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Abstract— Accurate perception of the surrounding scene is
helpful for robots to make reasonable judgments and be-
haviours. Therefore, developing effective scene representation
and recognition methods are of significant importance in
robotics. Currently, a large body of research focuses on devel-
oping novel auxiliary features and networks to improve indoor
scene recognition ability. However, few of them focus on directly
constructing object features and relations for indoor scene
recognition. In this paper, we analyze the weaknesses of cur-
rent methods and propose an Object-to-Scene (OTS) method,
which extracts object features and learns object relations to
recognize indoor scenes. The proposed OTS first extracts object
features based on the segmentation network and the proposed
object feature aggregation module (OFAM). Afterwards, the
object relations are calculated and the scene representation
is constructed based on the proposed object attention module
(OAM) and global relation aggregation module (GRAM). The
final results in this work show that OTS successfully extracts
object features and learns object relations from the segmenta-
tion network. Moreover, OTS outperforms the state-of-the-art
methods by more than 2% on indoor scene recognition without
using any additional streams. Code is publicly available at:
https://github.com/FreeformRobotics/OTS.

I. INTRODUCTION

Intelligent robots are human companions and assistants
with the goal to improve the quality of life. For instance,
robots can be designed to guide blind people to navigate
by telling them where they are and which direction to go.
For this application, there is an urgent need to equip robots
with semantic scene understanding ability, e.g. the ability to
perceive the surrounding objects and the scene that all objects
constitute. Therefore, developing an effective method for
indoor scene representation and recognition bears importance
in improving the level of robotic perception and intelligence.

Indoor scene representation based recognition has been
proposed for more than one decade, and it is still a chal-
lenging task in robotics and computer vision due to several
issues: (1) conventional networks cannot focus on every
object in scenes because they do not extract features at the
object granularity [1]; (2) handcrafted object features are sub-
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Fig. 1. Comparison of the recognition results of the proposed OTS and
ResNet50 on the shown image. The bottom left list shows the objects that
the segmentation network in our method detected, and the right charts show
the top 5 recognition scores of the two models.

optimal to represent scenes [2]; (3) an effective paradigm is
lacking to represent coexisting object relations [3].

This work primarily aims to mitigate the above-mentioned
issues and improve the accuracy of indoor scene represen-
tation and recognition. To achieve these goals, we propose
a novel one-stream method, namely Object-to-Scene (OTS),
that constructs object features and calculates object relations
to realize indoor scene representation and recognition. In this
work, instead of simply using handcrafted features such as
[3] to represent the existence of each object, object features
with higher semantic level are extracted using the proposed
object feature aggregation module (OFAM) and a segmenta-
tion network. Object attention module (OAM) is then used
to learn object relations implicitly, the attention mechanism
of the module can obtain long-range dependencies, and thus
coexisting objects in all situations can be learned. After that,
Global relation aggregation module (GRAM) based on a strip
depthwise convolution and a pointwise convolution is used to
aggregate the object features and convert object features into
a scene representation vector. Finally, a fully-connected layer
is used for indoor scene recognition, and recognition results
are compared with the existing state-of-the-art methods. Fig.
1 illustrates the superiority of our method, where the charts
on the right show the top 5 recognition scores of our method
and ResNet50 on the image. Compared to ResNet50 that
focuses on major objects such as stool and table in scenes,
the segmentation network in our method can detect tiny but
important objects, such as stove and microwave in Fig. 1,
and our method can represent object features and relations
implicitly. Therefore, ResNet50 hesitates between wet bar
and kitchen but OTS, based on object features, can recognize
kitchen confidently.



In summary, the major contributions of this paper are as
follows:

• We propose a novel framework OTS that enables using
object features and relations for indoor scene represen-
tation and recognition, and OTS outperforms existing
methods by more than 2%.

• We propose OFAM that can extract object features from
the segmentation network for indoor scene representa-
tion and recognition.

• We propose OAM to learn relations between objects,
and it helps to improve the scene representation and
recognition ability of our method. Meanwhile, the pro-
posed object attention blocks in OAM are more flexi-
ble and effective compared with the well-known self-
attention [4] and non-local [5].

• We propose GRAM to fuse the object features and
relations into scene representation at a higher semantic
level.

The remainder of the paper is organized as follows.
Section II describes a detailed list of recent works in scene
representation and recognition. The details of the proposed
OTS are described in Section III. Section IV presents the ex-
perimental settings and analyzes the results of OTS. Finally,
the conclusion and future work are presented in Section V.

II. RELATED WORKS

Understanding surrounding scenes is helpful for robots to
make reasonable judgments and behaviours, and a proper
scene representation is an important prerequisite [6]–[8].
Many early approaches used statistics-based and hand-
crafted features for scene representation [9], [10]. Li et al.
proposed codebooks to represent local features and scenes
[11]. Quattoni et al. used prototypes that contain object
information for different indoor scene representations [12].
Liu et al. proposed fast adaptive color tags to describe each
indoor scene, and used tag matching methods in U-V color
space and geometric space for inference [13]. However,
these statistics-based and hand-crafted features have limited
semantic information and are sub-optimal to represent scenes
as there are many combinations of objects in the same and
different scenes. In that case, an effective scene representa-
tion method is urgently needed.

As computing power increases, many deep learning meth-
ods have been proposed for various vision tasks [14]–[18].
ResNet is one of the most prominent backbone feature
extractors since it cleverly avoids the vanishing gradient
problem in neural networks [1]. However, ResNet behaves
poorly in indoor scene representation and recognition due to
the lack of effective expression of coexisting small objects
and object relations. To solve this problem, some methods
try to combine the backbone features with the object and
semantic features from detection networks and segmentation
networks for scene representation and recognition. Chen et
al. merged backbone features, detection features and seg-
mentation features into an embedding for indoor scene rep-

Fig. 2. Object pair co-occurrence probability distribution of different scenes
in Places365-7classes.

resentation [19]. Sun et al. used the method of spatial fisher
vectors to extract object features from detection network,
and combined the object features with contextual and global
appearance features for scene recognition [20]. Alejandro
et al. combined the semantic features from segmentation
network with backbone features for scene recognition using
an attention module [21]. Pal et al. used detection network
to compute a binary feature vector that represents whether
each object existed in the scene, the binary object vector
is then combined with backbone features for indoor scene
recognition [3]. Zhou et al. used a Bayesian method to
represent the co-occurrence of object pairs for better scene
representation and recognition [22]. Zeng et al. added scene
attributes into image features and patch features at multi-
scale for scene recognition [23]. Although the above men-
tioned methods improved the scene representation ability
and recognition accuracy. These methods are sub-optimal
in terms of constructing object features and relations. As
shown in Fig. 2, the co-occurrence probability of some
coexisting objects, such as bed and lamp, varies significantly
from the bedroom to other scenes. Therefore, learning object
relations and object features well could further improve the
representation ability and recognition accuracy of models.
Inspired by the above observations, we propose a novel one-
stream method called OTS that enables object features and
relations for scene representation and recognition, and our
method outperforms existing methods.

III. METHODOLOGY

We propose OTS for indoor scene representation and
recognition. In OTS, we propose OFAM which enables small
but discriminative objects to determine the final recognition
results. To ensure effective utilization of object features for
scene representation, we propose OAM to learn object rela-
tions based on its attention mechanism and a GRAM to fuse
object features and relations. Fig. 3 illustrates the framework
of the proposed OTS. Given an input image I = (Xi, Yi),
where Xi is the image data and Yi is the corresponding
category, OFAM is used to calculate the object features Xobj

at first. OAM and GRAM are then used to calculate the scene
representation Vobj . Finally, a fully connected layer and the
softmax function are used to calculate the final probability
of each scene P (Y |Vobj).
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Fig. 3. The proposed OTS includes five parts. (a) Segmentation network:
PSPNet is used to calculate the segmentation mask of the input image and
to provide its backbone features Conv4 6 for the next step. (b) OFAM:
the segmentation score map is combined with the Conv4 6 feature map to
form the object features Xobj . (c) OAM: cascaded object attention blocks
in the OAM are used to calculate object relations. (d) GRAM: a large strip
depthwise convolution with the size of the input feature map and a pointwise
convolution are used to aggregate object features and form the final scene
representation vector. (e) Recognition: a fully connected layer is used to
recognize the scene.

A. Object Feature Aggregation Module (OFAM)

The proposed OFAM can extract object features based
on the segmentation network. In this paper, PSPNet that is
pretrained on ADE20k dataset is used as the segmentation
network [24], [25]. Fig. 4 illustrates the proposed OFAM.
OFAM uses Conv4 6 feature map F ∈ RC×N and segmen-
tation score map S ∈ RC

′
×N that obtained from PSPNet

to calculate object features Xobj , where C is the number of
channels, C

′
is the number of objects and N is the number

of feature spatial positions. In this paper, C
′

is set to 150
because of the object number of ADE20K, and C is set to
1024 because Conv4 6 is used. For convenience, we call each
spatial position in F as a unit, the channel values of each
unit form the feature vector U ∈ RC×1 of the unit. The
binary mask M ∈ RC

′
×N of objects is calculated as:

Mi,j =

{
1, if max(Si,1, · · · , Si,C′ ) == Si,j

0, otherwise.
(1)

where i is the unit index and j is the object index. Then, the
object feature vector Oj ∈ RC×1 is calculated as:

Oj =

∑N
i=1 (Mi,j ∗ Si,j ∗ Ui)∑N

i=1 (Mi,j ∗ Si,j)
(2)

where i is the unit index and j is the object index, and N rep-
resents the unit number. Finally, the feature vectors stacked
together to form the object features Xobj ∈ R1024×150.

B. Object Attention Module (OAM)

In addition to object features, relations between objects
are also required to improve scene representation ability and
recognition accuracy. For example, a model will be more
confident about the kitchen label if stove and refrigera-
tor have been detected together. In that case, an attention
mechanism is a good choice since it can capture long-range
dependencies between all objects [26]. However, only global
attention mechanism is suitable for our case because object
features do not include spatial relations.

Self-attention [4] and non-local [5] are one of the most
effective global attention mechanisms where three nodes are
calculated in parallel with 1×1 convolutions and the input
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Fig. 4. Framework of the proposed object feature aggregation module.

feature map. We call the three nodes Query (Q), Key (K),
and Value (V ) for convenience. Q and K are then multiplied
together to calculate the correlation matrix of each unit in the
feature map, and softmax is used to calculate the activation
map. After that, V and the activation map are multiplied
together, and an additional 1×1 convolution is used to
form the final attention. Finally, the attention multiplies a
learnable scale parameter and adds back to the input feature
map to form the output. Fig. 5(b) illustrates the structure
of self-attention and non-local. Although self-attention and
non-local are effective, they can be further improved. For
example, the attention will be more efficient if Q and K
are calculated based on V , because V has fewer channels
compared with input features. Leveraging this insight, we
propose an OAM that consists of cascaded object attention
blocks as shown in Fig. 5(a). Given an input feature map
F ∈ RC×N , V ∈ R

C
2α×N is first obtained using 1×1

convolutions, where C is the channel number, N is the unit
number, α is a factor to control the compression rate and
the output channel number, and V = WvF . Q ∈ R

C
2α×N

and K ∈ R
C
2α×N are then calculated based on V , where

Q = WqV and K = WkV . The object attention is then
calculated as follow:

βQ,K = softmax(QTK) (3)

Attn = concatenate(γ ∗ V βQ,K , V ) (4)

Where γ is a learnable scale parameter that can be updated
gradually. The intuition for why we propose object attention
block is straightforward. Firstly, V is used to refine input
information with fewer channels (512/α) in object attention,
calculating Q and K based on V enables them to perceive

TABLE I
COMPARISON OF THE PROPOSED OBJECT ATTENTION BLOCK,

NON-LOCAL AND SELF-ATTENTION.

Cin Cout CQ CK CV Parm. (M) FLOPs (M)
Self-attention 1024 1024 128 128 512 1.3 211.0
Non-local 1024 1024 512 512 512 2.1 337.6
Object Attention Block 1024 1024 512 512 512 1.1 180.3
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refined input information with half the computational cost.
Secondly, α is used to compress the block and control the
output channel number, the connectivity of Q, K and V
allows them to be automatically compressed proportionally
with the change of α. Thirdly, concatenation mechanism in
object attention avoids using extra convolution and ensures
the later block perceive the refined input information and
attention features separately. Table I compares the com-
putational cost of three methods. It can be seen that our
object attention block is the most efficient of the three
methods under the same input and output channel number
configuration. Our object attention block is also more flexible
because we can adjust α to reduce the computational cost
arbitrarily, and the channel number of Q, K, V , and output
will be changed automatically.

C. Global Relation Aggregation Module (GRAM)

Aggregation of object features is essential for accurate
scene recognition. To solve this problem, we propose a
GRAM that consists of a strip depthwise convolution and
a pointwise convolution as shown in Fig. 6. Given an input
feature map Fin ∈ RC×N , the strip depthwise convolution
first aggregates object features and relations at each channel,
and converts the feature map into Fmid ∈ RC×1, pointwise
convolution is then used to generate scene representation
vector Fout ∈ RC

′
×1 that has higher semantic level. Depth-

wise convolution combined with pointwise convolution is
much more efficient compared with conventional convolution
kernel [27]. The conventional depthwise convolution has
a 3x3 kernel to learn local information in each channel.
However, we aim to aggregate the object features and
relations into a scene representation vector, and learn the
global relation at the same time. Therefore, the conventional
depthwise convolution is not suitable for our case. To solve
this problem, we proposed a strip depthwise convolution,
which operates on a list of object features rather than a patch
of spatial features. The intuition for why we use this is clear.
Firstly, the strip depthwise convolution can convert object
feature map into a representation vector, that is more suitable
for the final recognition layer. Secondly, the convolution is
also able to aggregate the relations between all objects in
each channel. Finally, the convolution is more efficient not
only because of the depthwise characteristic, but also the
avoiding of the use of large amount of fully connected layers.
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Fig. 6. Structure of the proposed global relation aggregation module.

IV. EXPERIMENTS AND RESULTS

A. Implementation Details

Our network is implemented in the Pytorch library [28],
and a single RTX 2080Ti GPU is used in the experiments. We
use the most common settings to implement the experiments
[1]. The batch size for all experiments is set to 256 and cross-
entropy loss is used in our method. We adopt Stochastic
Gradient Descent (SGD) optimizer with the base learning
rate of 0.1 while momentum and weight decay are set to
0.9 and 0.0001, respectively. The learning rate is divided
by 10 every 10 epochs. Training is performed for 40 epochs.
Meanwhile, object features are calculated off-line to increase
the training speed.

B. Places365 Dataset

The reduced Places365 dataset is used in this paper since
it is the largest scene recognition dataset with various indoor
environment categories [29]. To verify the effectiveness of
our method, we used two different class settings of in-
door scenes for a fair comparison with other state-of-the-
art methods. The first one contains 7 classes: Bathroom,
Bedroom, Corridor, Dining room, Kitchen, Living room, and
Office. We extract both training data and test data from
the target 7 classes in Places365 and form the Places365-
7classes, the class setting is totally the same as [3]. The
second one includes 14 indoor scenes in home environment:
Balcony, Bedroom, Dining room, Home office, Kitchen,
Living room, Staircase, Bathroom, Closet, Garage, Home
theater, Laundromat, Playroom, and Wet bar. We also extract
both training data and test data from the target 14 classes in
Places365 and form the Places365-14classes, the class setting
is totally the same as [19].

C. SUN-RGBD Dataset

SUN-RGBD is one of the most challenging datasets
for scene understanding [30], which includes images from
various sources: 3784 images captured by Kinect v2; 1159
images captured by Intel RealSense cameras; 1449 images
from NYU Depth V2 [31] and 554 manually selected realistic
scene images from Berkeley B3DO [32] captured by Kinect
v1; 3389 selected frames by filtering out significantly blurred
frames from the SUN3D videos [33] captured by Asus
Xtion. The diversity of categories and sources makes SUN-
RGBD more suitable for verifying the generalization ability
of methods. We only consider the RGB images in this work,
and the 7 classes that chosen in Places365 are used to test



TABLE II
SCENE RECOGNITION ACCURACY ON THE PLACES365-7CLASSES.

[1] [3] Our

Category ResNet18 ResNet50 Scene Obj. Scene+Obj. OTS
Bathroom 87 94 92 65 91 92
Bedroom 82 83 90 74 90 97
Corridor 96 93 94 90 96 95
Dining room 81 71 79 94 79 88
Kitchen 83 84 87 62 87 92
Living room 55 66 84 25 80 79
Office 79 88 85 29 94 88
Avg. Acc. (%) 80.4 82.7 87.3 62.6 88.1 90.1

our model’s generalization ability. Notably, we only used
the official test images in SUN-RGBD, and these images are
evaluated by the model trained using Places365-7 classes.

D. Main Results

To evaluate the effectiveness of the proposed OTS,
we compare it with other benchmark methods on the
Places365-7classes, Places365-14classes and reduced SUN-
RGBD datasets. As shown in Table II, OTS significantly
outperforms the ResNet50 baseline with 7.4% on Places365-
7classes which shows the effectiveness of OTS. Moreover,
OTS has 2% higher accuracy than [3] with only one stream.
[3] used a detection network to calculate one-hot object ex-
istence features, and added an additional stream to calculate
auxiliary image features.

To verify the generalization ability of OTS, we further test
OTS on SUN-RGBD. It is noteworthy that SUN-RGBD is
just used as a test set to verify the generalization ability of
models, and all models are trained using Plces365-7classes.
As shown in Table III, OTS achieves the highest accuracy
compared with other methods on SUN-RGBD. The results
demonstrate the generalization ability of OTS.

We further compare OTS with [19] on the larger
Places365-14classes. [19] used a segmentation network to
calculate Word2Vec features, and added an additional stream
to calculate image features. As shown in Table IV, our OTS
is 2.2% higher than [19] without any additional streams. The
results show the effectiveness of our method. Better segmen-
tation models have the potential to improve the performance
of OTS, but they are not the focus of this work. In addition
to evaluating the benchmark datasets, we also inference OTS

TABLE III
SCENE RECOGNITION ACCURACY ON THE SUN-RGBD.

Source Method 1 Stream 2 Stream Acc. (%)

[1] ResNet18 X 63.3
ResNet50 X 67.2

[3]
Scene X 66.8
Obj. X 53.6
Scene+Obj. X 70.1

Our OTS X 70.6

TABLE IV
SCENE RECOGNITION ACCURACY ON THE PLACES365-14CLASSES.

Source Method 1 Stream 2 Stream Acc. (%)

[1] ResNet18 X 76.0
ResNet50 X 80.0

[19] ResNet50+Word2Vec X 83.7
Our OTS X 85.9

TABLE V
ABLATION STUDIES ON EACH MODULE.

ResNet50 OFAM OAM GRAM Acc. (%)
X 80.0
X X 77.2
X X X 82.0
X X X X 85.9

in a real-world office environment, which can be found in
our video supplement files.

E. Ablation Experiments

We run ablation experiments to analyze the results of
our method. Unless specified otherwise, the dataset used in
ablation experiments is Places365-14classes since it is larger
and contains more categories. We firstly run an ablation
experiment to show the effectiveness of each module. As
shown in Table V, both OAM and GRAM significantly
improve the scene recognition accuracy because of the ability
to capture the long-range dependencies between all objects.
Meanwhile, only adding OFAM degrades the performance of
the model because ResNet50 uses the features of Conv5 layer
but OFAM extracts the object features from Conv4 layer as
shown in Fig. 3, which means the performance gains of our
method rely on the object relation construction instead of the
backbone features of the pre-trained segmentation model.

1) Number of object attention blocks: As stated in Section
III-B, OAM is built based on one or several cascaded object
attention blocks. Therefore, we run ablation experiments to
find how many object attention blocks is the optimal choice
to balance efficiency and effectiveness. Unless specified
otherwise, the α of the first object attention block is 2
and the α of the second object attention block is 0.5 to
control the output channel number. Before that, we first
verify the difference between using summation (SUM.) and
using concatenation (CAT.) in the last step of object attention
blocks. The experiment results are shown in Table VI. It
can be seen that using concatenation in object attention
blocks is both more efficient and effective compared with
using summation. This is because simple summation cannot
perfectly fuse object features and object relation features
together, but concatenation can store both types of features
separately. Then, we use concatenation in object attention
blocks to find the optimal number of blocks. As shown in
Table VII, we list the results as well as FLOPs obtained
with different number of object attention blocks. It can be
seen that when two object attention blocks are cascaded,
OTS has the best accuracy 85.9%. However, adding more
object attention blocks exert an adverse impact on the results
because these blocks make the model too complicated.

TABLE VI
ABLATION STUDIES ON THE COMBINATION METHODS IN THE PROPOSED

OBJECT ATTENTION BLOCK (OAB).

Num. SUM. CAT. Acc. (%) Parm. (M) FLOPs (M)
OAB 1 X 85.0 0.4 70.5
OAB 2 X 85.2 1.8 321.3
OAB 1 X 85.4 0.4 70.5
OAB 2 X 85.9 1.2 211.5
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TABLE VII
ABLATION STUDIES ON THE NUMBER OF THE PROPOSED OBJECT

ATTENTION BLOCK (OAB).

Num. Acc. (%) Parm. (M) FLOPs (M)
OAB 1 85.4 0.4 70.5
OAB 2 85.9 1.2 211.5
OAB 3 85.0 1.4 262.3
OAB 4 85.0 1.7 313.2

TABLE VIII
ABLATION STUDIES ON THE OBJECT ATTENTION BLOCK (OAB),

NON-LOCAL, AND SELF-ATTENTION.

Acc. (%) Parm. (M) FLOPs (M)
Non-Local [5] 82.3 4.2 675.2
Self-Attention [4] 84.7 2.6 422.0
Object Attention Block 85.9 1.2 211.5
Object Attention Block (S) 85.4 0.4 70.5

2) Object attention block vs Self-attention and Non-local:
We have shown the effectiveness of OAM in Table V.
In addition, We run an ablation experiment to show the
effectiveness and efficiency of the proposed object attention
blocks in OAM. As shown in Table VIII, the accuracy of
the proposed object attention block has an improvement of
1.2% compared with self-attention, and an improvement of
3.6% compared with non-local. What is more, the proposed
object attention block has the least FLOPs compared with
others under a similar condition. The object attention block
(S) means only one object attention block is used in OAM.

3) Global relation aggregation module (GRAM): We set
two kinds of control groups to show the effectiveness of
the proposed GRAM. In the ablation experiment, fully con-
nected layer and Pooling layer are used to replace GRAM,
separately. As shown in Table IX, GRAM obtained the best
accuracy with only 2.3M parameters. It is noteworthy that
FC in Table IX is equal to a large conventional convolution
kernel with the size of input feature map. FC not only has
more computational cost, but also has inferior performance
compared with the proposed GRAM. The results indicate
that GRAM can balance efficiency and effectiveness well.

4) Failure cases: During experiments, we find that
ResNet50 misclassified many common images. However,
OTS successfully recognized the common images in scenes
because it can detect the objects and learn their relations

TABLE IX
ABLATION STUDIES ON THE GRAM.

Acc. (%) Parm. (M) FLOPs (M)
FC 85.0 314.6 314.6
Max & Avg. Pooling 82.0 0 0.3
GRAM 85.9 2.3 2.3

in each scene. Then, we analyze the failure cases of OTS
to demonstrate the pros and cons. As shown in Fig. 7,
OTS misclassified some images in each scene mainly caused
by the missed or wrong detection. For example, kitchen is
misclassified as bathroom because the pot is mistaking for
a toilet, and office is misclassified as corridor because only
wall, painting, ceiling, floor, and light are detected, which
are the common coexisting objects in corridor. Therefore,
the performance of OTS could be further improved with the
help of more accurate segmentation results.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the weakness of existing scene
representation and recognition methods, and proposed OTS
to solve these issues. We further demonstrated that OTS can
effectively use object features and relations for scene repre-
sentation and recognition by comparing OTS with other ex-
isting state-of-the-art methods. Based on numerous ablation
experiments, we also showed that OAM and GRAM perform
well in learning object relations for scene representation.
Moreover, the results of our work reflect several interesting
conclusions: 1) object features can perform well as long as
an appropriate object feature and relation learning method
is used; 2) the backbone features in segmentation network
can also be used for scene recognition instead of adding an
additional stream to calculate; 3) attention mechanism is very
suitable for computing object relations. We hope these results
could guild future works for scene understanding. What is
more, our work can also be promoted in the future. First of
all, data augmentation methods can be used to extract more
diverse object features during training. Secondly, enriching
the number of object categories can offer a better scene
representation, and thus improve scene recognition ability
of the model. In the future, we plan to extend our methods
to other mobile robots and establish more accurate semantic
maps. Therefore, they can be better used to improve human’s
life quality.
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