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Abstract— Scene recognition is a fundamental task in robotics
perception. For human beings, scene recognition is reasonable
because they have abundant object knowledge of the real-
world. The idea of transferring object knowledge from humans
to scene recognition is significant but still less exploited. In
this paper, we propose to utilize meaningful object represen-
tations for indoor scene representation. First, we utilize an
improved object model (IOM) as a baseline that enriches
the object knowledge by introducing a scene parsing algo-
rithm pretrained on the ADE20K dataset with rich object
categories related to the indoor scene. To analyze the object
co-occurrences and pairwise object relations, we formulate
the IOM from a Bayesian perspective as the Bayesian ob-
ject relation model (BORM). Meanwhile, we incorporate the
proposed BORM with the PlacessCNN model as the com-
bined Bayesian object relation model (CBORM) for scene
recognition and significantly outperforms the state-of-the-art
methods on the reduced Places365 dataset, and SUN RGB-D
dataset without retraining, showing the excellent generaliza-
tion ability of the proposed method. Code can be found at
https://github.com/FreeformRobotics/BORM.

I. INTRODUCTION

Scene understanding is a fundamental cognition ability for
the robot to conduct the task in an unknown environment.
To make the robot the part of family life, such as family
members like dogs or cats, the most fundamental problem is
to know where the robot is. There is an increasing need to
equip the robot with the scene recognition ability. e.g., the
ability to locate itself semantically, to known which room
it is located, such as the living room or a bedroom, or a
kitchen.

Knowing the information about the current environment is
quite essential for robots to make more intelligent actions.
Fortunately, scene recognition has been an important research
area among computer vision and robotics for decades. There
have been many scene recognition algorithms proposed that
using visual information for scene understanding. Liu et al.
[1] [2] propose a color and geometric features based adaptive
descriptor for scene recognition. Also, indoor scenes can be
characterized by global spatial features [3]. However, these
methods are based on the traditional lower-level features,
which are not accurate enough, and not interpretable at the
semantic level.
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Fig. 1. The left part of the figure shows the input image and the corre-
sponding scene parsing result. We have conducted a Bayesian probabilistic
analysis using the BORM on the Places365-14 dataset. The middle part
shows the conditional probability of P(scene|object), and the top 6 scene
given the object “bed” and “lamp” are presented, respectively. The right part
shows the joint conditional probability of P(scene|(object,object)), and
the top 6 scene given the object pair (bed, lamp). As observed from the
figure, the proposed BORM suppresses the probability of scene-common
object pairs while highlights the probability of the scene-specific object
pairs.

Recently, many deep learning based methods have demon-
strated impressive performance over various computer vision
tasks. For example, ResNet has been shown a convincing
ability in image classification tasks for years [4]. However,
the classification of the image using ResNet is like using
a black box to interpret the image, which is not really in
an interpretable manner. Chen et al. [5] consider the word-
embedding model to reformulate the scene understanding
problem in a more semantic meaningful perspective. The
output of ResNet module, object detection module, and
scene parsing module have been encoded in the one global
vector for scene understanding. However, the performance
of the word embedding method is just slightly higher than
ResNet, as reported. Besides, there are three streams used
for scene recognition, which is relatively inefficient. The
utilization of semantic information for scene recognition is
important. To model the descriptors probabilities, a Bayesian
filtering method is proposed [6], but the object information
is not explicitly used. To use the object information, a object
classifier is used to classify low-level visual features to
objects [7], while the relation among objects is not exploited.
To utilize the object relation for scene recognition, spatial
object-to-object relation is studied for RGB-D scene recog-
nition [8]. Besides, a Long Short-Term Memory modeling
method is proposed to investigate the object relation with
ROI selection [9]. To utilize the object information in the
scene, the object model [10] is proposed as complementary



semantic information of the scene combined with ResNet
to better interpret the given scene. However, using only the
object vector might not be discriminative enough for scene
understanding [11]. A Object-to-Scene model is proposed,
where the object features and object relation are learned
by object feature aggregation module and object attention
module [12], respectively. Overall, these above-mentioned
method lack the statistically analysis of object distribution
in the scene. Specifically, there are some common objects
across various scene and specific objects only appear in the
specific scene. Therefore, the Bayesian object relation model
is proposed for improving the accuracy of scene recognition
by highlighting the non-discriminative objects while pre-
serving the discriminative objects for scene understanding
[13]. However, all of these methods neglect the probabilistic
relation among object pairs, which contains an essential
message for scene recognition.

In this paper, we consider the probabilistic relation be-
tween the object pairs as shown in Fig. 1. We can observed
that there is a high probability of the object pair appear in the
specific scene, e.g., the bed and lamp is most likely (75.2%)
appeared in the bedroom, and can be regarded as a scene-
specific object pair.

To utilize this conditional object pair relation w.r.t the
various scene, we propose the Bayesian object relation model
(BORM) that derives the joint conditional probability of the
object pairs given the various scene. With the BORM, the
joint conditional probability of the scene-specific object pairs
will be enhanced and the joint conditional probability of
scene-common object pairs will be suppressed.

In summary, our main contributions of this paper are as
follows:

o We utilize an IOM as baseline, based on scene parsing
algorithm pretrained on ADE20K dataset that contains
more relevant object classes for indoor scene represen-
tation. Surprisingly, the IOM surpasses the object model
over 20.5% accuracy on average.

o Meanwhile, To conduct an in-depth study of object pair
relations, we propose a Bayesian object relation model
(BORM) that enhances the scene-specific object pair
relation and suppresses the scene-common object pair
relation in a Bayesian probability manner for indoor
scene representation.

e We combine the proposed BORM and the PlacesCNN
model as CBORM, which significantly outperforms
the state-of-the-art methods on the Places365-7 and
Places365-14 dataset over 2.0% and 2.1% accuracy, and
SUN RGB-D dataset over 2.0% without retraining the
model, showing the excellent generalization ability of
the proposed method.

The rest of the paper is organized as follows. Section II
introduces the related work of scene recognition and object
knowledge for indoor scene representation. Section III de-
scribes IOM that pretrained on ADE20K with 150 categories
based on the scene parsing algorithm, and the BORM that
conduct an in-depth study of object relation in a Bayesian
perspective. In Section IV, we discuss the PlacesCNN model

for scene recognition. Moreover, we combine the proposed
BORM and the PlacesCNN model as the CBORM for scene
recognition. Section V shows the experimental settings and
results, and numerical experiments have been conducted to
verify the effectiveness of our proposed method. Finally,
the conclusions and future directions are pointed out in
Section VI.

II. RELATED WORK

In this section, we review the research works related
to our paper in two aspects: scene recognition, and object
knowledge from object detection or scene parsing algorithm
for indoor scene representation. We also discuss the differ-
ences and connections between these related works and our
method.

A. Scene Recognition

Scene recognition has been an important research problem
in robotics area for decades, which can be utilized for
topological map construction and mobile robot localization
[1] [2] [14]. Moreover, it has the potential to be applied
for robot to perform efficient recognition of functional areas
[15], identification of the person [16], and execute task
accordingly. The early methods, mainly focus on extraction
of local features like color descriptors [2] [17]. To better
recognize indoor images, the combination of local and global
features are utilized [3]. However, these methods only cap-
tures lower-level features of the scene while the high-level
semantic structures are difficult to capture [18].

To utilize the high-level semantic information, some meth-
ods propose to leverage the mid-level concepts. e.g., Zhou
et al. [19] [20] propose a CNN based classifier to learn deep
features for scene recognition on the Places Dataset. Liao et
al. [21] use deep learning with a multi-task training method
that incorporate both semantic segmentation and scene recog-
nition tasks. Zhu et al. [18] propose a discriminative multi-
modal feature fusion framework for scene recognition. How-
ever, these methods neglect the critical object information for
scene recognition.

To incorporate object information, Li et al. [22] represent
images by using objects appearing in them as object bank
(OB) method. Brucker et al. [23] counts the co-occurrence
frequencies as potentials in conditional random field for
scene labeling. In DEDUCE [10], one hot object vector is
used as complementary information for scene recognition,
where the object information is separately considered. In
context based Word Embeddings [5], there are three streams
for scene recognition, one stream is the scene parsing model
pretrained on ADE20K, the other is ResNet50 pretrained
on reduced Places365 dataset, and a Word Vectors Module
computes the content of two modules and refines the results.
Song et al. [24] considers spatial object-to-object relations
with the intermediate (object) representations. In Semantic-
aware method [25], the image representation and context
information are combined, where context information con-
sists of scene objects and stuff, and their relative locations.
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However, all of these methods have not considered the prob-
abilistic relation of the object pairs given the various scene.
In this work, we consider the object pair co-occurrences
given various scene in a Bayesian Perspective with proposed
Bayesian object relation model (BORM). To the best of our
knowledge, in the scene recognition task, the object relation
modeled in a probabilistic perspective is less exploited.

B. Object Knowledge for Indoor Scene Representation

Recently, object detection is a popular research area in
computer vision, thanks to the emerging of the large-scale
labeled data and advanced GPUs. Many excellent algorithms
have been developed for object detection like the one-stage
object detector, YoloV3 [26], SSD [27] and two-stage object
detector, like Joint SSD [28], Faster R-CNN [29], Mask
RCNN [30], Cascaded RCNN [31]. The one-stage detector
has a higher speed while maintain the similar performance
compared with two-stage detector, therefore, the YoloV3 is
adopted as the part of object model in DEDUCE [10]. To
incorporate the object knowledge for scene understanding,
the object detection algorithm is first pretrained on the public
available dataset. There are several mainstream dataset for
object detection. PASCAL VOC [32] contains 20 categories
of objects, which is very limited, and most labels are like
car, bus, bicycle, airplane, and all of these are not relevant to
indoor scene representation. To better represent indoor scene,
DEDUCE use the YoloV3 pretrained on the MS COCO
dataset [33], which contains 80 object categories. However,
the half of objects in MS COCO are outdoor objects like
giraffe, elephant, which are not relevant to indoor scene
representations.

Scene parsing algorithm is used to segment objects and
stuff in the still image, which has demonstrated surprisingly
performance recently [34]. Zhou et al. [35] propose a scene
parsing algorithm to detect a wide range of object and stuff
in the pixel level with ADE20K Dataset, which contains
150 classes of object knowledge in pixel level. To utilize
the rich object knowledge of the ADE20K Dataset, we
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A variations of improvements over the object model, where blue and red arrow shows the flow of the IOM and BORM, respectively.

adapt the scene parsing model pretrained on the ADE20K
dataset as the improved object model (IOM), which shows
a significantly improvements over the OM pretrained on the
MS COCO dataset.

III. BAYESIAN OBJECT RELATION MODEL

In Section III, we present the object models IOM and
BORM, as shown in Fig. 2. Since the object model pro-
posed in Deduce [10] only contains information about few
categories of objects pretrained on the MS COCO dataset,
which is very limited for indoor scene recognition because
most of the object categories are not relevant to indoor scene
representation. e.g., the object categories of elephant and
giraffe from the super-category of animal, airplane and bus
from the super-category of vehicle, traffic light and stop
sign from the super-category of outdoor, and so on. In total,
there are half of the objects can be categorized as outdoor
objects. We believe that if the object model possesses the
more rich and relevant object knowledge about the scene,
the better performance of scene recognition can be obtained.
Therefore, we propose the IOM pretrained on the ADE20K
dataset with rich and relevant object categories for indoor
scene representation. To consider the probabilistic relation of
object pairs, we assume some object pairs are scene-specific,
and some object pairs are scene-common. To this end, we
propose a novel BORM that highlights the scene-specific
object pairs while suppresses the scene-common object pairs
from a Bayesian probabilistic perspective.

A. Improved Object Model (IOM)

Different from the basic OM that only have 80 objects
information of environment based on the YoloV3 pretrained
on the MS COCO dataset, we propose the IOM based on the
scene parsing algorithm pretrained on ADE20K [34] dataset
that convert the output the scene parsing algorithm to an
object vector Xjom—150 With 150 dimensions where the 1
means the detected objects, while 0 means the objects are not
in the given image. Compared with the OM, we now have a
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Fig. 3.  The BORM contains the discriminative value of object pairs.
We have conducted statistical analysis on the Places365-7 dataset. The
top figure shows the p(scene|(bed, curtain)), the probability distribu-
tion of object pair (bed, lamp) over the seven indoor scenes, and the
standard deviation is 0.30, which means the (bed,curtain) is a dis-
criminative object pair for indoor scene recognition. The bottom figure
shows the p(scene|(wall, floor)), the probability distribution of object
pair (wall, floor) among seven indoor scenes, which are almost the same.
The standard deviation is 0.01, which indicates the (wall, floor) is a non-
discriminative object pair for indoor scene recognition, because this object
pair appears in every scene equally.

new scene representation of 150 dimension X;om—150. The
new scene representation Xjom—150 Will be fed to a two-
layer fully connected network for classification with the size
of 32 and the number of scenes, respectively.

B. Bayesian Object Relation Model (BORM)

Instead of using one hot object vector as the feature
representations for the scene, which lacks the probabilistic
relation between different object pairs, we propose a novel
BORM method that measures the probabilistic relation of
object pairs in a Bayesian perspective. The scene recognition
problem is shaped by the fact that a few object pairs are
scene-common, but most object pairs are scene-specific.
As observed in Fig. 3, the probability of scene-specific
object pair (bed, curtain) and scene-common object pair
(wall, floor) are presented.

The scene-specific object pairs indicate the object pairs
that have a high probability at a particular scene and have low
probability at others. e.g., the object pairs like (bed, curtain)
tend to be scene-specific, which means their probability
p(scenel|(bed, curtain)) can be quite distinctive among the
various scene categories and has the highest probability that
appears in the bedroom. Therefore, they have a large standard
deviation (0.31). In contrast, scene-common object pairs
distributed at various scenes with a similar probability. e.g.,
the common object pairs like (wall, floor) frequently appear
in many different scenes, which means their joint conditional
probability p(scene|(wall, floor)) is quite similar across
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Fig. 4. The Bayesian object relation matrix of first 20 objects. e.g.,
the (bed, curtain) is the scene-specific object pair, in which will mostly
leading to the bedroom, while (wall, floor) forms the scene-common
object pair because it is appear in everywhere with almost same probability.

various scenes, i.e., they have an extremely small standard
deviation (0.01) compared with those scene-specific object
pairs.

We adopt a pipeline to estimate the posterior probability
P(cjlon, 0;). First, we use the Places365-7 and Places365-
14 dataset for learning the BORM statistically with only
the training set, while testing on the SUN RGB-D dataset,
where the probability distribution is regarded similar to the
Places365-7 dataset.

Given a set of images I.; from a scene category c;, the
conditional probability of object o; appears on the scene c;
is:

P (oilcj) = No, /N1,
S [LNobjs]aj S [LNscenes]

where NN, is the total number of i-th object o; appears in
ch and NV, I., is total number of images of ICJ.. Meanwhile,
where Nopjs, and Nscenes represent the number of objects
in the pretrained model and number of scene categories
we have in the dataset respectively. Assume the statistical
independence of each object, we obtain the joint conditional
probability P (op, 0;|c;) of oy, and o; appear in the scene ¢;:

(D

P (on,0ilcj) = P (onlcj) P (oilc))

. . (2)
h77’ € [laNobst] € [17Nscenes]

The P(c;j|on,0;), the posterior probability of scene class
¢ given an object pair (op, 0;), can be derived by the Bayes
Rule and Law of Total Probability.

P (on, 0ilc;) P (c;)
P(op,0;)
_ Plowolde) P(e)) @

>, P (on,0il¢;) P(c;)

P (cjlon,0:) =
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The proposed combined Bayesian object relation model (CBORM) contains two streams. The first stream with the red arrow is the proposed

BORM that utilizes the scene parsing algorithm for scene segmentation. The second stream with the black arrow is the PlacesCNN model for feature
extraction with the ResNet backbone network. The output of the BORM will first be converted to a discriminative object feature. Meanwhile, the results
of the BORM and feature extraction result of PlacesCNN will be concatenated as one combined scene feature and fed to the two-layer FC network for

scene classification.

where the P(c;) is the probability of scene ¢; in the
dataset, and Zjvzs‘ie"“ P(c;) = 1. We construct the posterior
probability matrix P(c;|o,0) by calculating relation of each

object pairs:

P (cjlo1,01) P (cjlo1,0k) P (cjlo1,0n)

P (cjlo,0) = | P(cjloj,01) P (cjloj, or) P (cjloj,on)

P (cjlon,01) P (cjlon, o) P (cjlon,0n)

First, the posterior probability P(c;|on,0;) is calculated.
To calculate the discriminative value of the object pairs,
the standard deviation is applied to posterior probabilities
among scene categories, denoted as std(P(c;|op,0;)). The
discriminative value of the posterior probabilities among
scene categories is defined as dis(op, 0;):

dis (0n,0;) = stdeet,... Nooone. (P(cjlon, 0:))  (5)

The dis(op,0;) is the discriminative value for measuring
the discriminalibility of the object pair to the scene cate-
gories. Instead of using object vector as the feature represen-
tations for the scene, which dismiss the relationship between
different objects, we first construct an object relation matrix
Xorm = XiomXij;m for representing the given scene. The
value of Xoprm Will be replaced by the discriminative value
dis(op,0;) at the same position. Therefore, the Bayesian
object relation matrix is obtained by element-wise matrix
multiplication, Xporm = Xorm * dis(on, 0;), with the size
of 150x150. After that, the matrix will be stretched to a one
dimensional vector with the size of 22500x1, and will be fed
into the three-layer fully connected network with the size of
8192, 2048, and number of scene classes.

As shown in Fig. 4, the discriminative matrix of the first
20 object pairs are displayed. The (bed, curtain) is a scene-
specific object pair that mostly appear in the bedroom, and
they form a discriminative object pair with a discriminative
value of 0.30. The (wall, floor) is a common object pair ap-
pear everywhere and have an extremely small discriminative
value of 0.01, which means they form a non-discriminative
object pair.

IV. CBORM MODEL

A. PlacesCNN Model

In order to obtain the scene representation, we use the
PlacesCNN model [20] with the base architecture ResNet [4]
as a backbone network, which is pretrained on the ImageNet
[36] dataset. There are two versions of ResNet according to
the settings in DEDUCE [10] and Word2Vec [5]. ResNet18
is used for Places365-7 and SUN RGB-D dataset, while
ResNet50 is used for Places365-14 dataset. Specifically, we
preserve the output of ResNetl8 with 512 dimensions or
ResNet50 with 2048 dimensions, namely Fiqqp., the feature
of the PlacesCNN model for the scene representation.

B. Combined Model

The Bayesian object relation matrix of the BORM is with
the size of 150x150, which is first stretched to a vector of
size 22500x1. The vector of BORM will be fed into the two
fully connected layers and an discriminative object feature
Fporm with 512 dimensions (for Places365-7) or 2048 (For
Places365-14) will be the feature representation of BORM.

Meanwhile, we combine the PlacesCNN model of the
ResNet backbone with BORM, as the combined Bayesian
object relation model (CBORM).



TABLE I
DATASET SPLIT SETTING, WHERE THE NUMBER OF TRAINING SET AND
NUMBER OF TEST SET ARE LISTED BELOW.

Dataset Training Test
Places365-7 35000 701

Places365-14 | 75000 1500
SUN RGB-D | 35000(from Places365-7) | 2077

C. Combined Classifier

For the Places365-7 dataset, there are two streams. To fair
compare with the object model [10], one stream is based on
ResNet18 pretrained on the Places365 and finetuned on the
Places365-7 dataset. The other stream is BORM. The feature
representations of ResNet18 and BORM will be concatenated
and fed into a two-layer FC network with a dimension of 512,
and 7 respectively.

Similarly, for the Places365-14 dataset, there are two
streams. To fair compare with the word-embedding [5]
model, while one stream is ResNet50, and the other is
BORM. The feature representations of ResNet50 and BORM
will be fed into a two-layer FC network with a dimension
of 512, and 14 respectively.

V. EXPERIMENTAL RESULTS
A. Experimental Settings

We evaluated the proposed models on reduced SUN RGB-
D and Places365 dataset. To be noticed, aim to investigate
the generalizability of our model, we evaluate our model pre-
trained on Places365-7 dataset on the SUN RGB-D dataset
without retraining it. We’ll introduce the implementation de-
tails and training procedure and different experiment settings.

1) Implementation Details: For the PlacesCNN model,
ResNet18 or ResNet50 architecture is adopted in our experi-
ment for ablation study. The optimizer used is the Stochastic
Gradient Descent (SGD) with an initial learning rate of 0.01,
the momentum of 0.9, and the weight decay of 0.0001.
We decrease the learning rate 10 times every 10 epoch,
and every time when updating the learning rate, we reload
the parameters which have the best accuracy before this
timestamp. The total number of epoch during training is
40. To be noticed, we use the training sets of Places365-7
and Places365-14 dataset for learning the BORM statistically,
while testing on the SUN RGB-D dataset, where the BORM
is the same as the Places365-7 dataset.

2) Dataset Settings:
Places365 Dataset: In this paper, we use the reduced
Places365 [20] dataset to test our methods, since it is the
most largest and challenging scene classification dataset
yet, and it contains broad categories in the indoor environ-
ment. In the experiment, we only consider the indoor scene
recognition. There are two different settings on the reduced
Places365 dataset. The one is Places365 with 7 classes
includes Corridor, Dinning Room, Kitchen, Living Room,
Bedroom, Office, and Bathroom, denoted as Places365-7.
The test set setting is the same as the official dataset and
described in [10]. In addition, we use the reduced Places365

with 14 indoor scenes in Home environment includes Wet
bar, Home theater, Balcony, Closet, Kitchen, Bedroom, Play-
room, Laundromat, Bathroom, Living Room, Home office,
Dining room, Staircase, and Garage denoted as Places365-
14. The dataset splitting follows the same setting as described
in [5]. The dataset splition can be seen from Table. I.

SUN RGB-D Dataset: SUN RGB-D dataset [37] is a
challenging dataset for scene understanding that contains not
only RGB images but also depth information of each image.
It contains 3784 images collected by Kinect V2 and 1159
collected by Intel RealSense. Moreover, it incorporates 1449
images from the NYUDepth V2 [38], and 554 images from
the Berkeley B3DO Dataset [39], both captured by Kinect
V1. Finally, it takes 3389 manually selected distinguished
frames without significant motion blur from the SUN3D
videos [40] captured by Asus Xtion.

In our experiment, we mainly consider the indoor envi-
ronment understanding. Therefore, we use the reduced SUN
RGB-D dataset includes Office, Kitchen, Bedroom, Corridor,
Bathroom, Living room, and Dining room, where the test
set split is the same as the official dataset. There are 3741
RGB images in total for testing. And we test our model
pretrained on the Place365-7 on SUN RGB-D dataset without
retraining.

B. Experimental Results

1) Effect of Object Knowledge: As illustrated in Fig. 6, a
group of ablation studies have been conducted for evaluating
the effect of object knowledge to indoor scene recognition
on the Places365-14, Places365-7, and SUN RGB-D dataset,
respectively. The x-axis represent the number of object infor-
mation IOM have about the indoor scene and is added by 20
from 90 to 150 sequentially selected from the vector. Plus,
IOM-80 is the baseline accuracy. Obviously, as the number
of object information increases, the much better scene recog-
nition accuracy is achieved, e.g., on the Places365-14 dataset,
the IOM-150 reaches 74.1% accuracy, which is 10.0% higher
than IOM-80. This improvement shows the number of object
information is proportional to scene recognition accuracy.
Moreover, the comparison experiments between the IOM
and OM on three datasets, shows an average of 20.5%
improvements can be achieved. After analyzing the object
categories of OM pretrained on the MS COCO, we observed
there are only half of the object categories are related to
indoor scenes. In contrast, the other half is related to outdoor
scenes. Therefore, the relevance of object categories of object
model with the scenes is essential for scene recognition, e.g.,
the information of elephant and giraffe in OM will not be
valuable for indoor scene recognition. Similarly, the bus and
train are not beneficial to indoor scene recognition.

2) Analysis of BORM: We conduct experiments for
BORM and IOM in the reduced Places365-7 dataset, and
results are displayed in Table II. The experiment results show
the BORM and IOM model has an advantage over the OM
and yields an average accuracy of 83.1% and 82.4%, sur-
passing the OM model about 20% accuracy. The experiment
result proves that with more object knowledge about the sur-
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Fig. 6.  Ablation study of improved object model (IOM) with different
number of object knowledge ranging from 80 to 150 categories as shown
in horizontal axis. The vertical axis shows the accuracy on percentage.

rounding environment, the greater scene recognition accuracy
can be reached. Then, we test the model pretrained on the
Places365-7 dataset on the SUN RGB-D test set, and similar
conclusion can be drawn. Moreover, the BORM outperforms
the IOM with 0.7% and 1.1% accuracy on the Places365-7
and SUN RGB-D dataset, respectively, which validates the
knowledge of the co-occurrences between object pairs and
their probabilistic relation forms an important indoor scene
representation.

Similarly, in the Table III, we have conducted experiments
on the reduced Places365-14 dataset, and experiment results
show the IOM and BORM tremendously improves the per-
formance over OM with 27% accuracy. The results suggest
the effectiveness of BORM and IOM over the OM especially
when the number of scene classes of dataset is large.

TABLE 11
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE
REDUCED PLACES365-7 DATASET AND SUN DATASET OF SCENE
RECOGNITION ACCURACY

Method Config Acc(Places365-7) Acc(SUN)
ResNet18 80.4 63.3
PlacesCNN 1201 | ReiNets0 82.7 67.2
Dop; (OM) 62.6 53.6
Deduce [10] Pscene 87.3 66.8
Deomp. 88.1 70.1
IOM 82.4 68.1
Ours BORM 83.1 69.2

[ TCBORM ~ ~ ~ ~ 900 ~ =~ = "721%
TABLE IIT

COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE
REDUCED PLACES365-14 DATASET OF SCENE RECOGNITION
ACCURACY, THE * INDICATES THE RE-IMPLEMENT OF THE

METHOD.

Method Config Acc
ResNet18 76.0
PlacesCNN [20] ResNet50 80.0
Word2Vec [5] ResNet50+Word2Vec 83.7
*Deduce [10] Dop; (OM) 47.0
IOM 74.1
Ours BORM 74.9

[~ 7 CBORM ~ =~ ~ 88

3) Performance Comparison: As shown in Table II, we
conduct the ablation study of using only the BORM model
and the CBORM model. We found the CBORM yield an
average accuracy of 90.1%, which greatly outperforms the
ResNet18 and ResNet50 of PlacesCNN baselines about 10%
and 8% respectively. Meanwhile, CBORM outperforms the
BORM with 7% accuracy and 4% on the Places365-7 and
SUN RGB-D dataset, respectively.

In comparison with the state of the art, Table II shows
that the combined improves the scene recognition by 2.0%
in the reduce Places365-7 dataset. Also, as shown in Table
111, the CBORM improve the recognition accuracy by 2.1%
in the reduced Places365-14 dataset. Both results show the
combined model achieves comparable results to some recent
approaches that use the word-embedding method to extract
the semantic meaning of the environment, or use the com-
bination of scene and object representations for better scene
understanding. Surprisingly, Table II shows the performance
of our method over the method in [10] with 2%, showing
the excellent generalization ability of CBORM over other
methods on the Reduced SUN RGB-D dataset.

These results demonstrate that CBORM is successful in
recognizing the scene images with a competitive accuracy.
This improved effectiveness of CBORM over the state-of-
the-art justifies our reasonable assumption that relation of
object pairs is an essential complementary information for
indoor scene recognition.

VI. CONCLUSION AND FUTURE WORK

In this paper, we aim to transfer object knowledge from
humans to indoor scene recognition. First, we propose the
IOM that with rich and relevant object categories for indoor
scene representation. Besides, inspired by the nature of
scene-common and scene-specific object pairs, we establish a
BORM that obtains the probabilistic relations among object
pairs given various scene, where the probability of scene-
specific object pairs will be enhanced and the probability
of scene-common object pairs will be suppressed. Moreover,
we utilize the PlacesCNN model with ResNet as a backbone
network for classification, which demonstrates a substantial
result on the scene understanding. Hence, we combine the
PlacesCNN and proposed BORM as CBORM for a more
interpretable scene recognition algorithm, and experiment
results show our proposed method significantly outperforms
the state-of-the-art methods.

In the future, we plan to integrate our algorithm to
real robots like mobile robots, and flying robots for the
construction of the semantic map includes the label of the
scene and detailed semantic information of the environment.
The construction of a semantic map using the proposed
scene recognition algorithm would be useful for navigation
in unknown places for robots and humans because both the
semantic label of the region and semantic meaning of the
environment are provided. Furthermore, our system could
be applied to autonomous robots and enabling them to assist
humans in safety and rescue missions inside a house or a
building.
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