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Abstract— Dynamic objects in the environment, such as
people and other agents, lead to challenges for existing si-
multaneous localization and mapping (SLAM) approaches. To
deal with dynamic environments, computer vision researchers
usually apply some learning-based object detectors to remove
these dynamic objects. However, these object detectors are
computationally too expensive for mobile robot on-board pro-
cessing. In practical applications, these objects output noisy
sounds that can be effectively detected by on-board sound
source localization. The directional information of the sound
source object can be efficiently obtained by direction of sound
arrival (DoA) estimation, but the depth estimation is difficult.
Therefore, in this paper, we propose a novel audio-visual fusion
approach that fuses sound source direction into the RGB-D
image and thus removes the effect of dynamic obstacles on
the multi-robot SLAM system. Experimental results of multi-
robot SLAM in different dynamic environments show that the
proposed method uses very small computational resources to
obtain very stable self-localization results.

I. INTRODUCTION

Visual-SLAM is a core technique for a robot to understand
the external environment and perform self-orientation. How-
ever, in real workspaces, there are many dynamic objects
such as moving human talkers and other robots (in multi-
robot systems). These dynamic objects disrupt most existing
vision-SLAM systems: In the case of localization, visual
odometry fails because the moving camera cannot acquire
enough static visual features from the background that is
obscured by dynamic objects. For environmental mapping,
these moving obstacles with distorted shapes are not sup-
posed to appear in the final map. To deal with this dynamic
environment problem, an intuitive idea is to introduce a
detector for moving objects, find and remove these objects by
pre-processing them in the SLAM front end, and then enable
the static SLAM algorithm. Many dynamic SLAM methods
[1], [2], [3], on the one hand, introduce learning-based
object detectors to segment bounding boxes or templates of
specific movable objects, such as people and vehicles. Other
methods, which fall under the motion segmentation category
[4], [5], [6], decouple dynamic pixels from static background
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Fig. 1: AcousticFusion SSL testing on the AIRS Mobile Manipu-
lation system robots. An Azure Kinect was installed on the mobile
base to keep the camera stable while the robots were moving. We
show six images taken by this sensor with the SSL confidence
interval marked in green.

pixels by comparing camera motion consistency — cluster-
ing dynamic pixel points and removing them. Whether the
approach is for motion segmentation or object recognition,
both frameworks expend huge computational resources for
discovering and removing the dynamic components of the
visual perceptual input. These approaches typically rely on a
dedicated GPU to cope with dynamic obstacles for real-time
performance, which limits their application in online, mobile
robotic systems with limited computational resources.

Audio Human-robot interaction (HRI) requires the detec-
tion of different sound sources in the environment. This
function usually requires the use of a microphone array to
localize, track, and decompose the different sound sources in
real-time. In the field of SSL research, to localize and track
the speakers in real-world environments, the classical meth-
ods are mostly based on estimating the time differences of
arrival (TDOA) between microphones. Knapp et al. proposed
a classic TDOA estimation method in [7] with generalized
cross-correlation. Chen et al. proposed a TDOA estimation
framework for single-speaker localization in [8]. In the case
of multiple speakers, DiBiase et al. provided a beamforming-
based method named steered-response power in [9], and
Ishi et al. proposed a famous multiple signals classification
approach in [10]. Recently, In [11], Li et al. proposed a
direct-path relative transfer function method combined with
exponential gradient for the simultaneous localization and
tracking of multiple moving speakers. This method is robust
against the reverberation effect, which is especially important
for indoor SLAM applications. Note that, limited by the
compact structure of the microphone array, Sound Source
Localization (SSL) mentioned here usually only estimates the
direction of sound sources, and the range/depth estimation is



not conducted.
In this paper, we use the SSL method to detect sounding

obstacles and mark areas of these obstacles in the image and
remove them to enable visual-SLAM in the dynamic envi-
ronment. This work uses the Microsoft Azure Kinect sensor.
It is compact in design (10 cm× 12.5 cm) and includes
a microphones array and an RGB-D camera. The Azure
Kinect captures asynchronous sound signals and images,
and our method processes and fuses the sound signals into
the images. Hence we named the proposed method Acous-
ticFusion. There are several advantages of fusing sound
and visual signals of Azure Kinect for the mobile robot:
1) lower on-board power and computation costs. The SSL
method e.g., [11] performed efficient online multiple sound
source azimuth detection using an on-board CPU. 2) As
shown in Fig. 1, the microphone array is small in size and
low in power consumption but brings 360-degree azimuth
detection and tracking capability (RGB-D cameras have a
90-degree azimuth field-of-view). 3) The Azure Kinect SDK
can provide human speaker recognition and voice-to-text
functions promising in HRI applications. In summary, this
work contributes to:

1) A novel dynamic SLAM approach based on sound
source detection and sparse feature visual odometry.

2) An efficient and robust method for fusing SSL and
RGB-D image.

3) A visual odometry database with synchronized sound
and RGB-D images.

The database and code will be open-sourced depending on
acceptance.

II. RELATED WORKS

A. Dynamic visual SLAM
Most of the existing dynamic SLAM solutions try to

deal with the dynamic environment problem by finding and
removing dynamic objects. Based on their object recognition
approaches, we divide the current state-of-the-art into motion
segmentation-based and object detection-based methods.

Object detection-based dynamic SLAM methods usu-
ally utilize advanced deep learning-based object detectors to
remove dynamic objects and then enable the classical static
SLAM frameworks in the dynamic environments. Bescos et
al. [1] proposed DynaSLAM which applied Mask-RCNN
[12] to detect human objects in RGB images and adopted
ORB-SLAM2 (ORB2) [13] for camera tracking. DynaSLAM
performed accurate human silhouette segmentation, but it
spent abound 300ms per frame.

Motion segmentation based approaches attempted to
find dynamic pixels or point clouds rather than recognizing
moving objects. Scona et al. proposed StaticFusion (SF) [4]
that combined scene flow computation with Visual Odom-
etry to achieve real-time static background reconstruction
in a small-sized room. Zhang et al. proposed FlowFusion
[5] that utilized optical flow residuals for dynamic object
segmentation and remove the dynamic point clouds for dense
background reconstruction. Judd et al. provided a multi-
object motion segmentation method in [14], which applied

sparse feature points alignment to separate and track multiple
rigid objects. Dai et al. proposed to distinguish dynamic or
static feature points using motion consistence in [15]. All of
the above dynamic SLAM solutions can not work on real-
time mobile robot platforms without GPUs.

B. Audio-Visual Fusion Methods

Hospedales et al. [16] proposed a Bayesian model-based
audio-visual fusion framework to segment, associate, and
track multiple objects in audiovisual sequences. Li et al. pre-
sented an SSL-based HRI system in [17]. They calibrated the
sound sources’ corresponding pixel coordinates. Hence an
NAO robot head with four microphones performed robust az-
imuth localization under difficult acoustic conditions. Ban et
al. proposed an audio-visual fusion method for multi-speaker
tracking in [18], which fused direct-path related transfer
function features into the Bayesian face observation model.
Then, they updated this multi-speaker tracking module in
[19]. It can track multiple speakers and locate the sound
source into the bounding box of the speaker’s head. In that
work, CNN-based offline person detection is required, which
is two frames per second (fps) on a GTX 1070 GPU.

The audio-visual fusion works [17], [18], [19], all use
static robots to track the observer. For the moving robot,
in [20], Evers et al. proposed an acoustic SLAM framework
that is different from the general concept of SLAM. Acous-
tic SLAM applied the SSL technique passively localize a
moving observer and simultaneously mapped the positions
of surrounding sound sources. It does not work on robot self-
localization and environment mapping. A recent work [21]
proposed to use two moving microphone arrays to do SSL
separately and to estimate the sound source location using
the intersection of sound source direction extension lines.

III. APPROACH

A. Overview

Our proposed AcousticFusion framework combines SSL
technology into a mobile robot vision-SLAM system. The
flowchart is shown in Fig. 2: The SSL module takes the
sound signals collected by seven microphones as input, and
after feature extraction and clustering, outputs time-varying
sound source azimuth angles, which are then fused into the
image space. For the RGB-D images acquired by the same
device, we first invalidate the depth values within the SSL
region and then extract the visual features for the following
ego-motion estimation and mapping.

B. Online Multiple Sound Source Localization

1) Extraction of Localization Feature

In the time domain, we represent the microphone signal
as: ym(t) = hm(t) ∗ x(t), where m = 1, . . . ,M and t denote
the microphone and time indices, respectively. The m-th
microphone signal ym(t) is the convolution (denoted as ∗)
of the source signal x(t) and room impulse response (RIR)
hm(t). In the short-time Fourier transform (STFT) domain,
this convolution is represented with convolutive transfer
function (CTF): ym

p,k = hm
p,k ∗ xp,k, where p = 1, . . . ,P and



Fig. 2: AcousticFusion Flowchart. Azure Kinect captures sound signals and RGB-D images. These sound signals from seven microphones
are processed by feature extraction and clustering to output time-varying azimuths of the sound sources. Then, these sound source azimuth
angles are fused into the image space. For the RGB-D images, we first invalidate the depth values within the sound source localization
region and then extract the visual features (the yellow dots) for camera motion estimation and mapping.

k = 0, . . . ,K−1 denote the time-frame and frequency indices,
respectively. Analogous to the time-domain representation,
the STFT coefficients of microphone signal ym

p,k is the con-
volution (along the time-frame axis) of the STFT coefficients
of source signal xp,k and CTF hm

p,k (the STFT representation
of RIR). The CTF coefficients encode the RIR taps for one
subband, and preserve the reverberation structure of RIR.
The direct-path propagation presents at the first RIR taps,
and thence at the first CTF coefficient. Localization of sound
source relies on estimating the direct-path propagation of
the source signal to multiple microphones. In the following,
we first estimate the entire CTFs based on the cross-relation
method [22] from the microphone signals, and then extract
the first CTF coefficients for sound source localization. Since
the CTF estimation is independently conducted for each
frequency, for notational simplicity, the frequency index k
will be omitted until the next section.

For one microphone pair (m,n), we have the cross-relation
ym

p ∗ hn
p = yn

p ∗ hm
p . Let Q denote the number of CTF co-

efficients, hm = [hm
0 , . . . ,h

m
Q−1]

T and ym
p = [ym

p , . . . ,y
m
t−Q+1]

T

denote the vector form of CTF and microphone signal, where
T denotes matrix/vector transpose. The cross-relation can be
written in vector form as

ym T
p hn = yn T

p hm. (1)

The CTF vector to be estimated of all channels are
concatenated as h = [h1 T , . . . ,hM T ]T . To represent the pair-
wise cross-relation with respect to h, the microphone signal
vectors are concatenated as:

ymn
p = [0, . . . ,0,yn T

p ,0, . . . ,0,−yi T
p ,0, . . . ,0]T , (2)

where the zero-elements are set to respond to the CTF vectors
other than the m-th and n-th microphones, so that the cross-
relation (1) can be written as ymn T

p h = 0. There exist one
trivial solution for this equation, namely h equals 0. To
avoid this solution, the first CTF coefficient of the reference
channel, say m = r, is constrained to be equal to 1, namely

ymn T
p h = 0, s.t. hr

0 = 1 (3)

This can be realized by dividing h by hr
0, which yields a new

equation ymn T
p h/hr

0 = 0. Moving the constant term from the
left side to the right side, we have

ỹmn T
p h̃ = zmn

p , (4)

where ỹmn
p is ymn

p with the entry corresponding to hr
0 removed,

and −zmn
p is such entry. The new variable h̃ is h with hr

0
removed, and then divided by hr

0. In h̃, the elements corre-
sponding to the first CTF coefficient of multiple microphones
(other than the r-th microphone), i.e. hm

0 /hr
0,m 6= r, represent

the ratio between the direct-path transfer function of two mi-
crophones, and are referred to as direct-path relative transfer
functions (DP-RTFs). DP-RTFs encode the localization cues,
namely the inter-channel phase/magnitude difference of the
direct-path signal propagation.

Sound source localization amounts to estimate the DP-
RTFs by solving the linear problem Eq. (4). We note that
Eq. (4) is defined for one microphone pair at one time frame.
For online processing, we receive the microphone signals ỹmn

p
and zmn

p frame by frame, and accordingly the estimate of h̃
will also be updated frame by frame. For one frame, all the
I = M(M− 1)/2 distinct microphone pairs are utilized. For
notational convenience, we use i = 1, . . . , I denote the index
of microphone pair to replace mn. Define the fitting error of
(4) as ei

p = ỹi T
p h̃−zi

p. At one current frame p, exploiting the
microphone pairs up to i, online processing aims to minimize

Ji
p =

p−1

∑
p′=1

λ
p−p′

I

∑
i′=1
|ei′

p′ |
2 +

i

∑
i′=1
|ei′

p|2, (5)

which sums up the fitting error of all the currently available
frames and microphone pairs. Along with the increase of p
or i, this error is recursively updated with one new error
term, i.e. |ei

p|2, for which h̃ can be efficiently estimated
with the recursive least squares algorithm (please find more
details from [11]). At each frame p, one estimate of h̃ is
obtained, denoted as ĥp. For the dynamic case (either speaker
or microphone array is moving), h̃ is time-varying, and the
estimate ĥp reflects the current value of h̃. To catch up the
variation of h̃, the older frames are exponentially forgotten



by the the forgetting factor λ ∈ (0,1]. This factor can be set
to 1 for the static case in which h̃ is constant.

Up to now, we consider the noise-free single-speaker
case. To suppress noise, the inter-frame spectral subtraction
algorithm proposed in [23] can be easily integrated into
the current framework. As for the multiple-speaker case,
the W-disjoint orthogonality assumption [24] is used, which
assumes that the speech signal is dominated by only one
speaker in each small region of the STFT domain, because
of the natural sparsity of speech signals in this domain.
Based on this assumption, the CTF estimates (with frequency
index k added), i.e. ĥp,k, belongs to only one of the multiple
speakers. Finally, at frame p, from ĥp,k, we extract the
DP-RTFs as localization features, denoted as am

p,k, m ∈
[1,M],m 6= r;k ∈ [0,K − 1], and each feature is associated
with a single speaker. Note that those time-frequency bins
dominated by noise or multi-speaker are not used for the
following localization step.

2) Feature Clustering for Localization

The complex Gaussian mixture model is used to cluster
the features to each active speaker. Each component of
the mixture model is set to represent one candidate source
location. Let d = 1, . . . ,D and wd (wd ≥ 0 and ∑

D
d=1 wd = 1)

denote the d-th candidate location and the prior probability
of the d-th mixture component, respectively. The probability,
that one feature am

p,k is emitted by candidate locations, is the
mixture of complex Gaussian probabilities:

P(am
p,k) =

D

∑
d=1

wdNc(am
p,k; ām,d

k ,σ2), (6)

where the mean ām,d
k is the constant theoretical DP-RTF,

which can be precomputed using the theoretical model of
the signal’s direct-path propagation. The variance σ2 is
empirically set as a constant value. The prior probability
(weight) wd is the only free model parameter, and can
be estimated by maximizing the log-likelihood of all the
available features, namely

max
wd , d=1,...,D

∑
am

p,k

log(P(am
p,k)). (7)

This likelihood maximization problem can be easily solved
by the well-known expectation-maximization algorithm. For
the dynamic case, wd is time-varying (thence denoted
as wd

p), and can be estimated with recursive expectation-
maximization algorithm. The optimized weight wd

p represents
the probability that an active speaker is present at the d-
th candidate location. Sound source localization can be
conducted by detecting the peak of wd

p along the d axis.
In this work, we use the microphone array embedded

on an Azure Kinect to conduct SSL. The topology of the
microphone array is shown in 3, which is composed of seven
microphones arranged in a 2D plane. The microphone array
is placed to be parallel to the horizontal plane, which is thus
suitable to perform horizontal (azimuth) localization. A total
of D = 72 candidate azimuth angles are set with 5 degrees

Fig. 3: Projecting the source direction onto the image plane: We
first obtain the source azimuth φ from the SSL peak, then warp the
camera image to the microphone frame and extend the azimuth ray
to intersect this image plane. The location of the sound source is
located on the vertical line through this intersection point x.

gap between two adjacent angles to cover the whole 360
degrees azimuth space.

C. Audio-Visual Data Association
In [17], Li et al. provided an audio-visual dataset that

contains sound source directions that correspond to image
pixels. They obtained these correspondences by manually
labeling the loudspeaker’s positions in the image. This audio-
visual information association method is not robust to re-
verberation condition changing. The sound source to pixel
correspondence changes When the robot moves. For the
mobile robot SLAM, we should update these audio-visual
information correspondence time by time.

Following the RGB-D SLAM method [4], given two image
frames: camera image frames C and microphone image frame
M, at the sound sampling frame p a pixel xp

C in frame C can
be warped to frame M by:

xp
M =W (xp

C,T (ξ ),DC) (8)

where the image warping function W is given by:

W (xp,T,D) = π(T π
−1(xp,D(xp))) . (9)

x represents a pixel in the 2D image, D(x) is the depth of
pixel x. The projection function π : R3 → R2 projects 3D
points onto the image plane using the camera intrinsic matrix.
The extrinsic matrix T (ξ )∈ SE(3) between the camera frame
and microphone frame is computed using device hardware
parameters.

As the SSL module output fps is much higher than
the RGB-D camera frame rate, to update the audio-visual
correspondence, for each camera image, we warp its pixels
xp ∈ C to the microphone frame M using Eq. 8, label the
newest estimated sound source azimuth on M, and warp
the labeled pixel back to the camera frame. For instance, in
Fig. 3, assume there is only one sound source dp, fetch its
sound source azimuth φ ∈ (−180,180] (the direction of the
protrusion of the red circle) from Dp, extend the azimuth ray
to intersect the warped image plane and take the intersection
point xp

M = (µ
′
,v
′
). Then the sound source location should



Fig. 4: An example of audio-visual integration. In this scene, a pedestrian is playing a song with his cell phone. The first row is the
original sound signal of a microphone channel. After sound feature extraction and clustering, the second and third rows are the results of
SSL output, i.e., Gaussian probability weights and directional peaks. The song starts to play from 6.4 and ends at 26.7 seconds, and the
two peak curves before 5 seconds are footsteps. The red line is the projection of the sound source peak on the image, and the width of
the dynamic object bounding box in green is determined by the GMM weights.

belong to the vertical line through xp
M , so as xp

C. However,
according to the warping function Eq. 9, the unknown Dw is
necessary to warp xp

M back to xp
C. In real cases, the distance

of the sound source is always further than 1m, much larger
than the distance from the center of the microphone array to
the optical center of the camera (7.4cm). Thus in this work,
we use DC instead DM .

Note that the image FOV of the camera is only 90 degrees,
which is smaller than the 360 degrees of the SSL module.
Therefore, when the SSL result exceeds the camera FOV, the
fused sound source red line may be on the left or right border
of the image, as shown in the bottom left figure of Fig. 4.
This red line labels the detected sound source objects, which
will be removed as exceptions in the following SLAM visual
feature extracting phase.

D. Visual Feature Extraction and Visual Odometry

(a) Ours (b) Openvslam

Fig. 5: Visual feature extraction in multi-robot scene. We set the
width of the feature-free area according to the SSL result. In (a), our
method only extracts features from the static backgrounds. In (b),
Openvslam extracts wrong environmental features from the other
moving robot surfaces.

The SSL module outputs the weights (probabilities) of
candidate azimuth angles associated with active speakers,
and the localized sound source directions obtained by detect-
ing the peaks of weights. With the sound source direction as
the center, we grab an image region to cover the dynamic
obstacle as much as possible according to the weights of
candidate azimuth angles.

Sound source directions are estimated by detecting the
peak of GMM weights wd

p along the d axis. The candidate
locations corresponding to the peaks of wd

p are denoted as
dp, j ∈ [1,D], j = 1, . . . ,J, where J denotes the number of
detected sound sources. To cover the whole visual obstacles,
we need to estimate the obstacle regions in the image. The
center of obstacle regions are set to be the sound source
directions dp, j ∈ [1,D], j = 1, . . . ,J. The region boundaries
are separately determined for each visual obstacle. To de-
termine each of the left and right region boundaries for
sound direction dp, j, for example the right boundary bright

p, j ,
the GMM wights wd

p are checked one by one from dp, j+1 to
its right candidates until the following condition is satisfied:

wd+1
p ≥ wd

p or wd+1
p < δw

dp, j
p , (10)

then bright
p, j is set to d. This condition means i) the weight can-

not increase, as the increasing weight indicates the emerging
of a new sound source; ii) the weight should not be smaller
than δw

dp, j
p , where 0≤ δ ≤ 1 is empirically set to reflect our

prior knowledge about the size of the visual obstacle. Finally,
at frame p and for sound source j, the obstacle region is
represented by the region center dp, j (red line as shown in
Fig. 1, 2, 3, 4 and 5), and the region boundaries {bleft

p, j ,b
right
p, j }

(green bounding box as shown in Fig. 1, 2, 3, 4 and 5). These
time-varying image regions track the multiple moving visual
obstacles and will be adopted for the following SLAM step.

For example, in the flowchart Fig. 2, after the azimuth



TABLE I: Dynamic Environment SLAM ATE RMSE (m)

Sequence ORB2 SF ORB2+SSL Ours

Spark-T Robot

Sp1 0.24 3.4 0.079 0.1
Sp2 0.23 12.8 0.088 0.078
Sp3 0.35 26.47 0.22 0.14
Sp4 0.2 3.69 0.12 0.13
Sp5 0.25 2.35 0.2 0.19

AIRS Mobile Manipulation Robot

Mo1 1.32 14.2 0.13 0.12
Mo2 1.59 18.28 0.089 0.088
Mo3 0.94 0.71 0.038 0.04
Mo4 1.45 1.53 0.18 0.18

projection of the sound source, we compute this region
(green bounding box) in the RGB-D frame and invalidate
the depth values in this region in the Depth image. Then,
we extract ORB visual features on this pair of RGB and
Depth images so that the obtained features avoid moving
object regions to ensure visual odometry robustness in these
dynamic scenes. Thereafter, the loop detection and mapping
tasks are done using Openvslam [25].

IV. EXPERIMENTS AND EVALUATIONS

In this paper, the proposed method was tested on a laptop
with Intel CoreT M i7-10875H CPU @ 2.30 GHz × 8,
64 GB System memory. In StaticFuison [4]’s comparison
experiments, a GeForce RTX 2080 Ti GPU was used.

A. Sound Source Localization Results

As already partially mentioned above, D = 72 azimuth
directions at every 5 degrees in (−180,180] degrees are
used as candidate directions to perform 360 degrees azimuth
localization. The sampling rate of sound signals is 16,000
Hz. The STFT has a window length of 256 samples and a
hop size of 128 samples, correspondingly SSL has an output
rate of 125 Hz. The CTF length Q is set to 8. Fig. 1 and
4 indicate the SSL module performance when the robot is
static. The localization effect is stable when the target is
within 3 m. Beyond 3 m the localization error increases with
distance.

In addition to the sound source direction, the estimation
results of the sound source area have a significant impact
on the subsequent visual odometry. In multi-robot SLAM
experiments, the sound source area width should be adjusted
appropriately according to the size of the robot because
large-sized moving targets obscure more pixels at the same
distance. e.g., in Fig. 5, To avoid extracting undesired visual
features from dynamic object surfaces, the width of the sound
source area was set to 10 and 20 degrees for the Spark-T and
AIRS Dual Arm Mobile Manipulation robots, respectively.
Also, the man in Fig. 4 appeared outside the bounding box.
Because in that scene, the sound source was the phone that
was farther from the center of his body.

B. Dynamic SLAM Experiments

We evaluate the proposed method by comparing the Ab-
solute Trajectory Error (ATE) of the camera trajectory with

TABLE II: Time Cost Evaluation

Method fps GPU

ORB2 [13] 26 ×
DynaSLAM [1] 0.3 X
SF [4] 17 X
Ours 14 ×

the original ORB2, ORB2 with sound source object removal
(ORB2+SSL) and state-of-the-art dense reconstruction dy-
namic SLAM methods SF in multi-robot dynamic environ-
ments. Sequences starting with “Sq” and “Mo” using Spark-
T robots and AIRS Dual Arm Mobile Manipulation system
robots respectively. The ground truth camera trajectories
were obtained from a motion capture system.

Table I lists the ATE Root-Mean-Square-Error (RMSE)
of these methods. The original ORB2 method achieved
around 25 cm ATE in the Sp1 and Sp2 sequences, it can be
noticed from the camera trajectories that initially it tracked
ground truth well in the Sq1 sequence, and after the moving
obstacles appeared, the trajectory went wrong. Our method
achieved about one-third of the errors of ORB2 in this
scene. The ground truth curves are well tracked by our
camera trajectories in Fig. 6. SF VO was not robust in
these sequences. Its ATE exceeds several meters, which is
due to the tendency of its motion segmentation algorithm
to judge moving obstacles as static backgrounds and blocks
of pixels in the background as dynamic obstacles when
large areas are occluded. This also causes the large and
sharp changes in the SF camera trajectories (blue color) and
maps in the third image of Fig. 7. ORB2+SSL method also
obtained small ATE in several sequences, but it’s not robust
in loop detection. Therefore, we chose Openvslam over
ORB2 because it has better global loop closure capability,
as evaluated in the Sq3 sequence, the proposed approach
achieved 8 cm less ATE than ORB2+SSL, and accurate
mapping result (see Fig. 7).

For sparse visual feature-based methods like ORB2, the
environment map can be synthesized after acquiring the cam-
era trajectory. Fig. 7 shows the final maps produced by the
three methods in the Sq3 and Mo3 sequences, where ORB2
distorts the map severely after the presence of obstacles; SF
incorrectly segment another robot as a static background, and
our method reconstructs the accurate environment map.

Tab. II compares the online efficiency of several meth-
ods. Among them, ORB2 is robust and efficient in static
environments and is therefore often used as a base SLAM
framework. DynaSLAM and SF are based on GPU support.
DynaSLAM is based on ORB2 and pre-processes dynamic
objects using Mask R-CNN with very low frame rates. SF
achieves efficient online motion segmentation performance
but loses robustness when occlusion is high and is therefore
not suitable for multi-robot SLAM. Our approach does not
rely on GPU and achieves a 14 fps while processing seven
microphones with 16,000 Hz sound signal sampling and 125
Hz SSL output.



Sp1 Sp2 Sp3 Sp4

Sp5 Mo2 Mo3 Mo4

Fig. 6: The plotted trajectories of Spark-T and AIRS Mobile robots sequences. Our method obtains the smallest ATE, and accordingly
the red curves are closest to the black ground truth curves.

Sp3 and Mo3 Scenes ORB2 SF Ours

Fig. 7: Dynamic scene mapping results. Top, Sq3 scene. Bottom, Mo3 scene. In both, a robot performs SLAM, another as a dynamic
obstacle. The ORB2 and SF methods fail, while our approach build accurate environment maps. The estimated camera trajectories are
displayed in blue.

V. DISCUSSIONS

Large-area occlusion is the biggest problem we encoun-
tered in the practical experiments of multi-robot SLAM.
When multiple robots approach each other, the images from
their cameras are obscured over a large area for the robot
behind them. We found that ORB2 vision odometry loses
robustness if more than 50% of the pixels are removed
as dynamic objects. This is the reason why the proposed
method works better on Spark-T than on the much larger
AIRS Dual Arm Mobile robot. A similar effect occurs when
multiple dynamic targets appear in the visual field at the
same time, resulting in large areas of invalid visual features.
The introducing an ego-motion prior is a promising approach
to cope with such rigid object occlusion problem [26].

VI. CONCLUSIONS

In this paper, we have presented a new audio-visual fusion
approach that fused SSL into visual SLAM. We apply the

SSL results as a dynamic object detector to enable dynamic
environment SLAM for mobile robots. Experimental results
for two different sizes of robots indicate that the proposed
method significantly improves the robustness of the visual
odometry for the case of severe occlusion in a multi-robot
SLAM system. In a multi-robot occlusion scenario, the
proposed SSL-based SLAM framework achieves real-time
performance using a single CPU and outperforms state-of-
the-art GPU-based dynamic SLAM solutions. The future
direction of our work is to integrate sound identification into
current audio-visual systems for human-robot cooperation.
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