with height limitation. To alleviate
this limitation, the work in [6] proposed a measurement-
based tracking controller, realizing CoM height variation and
angular momentum variation (upper body rotation). In this
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Fig. 1. Commonly-used balance strategies for versatile walking. Note that
the ankle strategy is unavailable for a robot equipped with point feet.

way, the ankle, hip, and height variation strategies were
utilized. Afterwards, the work in [7] and [8] individually
proposed a linear MPC approach to deal with the upper body
rotation and vertical height variation simultaneously, where
merely tracked the offline-tuned height trajectory. Recently,
the work in [9] used the Virtual-mass-ellipsoid Inverted
Pendulum model and introduced a Quadratic Programming
(QP) approach for solving time-varying height trajectory and
upper body rotation angles. Nevertheless, [6]–[9] did not
have the capability to adjust the footsteps. In contrast, the
work in [10] proposed an NMPC approach for step location
adjustment and height variation, where the ankle strategy was
also integrated. Nevertheless, to the best of our knowledge,
[10] did not take the upper body rotation into account.

Thus, the above studies failed to combine the ankle,
stepping, hip, and height variation strategies in a unified way,
limiting the robustness against disturbances. One example
is that the step location can not be adjusted for rejecting
extreme external pushes in [6]–[9]. Besides, the lack of
access to some balance strategies weakens the adaptability to
various scenarios. For example, it is hard to use the methods
in [2]–[5] for climbing large staircases or walking in a space
with height limitation.

In this paper, we propose an NMPC approach for versatile
locomotion where the nonlinear Inverted Pendulum plus
Flywheel (IPF) model is used to account for the effect of
the height variation and the change of angular momentum.
By customizing the cost function, the ankle (if allowable),
stepping (footstep adjustment in this paper), hip, and height
variation strategies are integrated. To guarantee the stabil-
ity, the Center of Pressure (CoP) movement and Divergent
Component of Motion (DCM) offset are both constrained.
Through formulating the nonlinear issue as a Quadratically
Constrained QP (QCQP) problem, it is solved fast by Se-
quential QP (SQP). The contribution is three-fold:

1) Complying with the hybrid stability criteria, the ankle
(if allowable), stepping, hip, and height variation strate-
gies are incorporated in a unified NMPC framework by
employing the nonlinear IPF model;

2) By tuning weight coefficients, each balance strategy



can be activated flexibly, realizing versatile walking
for robots equipped with finite-sized or point feet;

3) Formulating the enhanced NMPC by taking the ac-
celeration as the control input allows it to be solved
efficiently, meeting the real-time requirement.

The early results were presented in [11] and was employed
in [12]. Compared with the preliminary version, the current
paper is significantly improved by providing the following
characteristics: i) the soft constraints on the CoP movement
are adopted to enhance the solvability of NMPC, ii) the
DCM is constrained to guarantee the walking stability, and
the NMPC approach is extended to the robot equipped with
point feet, iii) a reduced-order prediction model is employed
to achieve higher time efficiency.

This paper is organized as follows. Section II introduces
the background. Section III states the problem formulation.
Section IV discusses the experimental results, and section V
concludes our work.

II. BACKGROUND

A. Nonlinear IPF dynamics

To reduce the computing burden, reduced-order models
can be employed for gait generation, among which the Linear
Inverted Pendulum (LIP) model [13], the linear IPF model
[14] and the Variable-height Inverted Pendulum (VHIP)
model [15] have been recognized. However, the LIP model
assumes a constant plane for CoM motion, and can not take
the upper body rotation into account. Although the change
of angular momentum is characterized by the rotation of a
flywheel using the linear IPF model, the height variation can
not be addressed. In contrast, the VHIP model can tackle the
height variation but does not account for the body rotation.

To alleviate the above limitations, the nonlinear IPF model
is adopted, assuming 1) the flywheel has rotational inertia,
2) legs are mass-less and telescopic, 3) the CoM is located at
the hip joint, 4) the CoM can move in 3D space, as depicted
in Fig. 2 [16]. As a result, the CoP is determined by1

px = cx −
cz − dz
g + c̈z

c̈x −
L̇y

m(g + c̈z)
, where L̇y = Iy θ̈p,

py = cy −
cz − dz
g + c̈z

c̈y +
L̇x

m(g + c̈z)
, where L̇x = Ixθ̈r,

(1)
where [px, py]T , [cx, cy, cz]

T and [dx, dy, dz]
T denote the po-

sition of CoP, CoM, and stance foot, respectively. [Lx, Ly]T

and [θr, θp]
T denote the angular momentum and upper body

rotation angle around x- and y- axis (x- and y- axis sepa-
rately point to the forward and left direction). [c̈x, c̈y, c̈z]

T ,
[θ̈r, θ̈p]

T , and [L̇x, L̇y]T denote the CoM acceleration, an-
gular acceleration, and the change rate of angular momen-
tum, respectively. [Ix, Iy]T denotes the constant moment
of inertia. m is the robot mass and g is the gravitational
acceleration.

1To the best of our knowledge, the dynamics equations have been
introduced in [16]. Recently, the work in [9] introduces the Virtual-mass-
ellipsoid inverted pendulum that presents the same dynamical properties.
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Fig. 2. The nonlinear IPF walks across uneven terrains.

B. CoP and DCM constraints

Stable walking can be realized by controlling the CoP
movement. In [11], we expect the CoP calculated using (1) to
fall within the support region. However, when the sole keeps
the surface contact with the ground, the CoP may be able to
exist beyond the support polygon [17]. Furthermore, to build
an intrinsically stable mpc, the additional CoP constraints
should be considered when formulating the prediction prob-
lem [18]. However, it would be very complicate to extract
this kind of condition, especially its explicit expression when
using the nonlinear IPF model. In this work, we adopt the
soft CoP constraints to enhance the solvability. In this way,
we can still employ the nonlinear IPF dynamics to account
for the vertical height variation and upper body rotation.

Another interpretation is that the usage of hard CoP
constraints maybe too stringent for dynamic walking since
it limits both the convergent and divergent components of
motion [19]–[21]. Actually, by merely the controlling DCM,
the stable locomotion can be realized. In [22], the N-step
capturability conditions for inverted pendulum models with
constant height were derived. Recently, the capturability
condition for the VHIP was derived in [15]. However,
to the best of our knowledge, the method in [15] totally
abandoned the CoP constraints and is hard to account for
the hip strategy. Although the work in [23] taken the angular
momentum change into account, it is hard to be used in a
real-time fashion due to the computing complexity. In terms
of viability analysis, [21] proves that by restricting the DCM
offset, defining as the deviation between final DCM position
of the current step and the next step location, the LIP can
maintain stability.

For the sake of simplification, the LIP-based DCM offset
bounds [21], which equals to the ∞−step capture condition
[22], are used for DCM control, which can be seen as
the complementary conditions for the slack CoP constraints.
Although the capturability region of the LIP is a subset of
that of the IPF, the LIP-based ∞−step capturability enables
the robot to maintain the balance in most cases. Furthermore,
the DCM offset bounds can be easily applied on the robot
with point feet, improving the generality of our work.

III. NMPC FORMULATION

This section introduces the NMPC formulation. Particu-
larly, we highlight the improvements with respect to [11].

A. Reduced-order prediction model

Differing from traditional MPC strategies that take the jerk
of each motion component as the control input [2], [10],



[11], [24], [25], this work uses the acceleration. Assuming
constant accelerations over the time interval ∆t, the system
state at t(k+1) is computed as

x̂(k+1) = Ax̂(k) +Bẍ(k), (2)
where x̂(k) = [x(k), ẋ(k)]

T (x ∈ {cx, cy, cz, θr, θp}) is the
current state, ẍ(k) is the current acceleration, i.e., control
input. And A and B are defined as

A=

[
1 ∆t
0 1

]
, B=

[
1
2∆t2

∆t

]
.

Based on (2), the position and velocity of each channel
over the prediction horizon (of length Nh) are predicted as

x(k) = Ppsx̂(k) + Ppuẍ(k),

ẋ(k) = Pvsx̂(k) + Pvuẍ(k),
(3)

where x(k) = [x(k+1), ..., x(k+Nh)]
T , ẋ(k) =

[ẋ(k+1), ..., ẋ(k+Nh)]
T , ẍ(k) = [ẍ(k+1), ..., ẍ(k+Nh)]

T .
x ∈ {cx, cy, cz,θr,θp} collect the future CoM position and
body rotation angle. Pps, Ppu, Pvs and Pvu can be obtained
by computing (2) recursively.

B. Cost function

We attempt to minimize the tracking errors of the CoM
position, body rotation angles, and step locations while
regulating the velocity of each motion channel. Besides, the
control inputs are also penalized. Thus, the cost function is

f=
∑
x

{αx

2
‖x(k)−xref

(k) ‖
2 +

βx
2
‖ ẋ(k) ‖2 +

γx
2
‖ ẍ(k) ‖2

}
+
∑
d

δd
2
‖d(k)−dref

(k) ‖
2 +
∑
ξ

λξ
2
‖ξ(k) ‖2

(4)
where αx, βx, γx, δd and λ

ξ
denote the penalties of posi-

tion tracking, velocity variation, acceleration variation, step
location tracking and CoP relaxation terms, respectively.
xref
(k) = [xref

(k+1), ..., x
ref
(k+Nh)

]T are the reference states. d(k)
and dref

(k) are the actual and reference future step locations,
e. g. dref

(k) =[dref
(k,1), ..., d

ref
(k,Nf )

]T (d∈{dx,dy,dz}). Note that
we use d̄(k)=[d(k+1), ..., d(k+Nh)]

T denote footstep positions
at different sampling times over the prediction horizon. Nf
is the number of future step locations. ξ ∈ {ξxl, ξxu, ξyl, ξyu}
are the slack variables to formulate the soft CoP constraints.

At present, we choose the decision variables (X ) as

X (k)=[c̈x(k); c̈y(k); c̈z(k); θ̈r(k); θ̈p(k);dx(k);dy(k);dz(k); Υ],
(5)

where Υ = [ξxl, ξxu, ξyl, ξyu]T .
Using (4), the CoP position, step location, body rotation

angle and CoM height can be adjusted. The expression of
(4) can be obtained following the rationale in [11].

C. Reference movement

Normally, the reference roll and pitch angles are set
to be zeros to keep the upper body upright. Besides, the
reference CoM height are designed as the sum of the nominal
pendulum height (href

c ) and the reference step height (d̄ref
z(k)).

That is, the reference CoM height (cref
z(k)) is defined as

cref
z(k) = href

c + d̄ref
z(k), (6)

where href
c is a constant vector (consisting of href

c ) which
is determined by the physical structure. d̄ref

z(k) is determined
by the surface height configuration, which is spanned from
dref
z(k) (see (15)). Note that when walking through a passage

with limited height, the href
c can be adjusted, which would

be demonstrated in Section IV-B.2.
As to the horizontal CoM movement, differing from [11]

where the reference CoM trajectory fixed above the support
center, this paper provides a better initial guess, by employ-
ing the LIP model with point contact. As revealed in [12],
given the generated step location, the CoM trajectory can be
easily obtained by solving a two-point boundary problem.
During the current step (the ith step), the reference forward
CoM position during the remaining period is determined by

cref
x(k+j) =cref

x(k) cosh(ω0tj)+
ċref
x(k)

ω0
sinh(ω0tj), 1≤j≤ki−k,

(7)
where tj = j∆t. ki corresponds to the ending time of the
ith step, sinh() and cosh() denote the hyperbolic sine and
cosine function, respectively. ω0 =

√
g/href

c is the nominal
natural frequency. [cref

x(k), ċ
ref
x(k)]

T is the current CoM status
reference, which is updated by using following boundaries:

cref
x(k) = cx(k), cref

x(ki)
= (d̂x(k) + dx(k,1))/2, (8)

where cx(k) denotes the current CoM position, d̂x(k) denotes
the current support center, dx(k,1) denotes the next step
location (note cx(k), d̂x(k) and dx(k,1) are generated by the
last optimization loop), cref

x(ki)
denotes the final CoM position

reference of the current cycle.
The reference CoM trajectory for the future steps can also

be solved, following the idea behind (7) and (8). Note that the
utilization of (7) indicates that the reference CoP coincides
with the support center, contributing to the stable locomotion.

D. Feasibility constraints

To guarantee the feasibility, this work considers the sta-
bility and physical constraints.

1) Soft constraints on CoP movement: To enhance the
robot mobility and the NMPC solvability, this work uses
soft CoP constraints:

pmin
x +ξxl ≤ px(k)−d̄x(k)≤ pmax

x +ξxu, (9)

where px(k) and d̄x(k) separately denote the sagittal CoP
positions and step locations over the prediction horizon.
[pmin
x ,pmax

x ]T denote the constant lower and upper CoP
boundaries, which are determined by the foot size. ξxl and
ξxu are the slack variable vectors spanned from ξxl and ξxu.

2) Hard constraints on DCM offset: The walking stability
can be preserved by limiting the distance between the final
DCM of the current (ith) step and the next step location.
Taking the forward motion as an example, we have

bmin
x ≤ (cx(ki) + ċx(ki)/ω0)− dx(k,1) ≤ bmax

x , (10)



where (cx(ki) + ċx(ki)/ω0) computes the final DCM position
of the current step, bmax

x and bmin
x separately denote the upper

and lower boundaries of the DCM offset.
The conditions given by (10) can be explained in terms of

∞-step capturability of the LIP with point feet [22]. In cur-
rent work, we assume a constant step period. Consequently,
the DCM offset bounds are given as

bmax
x =

smax
x

eω0T − 1
, bmin
x =

smin
x

eω0T − 1
, (11)

where T is the step duration, smax
x and smin

x denote the
maximal and minimal step length, respectively.

3) Other physical limitations: Feasibility constraints
arisen from the limited actuation capability and physical
configuration are also considered. Particularly, the constraints
on the step location variation, body angle variation, hip
torque and others are incorporated when formulating the
NMPC problem. More details can be found in [11].

As a result, the enhanced NMPC is formulated as a QCQP
problem, as expressed in the Appendix. Particularly, the
quadratic CoP constraints are derived in Appendix A.

IV. EVALUATION

This section validates the effectiveness of the proposed
approach by conducting simulation experiments on the CO-
MAN humanoid robot (height: 0.945m, weight: 31kg) [26].
Particularly, the dynamical walking of a robot using the
same physical property but equipped with point feet is also
demonstrated – videos of all the results can be accessed at:
https://www.youtube.com/watch?v=I DainHodcU

A. IPF simulation

1) Robust gait generation for IPF with finite-sized feet:
In this section, the simulation on a nonlinear IPF with finite-
sized feet is conducted where the robot was expected to climb
5cm high stairs from the 2nd to the 4th cycle. Besides, the
horizontal push force lasting 0.1s was applied to the pelvis
at 2s (forward 180N, leftward 100N). The step period is
0.8s and the default step length and step width are 0.15m
and 0.145m. The weight coefficients are listed in Table II.
Note that the λ

ξ
s are set relatively high to minimize the CoP

deviation. The generated motions are illustrated in Fig. 3.
Taking the motion during 3.2s∼4.8s (from the 5th to the 7th

step) as an example, the CoP is controlled near the support
center (see Fig. 3(a)). Since there is no external push at
this stage, the slack variables are suppressed below 0.1mm
(see the partial enlarged drawing in Fig. 3(d)), which can be
ignored compared with the size of feet plate. Besides, during
3.2s∼4.8s, the robot tracks the reference height trajectory
accurately, as illustrated in Fig. 3(b). Since the height varia-
tion strategy is integrated, the smooth transition is obtained
when stepping across the stair. Furthermore, there is almost
no footstep adjustment or body rotation at this stage, meaning
that the utilization of the ankle strategy and height variation
strategy helps to accomplish the walking task.

When the push force was applied at 2s, the robot mod-
ulated the CoP position. As illustrated in Fig. 3(a), the

CoP moves forward and leftward after 2s. To eliminate the
state deviation caused by the external disturbance, the CoP
during the whole 4th cycle and at the beginning of the 5th

cycle is also modulated. Since the external disturbance is
large enough, the upper body rotation is also employed,
as illustrated in Fig. 3(c). Meanwhile, the robot adjusts the
vertical height, as can be seen from Fig. 3(d).

It is worth mentioning that, although the slack variables
increase a lot after 2s (e.g., ξxu reaches 0.3mm), they drop
rapidly due to the change of the angular momentum and
the height variation, as illustrated in Fig. 3(b)∼(d). In this
way, the CoP goes back to the support center as soon as
possible. Furthermore, the generated final DCM state is
always meeting the constraints given by (10) (see Fig. 3(a)),
guaranteeing the walking stability.

Particularly, the step location variation is suppressed.
Namely, when the stepping zone is limited, the robot can
still maintain balance by employing the proposed NMPC
approach. Note that a similar study can be found in [9].
However, to the best of our knowledge, [9] did not consider
the footstep adjustment when formulating the problem.

2) Feasible gait generation for IPF with point feet:
Considering a robot with point feet, the step period is set
to be 0.2s for fast stepping. In this case, the ankle strategy is
unavailable. When using the hard CoP constraints (where no
λ
ξ

in Table II) is used), the NMPC strategy can not obtain
the feasible solutions (the QP subproblem in each SQP loop
is solved by the quadprog function in MATLAB 2017b). As
illustrated in Fig. 4(a), the CoM trajectory diverges.

Using the soft CoP constraints (we set the λ
ξ

smaller than
αx), the generated motions are plotted in Fig. 5. Due to
the variation of slack variables, the CoP deviates from the
support center (step location in Fig. 4(b)). Since the DCM
offset is limited, the CoM trajectory converges. That is to
say, the usage of soft CoP constraints enhances the recursive
stability-termed as solvability in this article.

B. Dynamic simulation

In this section, dynamic simulations are conducted to
demonstrate the robustness against dynamical disturbances,
and the adaptability to complex environments as well.

1) Push recovery when stepping in place: To begin
with, the push recovery behavior is analyzed by applying
a horizontal external force to the pelvis at 2.4s when the
COMAN robot is stepping in place. It turns out that more
balance strategies need to be employed as the push force rises
(please see the attached video). Using the enhanced NMPC
strategy, the maximal push force the robot with finite-sized
feet can recover rises from 100N to 125N by integrating hip
strategy. When the stepping and height variation strategies
are integrated, the robot can reject 155N push force.

Fig. 6 demonstrates the robot motion for rejecting 150N
forward force. As illustrated in Fig. 6(a), the CoP moves
forwards and backwards when the force is applied. As
the footstep location varies, the generated CoM trajectory
(‘CoM-gen’) is adjusted, constrained by the CoP and DCM
motion. Besides, the upper body rotation (Fig. 6(b)) helps
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Fig. 8. The robot equipped with point feet passes by a composite scenario.

to reconcile the external push while the vertical height is
changed to dissipate the excessive kinetic energy input by
the disturbance (Fig. 6(c)). Based on the state feedback, the
upper body rotation and CoM height are modified in real-
time. Consequently, the robot returns to track the normal
states after the push force vanishes.

The snapshots of walking motions are illustrated in Fig.
7. Note that the robot with point feet can also recover from
external pushes due to the availability of step, hip and height
variation strategies providing by this approach. For more
details, please see the supplementary video.

2) Stable walking with height limitation: In real-world
environments, the robot often meets the walking tasks de-
manding height variation. Taking the robot with point feet
as an example, the robot first walks across a passage with
shorter height (91cm high) and then climbs a 2cm tall
staircase, as illustrated in Fig. 8.

To avoid the collision, the robot needs to reduce the total
height at the first stage. In this case, the reference height
trajectory is reduced by 4cm by adjusting href

c . As a result, the
robot successfully walks across the lower space, as illustrated
in the first row in Fig. 8. After then, the robot climbs the
stair by setting the step height to be 2cm, see the second row
in Fig. 8. That is to say, our approach can obtain adaptable
gaits by generating a time-varying height trajectory.

The similar test has also been conducted on a robot with
finite-sized feet, which can be found in the attached video.

C. Computing efficiency

Similar to [11], we use the following terminal condition:

Case 1 : min(Fm) ≤ε where Fm(i) = max(∆X (i)), for 1≤ i≤8,

Case 2 : nk ≥ Ns,
(12)

where ∆X , consisting of 8 blocks, is computed by the QP
solver, Fm ∈ <8, nk is the loop count of QP solver.



That is to say, there are two ways to terminate the SQP
loop. The first way is that we judge the maximal absolute
value (Fm(i)) of each state channel (∆X (i)), including 3D
CoM, 2D body inclination angle and 3D step location, over
the prediction horizon. Then, we compare the minimum of
the maximums with the threshold value (ε). The second way
is to judge if the loop number goes beyond the limit.

We use the c++ library QuadProg++ to solve the QP
subproblem, where the active-set algorithm [27] is employed.
For the test, the ∆t is 0.1s and Nh is 10. With a 3.3 GHz
quad-core CPU, we found that ε reduces as Ns increases, as
listed in Table I. However, when Ns becomes larger than 3,
the effect is dramatically weakened. On the other hand, the
time cost keeps rising as the growth of Ns. Thus, for the
real-time application, we choose ε=1×10−8 and Ns= 3.

TABLE I
THRESHOLD VALUES AND COMPUTING TIME

Param.
Ns 1 2 3 4 5 6

ε 1×10�2 2×10�6 1×10�8 4×10�9 8×10�10 2×10�10

t [ms] 1.31 2.36 3.39 4.21 4.90 5.52

t [ms] ([11]) 1.52 2.64 3.56 4.56 5.52 6.57

Compared with the preliminary version in [11], the number
of decision variables of the enhanced NMPC increases by
4, due to the introduction of CoP slack variables. Besides,
the number of the inequality constraints is also increased
by 4 because of the utilization of DCM offset constraints.
However, in this work, by using the accelerations as control
inputs, the orders of coefficient matrices, e.g., A and B
in (2) are reduced. Besides, the time cost for preparing
the feasibility constraints, especially for the CoP constraints
computing, is dramatically reduced, when compared (18)
with the work in [11]. As a result, the enhanced NMPC needs
less time cost than [11], as can be seen in Table I. Thus, the
proposed scheme contributes to higher time efficiency.

V. CONCLUSION AND DISCUSSION

In this work, an enhanced NMPC approach is proposed
for versatile locomotion. By using the nonlinear IPF model,
the CoP modulation (if allowable), footstep adjustment, body
rotation and height variation are integrated in a unified way.
Complying with the hybrid stability criteria, the method can
be applied on the robot with finite-sized feet or point feet.

One challenge is the automatic decision of weights for
achieving optimal hybrid strategy. At present, the weight
coefficients are tuned by hand. To overcome this drawback,
one possible way is to employ learning-based methods to
train the weight factors.

Another work is taking the step duration adaptation into
account. As revealed in [21] and [28], the step timing
modulation can highly enhance the gait robustness, which
is our next focus.

TABLE II
WEIGHT COEFFICIENTS FOR IPF SIMULATION

αCx
1×104/1×107 αCy

5×103/5×105 αCz
2×107/1×109

αΘr
8×103/5×108 αΘp

2×104/5×108 βCx
100/10

βCy
100/10 βCz

100/10 βΘr
100/10

βΘp
100/10 γCx

10/100 γCy
10/100

γCz
50/100 γΘr

10/100 γΘp
10/100

δDx 5×107/5×108 δDy 1×107/1×109 λξ 5×108/1×107

APPENDIX

The NMPC is formulated as a in-homogeneous QCQP
problem, which can be expressed as

min
X

X TGX + 2gTX ,

s.t. X TVjX + vTj X+ ≤ σj , j ∈ {1, ..., Nc},
(13)

where X ∈ <Nt is the state vector, Nc and Nt denote the
number of constraints and state variables, respectively. G,
Vj ∈ <Nt×Nt , vj ∈ <Nt , and σj ∈ < are the coefficients
that specify the cost function and constraints.

A. Quadratic form of soft CoP constraints

At t(k), by defining the selection matrices, the predictive
accelerations and step locations can be expressed as follows:

d(k) = SdX (k), Sd ∈ <Nf×Nt ,
ẍ(k) = SxX (k), Sx ∈ <Nh×Nt ,

ẍ(k+i) = Siẍ(k), Si ∈ <1×Nh , i∈{1, ..., Nh}.
(14)

Besides, the step locations over the prediction horizon are
generated by using the separated locations corresponding to
the future walking cycles. That is,

d̄x(k) = ec(k)d̂x(k) + Ec(k)dx(k), (15)

where d̂x(k) denotes the current suppot center, ec(k) and
Ec(k) are mapping matrix as defined in [24].

Then, the position of support foot is chosen as
dx(k+i) = Sid̄x(k). (16)

Focusing on the upper boundary of CoP motion, we have:
(cx(k+i) − dx(k+i) − (pmax

x + ξxu))(g + c̈z(k+i))

− (cz(k+i) − dz(k+i))c̈x(k+i) − Iy θ̈p(k+i)/m ≤ 0.
(17)

Then, by substituting (3), (14) and (16) into (17), the
quadratic form of ZMP constraints is:
Vpx(i) =m(STcxP

T
puS

T
i SiScz−STcxS

T
i SiPpuScz−STdxE

T
c(k)S

T
i SiScz ),

vpx(i) =m(ĉTx(k)P
T
ps S

T
i SiScz+gSiPpuScx−ĉTz(k)P

T
ps S

T
i SiScx

+dref
z(k+i)SjScx−d̂Tx(k)e

T
c(k)S

T
i SiScz−gSiEc(k)Sdx

−(pmax
x +ξxu)SiScz )

T−(IySiSθp)T ,

σpx(i)=mg(Si(Ppsĉx(k)−ec(k)d̂x(k))−(pmax
x +ξxu)).

(18)

B. Weight coefficients for NMPC solution

Table II lists the weight coefficients for the IPF simulation.
Note that, for each term, the left is for the IPF with finite-
sized feet while the right is for the IPF with point feet.
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