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Abstract— In this paper, the 2D robot-to-robot relative pose
(position and orientation) estimation problem based on ego-
motion and noisy distance measurements is considered. We
address this problem using an optimization-based method,
which does not require complicated numerical analysis while
yields no inferior relative localization (RL) results compared to
existing approaches. In particular, we start from a state-of-the-
art method named square distances weighted least square (SD-
WLS), and reformulate it as a non-convex quadratically con-
strained quadratic programming (QCQP) problem. To handle
its non-convex nature, a semidefinite programming (SDP) relax-
ation optimization-based method is proposed, and we prove that
the relaxation is tight when measurements are free from noise
or just corrupted by small noise. Further, to obtain the optimal
solution of the relative pose estimation problem in the sense of
maximum likelihood estimation (MLE), a theoretically optimal
WLS method is developed to refine the estimate from the SDP
optimization. Comprehensive simulations and well-designed
experiments are presented for validating the tightness of the
SDP relaxation, and the effectiveness of the proposed algorithm
is highlighted by comparing it to the existing approaches.

I. INTRODUCTION

Relative localization (RL), which refers to determine rel-
ative configurations of mobile agents with respect to (w.r.t.)
other agents or landmark, is critically important in multi-
robot systems since it is the pre-requisite for robot teaming
and swarming [1]–[3]. Many applications, such as target
tracking [4], localization [5] and mapping [6] are often faced
with RL problem. In the case of static multi-robot systems,
a variety of algorithms based on convex optimization [7],
sum of squares relaxation [8], multidimensional scaling [9]
and flying anchor nodes approach, were employed to address
the RL problem, where these methods can precisely locate
the position of sensor nodes, meantime, fast and robust.
However, w.r.t. mobile multi-robot systems, except for posi-
tion, the relative orientation also has to be determined, and
this is emphasized by plenty of literature [10]–[12]. Among
the vast investigations, however, the relative pose estimation
problem is usually supposed to be solved, and only a few
works describe how to locate the relative pose in multi-robot
systems.

Manually measuring the relative pose between robots is
simple and straightforward, but tedious, with low accura-
cy and not applicable to large robot teams. Alternatively,
utilizing external references to achieve RL, such as global
positioning system (GPS), compass, maps of the environment
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or image matching, is regarded as an efficient method and
indeed widely used in practice. Unfortunately, this type of
approach is not available in some scenarios like underwater,
underground, outer space, or indoors. Localization based
purely on proprioceptive sensors (e.g., from odometry), also
known as dead reckoning (DR), suffers from unbounded er-
ror accumulation over time. This phenomenon arises because
DR continuously integrates noise and biases affecting the
sensor measurements. Another convenient method is using
the inter-robot distance and bearing measurements [13].
However, due to power and processing constraints, only the
distance or bearing measurements is available in a multi-
robot system. In this regard, RL can be achieved by com-
bining the information from egomotion (obtained from DR)
with bearing [14] or distance [15] measurements. Actually,
the latter case (i.e., combine the egomotion information with
distance-only measurements) is exactly what we investigated
in this paper.

Generally, the relative pose estimation using egomotion
and distance-only measurements can be cast as a nonlinear
optimization problem and solved by the iterative method.
For example, the two-step-based method [15], [16], where
the deterministic algorithm is first used to compute a coarse
initial solution, and then the iterative weight least squares
(WLS) is employed to iteratively refine this initial estimate
using additional range measurements. However, the quality
of the RL result is highly dependent on the accuracy of initial
estimate, which hinders the application of this approach
to noise-corrupted scenarios. Alternatively, a fundamentally
different way is presented in [17]. Instead of using the
standard numerical optimization method, the WLS cost func-
tion, which obtains from maximum likelihood estimation
(MLE) with the assumption of Gaussian noise, is transformed
into polynomial form, and then the recent techniques like
polynomial system solving and polynomial optimization
method are employed to find all stationary points of the
cost function. However, this method scales quite poorly
since the complexity grows exponentially with the increase
of measurements. To this end, a much preferable approach
from the point of scalability is to solve the WLS based on
noisy measurements of the squared distance. Thus a relaxed
WLS formation basing on square distance measurements
(SD-WLS) is developed, and the hybrid algebra-numeric
technique basing on eigenvalue decomposition of a complex
matrix is employed to compute the global optimum of the
SD-WLS efficiently.

In this paper, we propose to provide an alternative solution
for the SD-WLS, which avoids using the slightly complicated



hybrid algebra-numeric technique and yields an entirely
equivalent RL result. In particular, we reformulate the SD-
WLS as a non-convex QCQPs problem, and an efficient
SDP relaxation optimization method is derived to address
this problem. Meantime, we prove that when the in- and ex-
sensors’ observations are noise free or corrupted by small
enough noise, the SDP relaxation can obtain the optimum
of the QCQP. We also propose a theoretically optimal WLS
method to refine the estimate from the SDP optimization
and get an MLE of the relative pose, which is proved
to be advantageous when the measurement noise is suffi-
ciently large. Comprehensive simulations and well-designed
experiments are presented for validating the tightness of
the SDP relaxation, and the effectiveness (e.g., estimation
accuracy and convergence speed) of the proposed algorithm
is highlighted by comparing to the existing approaches.

II. PROBLEM FORMULATION

Consider two robots R1 and R2 moving randomly in a 2D
space, where their initial poses are indicated by the frames
of reference F1 and F2, respectively. The two robots acquire
N robot-to-robot distance measurements dl, l = 1, ..., N
while moving in a 2D plane1. As shown in Fig. 1, an
illustration of the considered 2D RL setup is given. Here,
our goal is to determine the 3 degree-of-freedom (3DOF)
robot-to-robot transformation from displacement estimates
and distance measurements. To achieve this, we make some
assumptions for each robot as follows:

• Each robot is equipped with proprioceptive motion
sensors such that it can measure changes in its own
pose;

• Mutual distance (include the identity) of the measured
robot can be obtained from each robot with the extero-
ceptive sensors;

• Each robot has its own communication capability, which
means that each robot is able to broadcast information
to its neighboring robots.

At each time instant l, the measurement of R1 and R2,
i.e., zl, is corrupted by Gaussian noise vk with zero mean
and covariance σ2

l , and produced according to

zl =
√

wT
l wl + vl, (1)

where wl is defined by

wl := T (q2,l)− q1,l = p + Cq2,l − q1,l, (2)

T (·) denotes the transform funcation, q1,l and q2,l denote
the displacements of R1 and R2 in their respective frames,
N is the moving step, p and C are the initial position and
rotation matrix, respectively, and they are defined by

p := d0

[
cosθ
sinθ

]
, C :=

[
cosφ −sinφ
sinφ cosφ

]
, (3)

1It is reasonable to assume that only robot R1 or R2 collects range
measurement at each location. However, if both robots record a measure-
ment, i.e., two measurements are obtained, a more accurate estimate of their
distance can be given with the combination of the two measurements.
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Fig. 1. The trajectories of robots R1 and R2: We denote the coordinates
of R1 using green color, while R2 using blue, θandφ denote the relative
direction and orientation of R2 with respect to R1, respectively.

where d0 is a considered known distance measurement
between R1 and R2 at initial stage, θ and φ are the relative
angle and orientation of robot R1 and R2 at l = 0,
respectively. According to the SD-WLS presented in [17],
taking the square of (1), we have

z2l = wT
l wl + 2vl

√
wT
l wl + v2l . (4)

Actually, the corresponding noise term v
′

l := 2vl

√
wT
l wl +

v2l is not zero-mean Gaussian. However, as demonstrated
in [18], the non-Gaussian random variable can be well
approximated by a Gaussian density function with matching
first and second order moments. Therefore, this equation can
be rewritten as

z
′

l = wT
l wl + v

′

l , (5)

where

z
′

l ' z2l − v̄
′

l , v̄
′

l := E[v
′

l ] = Rll,

Σll := E[(v
′

l − v̄
′

l)
2] = Rll(4d

2
l + 2Rll)

Σlk := E[(v
′

l − v̄
′

l)(v
′

k − v̄
′

k)] = Rll(4d
2
l + 2Rll).

(6)

Note that E[·] denotes the expectation of a specific matrix,
Rll is one of the elements of R with entry {l, l}, and
the details of computing R can be found in [17]. Since
N distance measurements are recorded, thus N nonlinear
equations equivalent to (6) can be obtained. We stack those
equations, it is easy to have

z
′

= hsd + v
′
, (7)

where

z
′

=
[
z

′

1 · · · z
′

N

]T
, hsd =

[
wT

1 w1 · · ·wT
NwN

]T
,

v
′

=
[
v

′

1 · · · v
′

N

]T
∼ N (v

′
; 0,R

′
),

(8)



and R
′

is approximated by R
′ ' Σ (Σ is calculated by (6)).

Therefore, the SD-WLS function can be formulated as:

min
θ,φ

1

2
(hsd − z

′
)TR

′−1(hsd − z
′
),

s.t. cosφ2 + sinφ2 = 1.

(9)

Remark 1. As we see in (9), the optimization parameter for
SD-WLS is θ and φ. Of course we can use p and φ instead,
which is the same as paper [17]. Here, we replace p with θ
just for simplicity, and it is reasonable because we assume
that d0 can be directly obtained from external sensors.
Additionally, in 3D scenario, parameter φ should be replaced
by a quaternion q̄, which can fully construct the rotation
matrix C. Consistently, the reason why for the parameter φ
should be optimized is due to that the quaternion in 2D can
be specified by q̄ =

[
0 0 sin(φ/2) sin(φ/2)

]
.

III. SEMIDEFINITE OPTIMIZATION FOR RELATIVE POSE
ESTIMATION

In this section, we prove that SD-WLS can be reformu-
lated as an equivalent non-convex QCQP problem, and the
SDP relaxation technique is used to handle its non-convex
nature. Meantime, we prove that if observations are noise-
free or corrupted by small enough noise (“small enough”
is depended on the specific applications), the SDP relaxation
can obtain the optimum of the QCQP, and a recovery strategy
is provided to get the solution of the original problem.

A. SDP Relaxation

Proposition 1. We assume that {q1,l,q2,l, dl}Nl=1 are ob-
tained from in- and ex- sensors (d0 is known), thus the SD-
WLS can be equivalently formulated as

f∗OPT = min
x

xTM0x

s.t. xTMlx = bl, l = 1, ..., N
(10)

which is essentially a non-convex QCQP. Besides, f∗OPT
denotes the optimal solution of (10), M0 can be obtained
from {q1,l,q2,l, dl}Nl=1, and Ml, l = 1, ..., N are known
variables.

Proof. See Appendix A.

As we see, the SD-WLS is formulated as a typical non-
convex QCQPs problem in (10), which is a very general
kind of problem that comprises many NP-hard problems.
However, it is well-known that this kind of problems can
be relaxed to a convex SDP, also known as Shor’s relaxation
[19]. Here, a crucial first step in deriving an SDP of problem
(10) is to observe that

xTMlx = Tr(xTMlx) = Tr(MlX), l = 0, ..., N (11)

where Tr(·) denotes the trace of a given matrix, and we
define X = xxT . Note that X = xxT is equivalent to X

being a rank one symmetric positive matrix, then we obtain
the following equivalent formulation of problem (10)

min
X,x

Tr(M0X)

s.t. Tr(MlX) = 0 l = 1, · · ·N,
X � 0, rank(X) = 1.

(12)

Here, for symmetric matrix X, X � 0 means that X is
a positive semidefinite matrix. As we see, we obtain an
additional property that the objective and constraints are
affine in X and x, except the last constraint rank(X) = 1,
which is nonconvex. When we drop the rank constraint, we
get a convex relaxation. By rewriting it using the Schur
complement, we obtain an SDP relaxation:

f∗SDP = min
X,x

Tr(M0X)

s.t. Tr(MlX) = bl l = 1, · · ·N,
X � 0.

(13)

where f∗SDP denotes the solution of (13). Its dual problem
is [20]

max
ν

bTν

s.t. M0 −
N∑
l=1

νlMl � 0,
(14)

where b = [b1, ..., bN ], and ν = [ν1, ..., νN ] is the Lagrange
multiplier. Globally optimal solution to the above equations
(13 and 14) may be found by available numerical algorithms
in polynomial time (often by interior-point methods), and
many solvers can achieve this, such as SEDUMI and SDPT3.

B. Tightness of SDP Relaxation

In this subsection, we are going to prove that, if the in-
and ex- sensors’ observations are noise free or corrupted by
small enough noise, the SDP relaxation is tight.

As a relaxation, the problem above fulfills

f∗SDP ≤ f∗OPT . (15)

Theoretically, if the SDP relaxation is tight (f∗SDP = f∗OPT )
and (10) features a unique global minimum, we can easily
obtain the guaranteed optimal solution x∗ to the original
problem (10) from the optimal solution Z∗ to the SDP re-
laxation (13). As we proved in Lemma.1, the SDP relaxation
is tight if the observations {dl,q1,l,q2,l}Nl=1 are noise free
or corrupted by small enough noise.

Lemma 1. If the observations {dl,q1,l,q2,l}Nl=1 are noise
free or corrupted by small enough noise, the SDP relaxation
(13) for the QCQP problem is tight, or in other words, the
optimum of the original QCQP can be found by optimizing
its SDP relaxing, i.e., f∗SDP = f∗OPT .

Proof. See Appendix B.



C. Recovery of Original Problem

Based on above, we have fully introduced our method to
obtain the solution of QCQP via SDP relaxation when it
is tight. However, after obtaining the solution X∗ in (13),
we still encounter another difficulty: It is a classical results
related to SDP relaxation that whether the tight SDP solution
X∗ fulfills rank(X∗) = 1 and we may recover x∗ from the
low rank decomposition X∗ = x∗(x∗)T . Here, [21] provides
an efficient solution, where we can use SVD to decompose
X∗ and set all other singular value to be zero except for the
largest one. Through this way, we will get a very accurate
approximation whose rank is close to rank 1.

IV. MAXIMUM LIKELIHOOD ESTIMATION BASED ON
WEIGHTED LEAST SQUARE

In this section, we are going to use the estimates provided
by the SDP relaxation outlined in Section III as an initial
guess in a WLS algorithm to get the MLE of the relative
pose. In the process of achieving this, the uncertainty in
robot pose in model (1) is also considered, which makes
our algorithm more practical in real applications.

First, the same as (7), we stack those equations for l =
1, .., N , then we have

z = hd + v, (16)

where z = [z1, ..., zN ]
T , hd = [

√
wT

1 w1, ...,
√

wT
NwN ]T .

And v = [v1, ..., vN ]
T is the measurement noise, which is

modeled as zero-mean Gaussian with covariance R = σ2
l I.

Then, we consider to incorporate the robot pose uncertain-
ty q1,l and q2,l in model (17). Therefore, we linearize the
measurement equations around the current estimate of the
robot-to-robot pose, as well as the individual robot poses,
and this corresponds to the linearization of the measurement
model

z = hd + v

'
[

Hxs Hxr

] [ x̃s

x̃r

]
+ Hq1 q̃1 + Hq2 q̃2 + v,

(17)

where xs and xr is defined by the partial unknown variables
of x, which is given by

xs =
[

cosθ sinθ
]T
, xr =

[
cosφ sinφ

]T
.

Besides, Hxs
, Hxr

, Hq1
and Hq2

are Jacobians of the
measurement function hd with respect to the corresponding
variables, which are obtained using the chain rule as follows:

Hxs
=
∂hd
xs

= d0u, Hxr =
∂hd
xr

= uq2Cxr ,

Hq1
=
∂hd
∂q1

= −u, Hq2
=
∂hd
∂q2

= uC.
(18)

where u = [wT
1 /d1, ...,w

T
N/dN ]T , and

Cxr
=

[
1 0 0 −1
0 1 1 0

]T
.

In addition, xs, xr, q1 and q2 are given by the following
equations:

xs = x̂s + x̃s, xr = x̂r + x̃r

q1 = q̂1 + q̃1, q2 = q̂2 + q̃2

(19)

where we denote estimated quantities by “ˆ”, and errors
by “˜”. Besides, δφ denotes the small rotation of φ, and
x̃r =

[
1 δφ

]T
. Then, we compute an augmented noise

matrix

W = R + Hq1
Pq1

HT
q1

+ Hq2
Pq2

HT
q2

(20)

where Pq1 and Pq2 denote the covariance of q1 and q2, and
use W as weighting matrix in the WLS cost function. Note
that the DR errors for the same robot will be correlated, but
those between two different robots will be independent.

We find the correction by solving the weighted normal
equations

HTW−1H

[
x̃s

x̃r

]
= HTW−1(z− ẑ), (21)

where H = [Hxs
Hxr

]. We update the x̂s and x̂r with

x̂j+1
s = x̂js + x̃s,

x̂j+1
r = x̂jr + x̃r,

(22)

and converge to an optimal solution after several iterates, and
j is the index of iteration. Moreover, the final covariance of
the estimate is given by

E

[[
x̃s

x̃r

] [
x̃s

x̃r

]T]
= (HTW−1H)−1. (23)

Once the pose estimate and its covariance are computed,
additional distance measurements can be processed in a
recursive estimator, such as extended Kalman filter and
particle filter.

V. SIMULATION AND EXPERIMENT RESULTS

In this section, comprehensive simulations and well-
designed experiments (with real data processing results) are
presented for validating the effectiveness of the proposed
algorithm. In particular, measurements with almost negligible
and sufficiently large noise are both discussed, and the
performance (e.g., estimation accuracy) of the deterministic
and SD-WLS methods are compared with the proposed SDP
relaxation method. Moreover, the efficiency (such as the
improvement in estimation, fast convergence speed) of the
WLS method is highlighted by using the estimates of the
discussed methods as initialization guess.

A. Simulations

For the results shown in the simulation part, the trajectories
and distance measurements are generated as follows: (1) The
two robots start at initial positions 10m apart from each other
and record their first distance measurement; (2) each robot
moves randomly for approximately 2m; and (3) the robots
record a distance measurement at their new positions, and
repeat (2) and (3) for four times. The odometry measurement
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Fig. 2. Small noise case: A comparison of the three methods with different
noise versus θ, φ error: (a) log(σp) versus log(θ) error. (b) log(σp) versus
log(φ) error. (c) log(σl) versus log(θ) error. (d) log(σl) versus log(φ)
error.
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Fig. 3. Large noise case: A comparison of the three methods with different
noise versus θ, φ error: (a) log(σp) versus θ error. (b) log(σp) versus φ
error. (c) log(σl) versus θ error. (d) log(σl) versus φ error.

is modeled based on (19), and its noise follows a zero-
mean Gaussian distribution, with covariance Q = σ2

pI.
The distance measurement is generated by (17), and the
covariance of its noise is assumed to be R = σ2

l I. Note
that both σl and σp are used as parameters to examine the
accuracy of the presented algorithms, and we conducted 1000
trails per setting.

Firstly, we are devoted to examine the performance of
the different algorithms when the measurement noise is
relatively small. As shown in Fig. 2, a comparison of the
deterministic, SD-WLS and the proposed SDP relaxation is
provided, where σp and σl vary from 10−8m to 10−4m. In
Fig. 2, we have taken a combination of the parameters σp,
σl with the estimation results θ and φ in (a)-(d), respectively.
Since these parameters are small, they are denoted by a
logarithmic form. As we see, the deterministic algorithm
performs a little bit better than the SD-WLS and the SDP
relaxation methods when the measurement noise is within
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Fig. 4. The improvement of WLS in terms of estimation accuracy and
convergence speed: (a) σp versus Ie. (b) σl versus Ie. (c) NoM versus NoI.

the scale of [10−8, 2 · 10−6]m. This is possibly because
of the suboptimal characteristic of the SD-WLS and the
SDP relaxation for the assumption on Guassian noise in
(4). However, since the error is extremely approaching zero,
we ignore the gap between the three methods here. Then,
once the noise deviation exceeds 2 ·10−6m, we will find that
the SD-WLS and the SDP relaxation methods consistently
outperform the deterministic algorithm, and the error for
the deterministic algorithm grows exponentially with the
increase of the noise standard deviation, which increases
much faster than the (linear growing) SD-WLS and SDP
relaxation algorithm. Another thing has to be mentioned is
that the estimation error of θ and φ for both SD-WLS and
SDP relaxation methods achieve approximately the same
estimation accuracy2 and close to zero, which verifies our
conclusion in Lemma. 1.

Next, we aim to find out whether the our algorithm still
performs well when the measurement noise is large. To
this end, we provide another simulation in Fig. 3, where
the measurement noise deviation is changed from 10−4m
to 10−1m. Besides, we didn’t use the logarithmic form of
the estimation error on parameter θ, φ since they are large
enough, while other settings are kept the same with the
previous small noise case. As we see in Fig. 3, even though
the measurement noise deviation is set to be sufficiently
large, like 10−1m, the SDP relaxation method still can
produce a good performance (the θ and φ both less than
0.04rad) on the estimation of θ, φ (The estimation variance
is also plotted), which to some extend support a guess that
the SDP relaxation is still tight when the measurement noise
is large.

By using the outputs of the deterministic, SD-WLS, and
SDP relaxation algorithms as initialization points, the per-
formance of the WLS algorithm is investigated. The results
show that the WLS indeed has an improvement on the

2Start from here, we will no longer give a specific assertion if the SD-
WLS and SDP relaxation methods have the same performance on other
indicators since they are always consistent.



Fig. 5. (a) Two robots moving in 4m × 6m wide arena, and each
robot travels with an average velocity of around 0.1m/s. (b) The computer
interaction platform of the motion capture system.
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Fig. 6. A comparison of the three methods in terms of estimation accuracy
based on real data: (a) Experiment Index versus θ error w.r.t. deterministic
method. (b) Experiment Index versus θ error w.r.t. SD-WLS and SDP
relaxation. (c) Experiment Index versus φ error w.r.t. deterministic method.
(d) Experiment Index versus φ error w.r.t. SD-WLS and SDP relaxation.

initialization points of the deterministic, SD-WLS and SDP
relaxation algorithms. Meantime, the SD-WLS and SDP
relaxation algorithms have faster convergence speed. Here,
we define x̃WLS as the error of the estimation after the WLS
refinement is finalized with the discussed algorithms, thus the
improvement on the error is defined by

Ie = ‖x̃WLS − x‖2. (24)

In Fig. 4(a) and Fig. 4(b), we find that the WLS provides an
appealing error refinement, and the refinement performance
becomes better with the increase of the measurement noise.
Especially, there is a huge reduction in the error (around
50%) when measurement noise is large, which means that
the WLS has a good capacity to deal with the large noise
case. Additionally, the convergence speed (indicated by the
number of iteration (NoI)) is also compared. As we know,
5 distance measurements are capable of getting a unique
solution of the initial pose in a 2D plane. Therefore, in Fig.
4(c), we consider that the number of measurements (NoM)
increases from N = 5 to N = 10, and the corresponding
iteration time of the algorithms are presented. As we see,
since the SD-WLS and SDP relaxation algorithms have
much better initialization value, thus the convergence speed

Fig. 7. The improvement of WLS with real data in terms of estimation
accuracy and convergence speed: (a) σp versus Ie. (b) σl versus Ie. (c)
NoM versus NoI.

is around 2.5 times faster than the deterministic method.
Besides, for SD-WLS and SDP relaxation initialization, there
is a small improvement of the convergency speed with the
increase of the NoM.

B. Real-Data Experiments

In addition to simulations, we have tested the SDP
relaxation-based algorithm in real-world experiments, and
the performance is also compared with the deterministic and
SD-WLS algorithms, where the experiment results strongly
support the conclusion of the simulations. In the experiment
part, DR and distance measurements were recorded, and the
data is further processed in Matlab2013a on a Intel core i7
with a 3.6-GHz processer.

The 2D experiment is carried out using two-wheeled
robots, where IMU sensor, wheel encoder, and UWB module
(DWM1000) are installed on the bottom of each robot, where
DR and ranging information can be obtained from these
sensors. Here, the UWB module with up to 30 meters’
ranging capability and programmed to send the ranging
measurements with 1Hz frequency (For simplicity, though
the DR data has a rate of 50Hz, we record the data at every
second.). The STM32F103 discovery board serves as host
controllers to the DWM1000. As shown in Fig. 5(a), the
proposed SDP relaxation and WLS algorithms have been
tested on two robots moving in 4m×6m wide arena, and each
robot travels with an average velocity of around 0.1m/s. The
ground truth is established by a calibrated motion capture
system, and a computer interaction platform of the motion
capture system (with 16 calibrated cameras) is provided in
Fig. 5(b). The distance and angle error is limited less than
0.05mm and 0.01◦, respectively.

To show the effectiveness of our initialization strategy, we
fix φ = 45.23◦ first. Note that this is achieved by manually
adjusting the two robots, and the specific orientation value
is obtained from the motion capture system. Then, we
conducted 12 experiments with a set of predefined θ, which is
shown in TABLE I. Then, similarly, we fix θ = 44.99◦, and



TABLE I
EXPERIMENT INDICES AND CORRESPONDING PARAMETERS

Index 1 2 3 4 5 6 7 8 9 10 11 12

θ −150.66◦ −120.76◦ −88.64◦ −60.25◦ −32.76◦ 0.002◦ 30.23◦ 60.16◦ 90.1869◦ 120.64◦ 149.92◦ 179.95◦

Index 1 2 3 4 5 6 7 8 9 10 11 12

φ −147.26◦ −119.25◦ −90.22◦ −60.16◦ −31.11◦ 3.68◦ 32.56◦ 59.26◦ 89.12◦ 120.61◦ 150.23◦ 179.41◦

tried another 12 different experiments, and different values
of the parameter θ are also given in TABLE I. Accordingly,
with real data, a comparison of the SDP relaxation algorithm
with the deterministic and SD-WLS method is provided in
Fig. 6. We have also taken a combination of the parameter
σp and σl with the estimation error of θ and φ in (a)-
(d). As we see, in a practical application, the deterministic
method has an unbearable estimation error with θ or φ, which
means that it nearly lost the capacity to obtain a correct
estimation of parameters. In contrast, the SD-WLS and our
SDP relaxation still have a small estimation error with θ and
φ, where their efficiency is well exhibited. Further, similar
to the simulation part, we are devoted to demonstrating that
the WLS algorithm has an improvement on the initialization
points of the deterministic, SD-WLS, and SDP relaxation
algorithms. As shown in Fig. 7, instead of choosing different
σp and σl, we consider that NoM increases from N = 5 to
N = 10, and the estimation error of θ and φ are presented.
We see that even with the real data, the WLS also provides an
appealing refinement in Fig. 7(a) and Fig. 7(b), and the error
refinement performance becomes better with the increase of
the NoM. Also, even though more iteration time is required
for all discussed algorithms in a practical application, Fig.
7(c) consistently shows that the SD-WLS and SDP relaxation
algorithms indeed have a faster convergence speed (also
around 2.5 times) since they have a better initialization
value, and the increase of the NoM shows only a little
influence on convergency speed of WLS algorithms, where
these conclusions are in accord with the conclusion in the
simulation part.

VI. CONCLUSIONS AND FUTURE WORK

The 2D robot-to-robot relative pose estimation problem is
considered in this paper, and an SDP optimization method is
intensively investigated. Specifically, we prove that a state-
of-the-art method SD-WLS can be reformulated as a non-
convex QCQP problem without any loss. To handle its non-
convex nature, an SDP relaxation optimization-based method
is proposed, and we prove the relaxation is theoretically
tight when the measurements are free from noise or just
corrupted by small noise. We also developed a WLS method
to refine the estimate from the SDP optimization, which is
theoretically optimal in the sense of MLE. Simulations and
real data processing results reveal that the SDP relaxation
is tight with small noise and performs well even when
the measurement noise is sufficiently large. Besides, the
efficiency of the WLS algorithm is highlighted. The future
work will focus on extending the SDP relaxation method to a

3D case and test it on a multi-UAV system and our Freeform
Robot (FreeBOT) [22].

APPENDIX A

According to equation (2) and (5), it is easy to have

wT
l wl − z

′

l = εl + 2(p− q1,l)
TCq2,l − 2qT1,lp, (25)

where εl := d20 + qT1,lq1,l + qT2,lq2,l − d2l . Note that εl is
assumed to be known since d0, q1,l and q2,l for l = 1, ..., N
can be obtained from in- and ex- sensors. Then we substitute
(3) into (25), we will have

εl + 2(p− q1,l)
TCq2,l − 2qT1,lp

= εl + 2(d0

[
cθ
sθ

]
−
[
x1,l
y1,l

]
)T
[

cφ −sφ
sφ cφ

] [
x2,l
y2,l

]
− 2d0

[
x1,l
y1,l

]T [
cθ
sθ

]
= εl + 2d0(x2,lcθcφ+ x2,lsθsφ− y2,lcθsφ+ y2,lsθcφ)

− 2(x1,lx2,lcφ+ y1,lx2,lsφ− x1,ly2,lsφ+ y1,ly2,lcφ)

− 2d0(x1,lcθ + y1,lsθ)

= −2d0x1,lcθ − 2d0y1,lsθ − 2(x1,lx2,l + y1,ly2,l)cφ

+ 2(x1,ly2,l − y1,lx2,l)sφ+ 2d0x2,lc(θ − φ)

+ 2d0y2,ls(θ − φ) + εl
(26)

where cθ = cos(θ), sθ = sin(θ), cφ = cos(φ) and sφ =
sin(φ). Next, in order to simplify (26), we define

χl =
[
−2(x1,lx2,l + y1,ly2,l) 2(x1,ly2,l − y1,lx2,l)

]T
,

x =
[

cθ sθ cφ sφ c(θ − φ) s(θ − φ) 1
]T
.

(27)

Substitute (27) into (26), thus

wT
l wl − z

′

l =
[
−2d0q

T
1,l χl 2d0q

T
2,l εl

]
x (28)

Next, the same as (7), we stack N equations of (28), hence

hsd − z
′

= Ax (29)

where

A =

 −2d0q
T
1,1 χT1 2d0q

T
2,1 ε1

...
...

...
...

−2d0q
T
1,N χTN 2d0q

T
2,N εN

 . (30)

Therefore
1

2
(hsd − z

′
)TR

′−1(hsd − z
′
) =

1

2
xTATR

′−1Ax. (31)



Here, we define M0 = ATR
′
A. Additionally, since x

introduces several new variables, so we have

c2φ+ s2φ− 1 = 0⇒ x21 + x22 = 1,

c2θ + s2θ − 1 = 0⇒ x23 + x24 = 1,

c2(θ − φ) + s2(θ − φ)− 1 = 0⇒ x25 + x26 = 1,

cθcφ+ sθφ− c(θ − φ) = 0⇒ x1x3 + x2x4 − x5 = 0,

sθcφ− cθsφ− c(θ − φ) = 0⇒ x1x4 − x2x3 − x6 = 0.
(32)

Then, (32) can be easily written as

xTMlx = bl l = 1, 2, .., N, (33)

where Ml is a typical sparse matrix. To write Ml in a
compact form, we brought the notation style from matlab,
where the notation sparse(i, j, s,m, n) is used to represent
each Ml, where i and j denote the row and column indexes
of Ml, respectively, and s represents the corresponding
values of Ml at index (i, j). Besides, m and n denote the
size of the matrix Ml. In particular, they are

M1 = sparse([1, 2], [1, 2], [1, 1], 7, 7),

M2 = sparse([3, 4], [3, 4], [1, 1], 7, 7),

M3 = sparse([5, 6], [5, 6], [1, 1], 7, 7),

M4 = sparse([1, 2, 7], [3, 4, 5], [1, 1,−1], 7, 7),

M5 = sparse([1, 2, 7], [4, 3, 6], [1,−1,−1], 7, 7),

(34)

and b = [b1, ..., bS ]T = [1, 1, 1, 0, 0]. Therefore, based on
(31)-(34), the SD-WLS in (9) can be equivalently formulated
as the following

min
x

xTM0x

s.t. xTMlx = bl, l = 1, .., S,

which is a typical QCQP problem.

APPENDIX B

Let x denote the ground truth of the original problem (10)
and assume ν = 0 in (14). Then x is optimal to (10) and
(14), respectively. Obviously, x and ν satisfy the following
three conditions:

• Primal feasibility. Substituting x in the original prob-
lem (10), the constraints are satisfied since x is the
ground truth of the original problem, which means that
xTMlx = bl is tenable for all l.

• Dual feasibility. Since {dl,q1,l,q2,l}Nl are noise free,
thus νl = 0 or νl ≈ 0 for l = 1, ..., N in (14). Further,
based on (30) and M0 = ATR

′
A, we may know that

Mν = M0 = M0 � 0.
• Lagrange multiplier. Since νl = 0 or νl ≈ 0 for
l = 1, ..., N when measurements are noise free, hence
Mνx = M0x. Meantime, it is easy to find that
xTM0x = 0 in (10). We combine the two conditions,
and using the Lemma 3. in [23], thus Mνx = 0.

As pointed out by the Lemma. 2.4 in [24], as long as the
above three conditions are satisfied, then we can recover the
minimizer of the QCQP from the SDP without any loss.
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