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Abstract— The occupancy grid map is a critical component
of autonomous positioning and navigation in the mobile robotic
system, as many other systems’ performance depends heavily
on it. To guarantee the quality of the occupancy grid maps,
researchers previously had to perform tedious manual recogni-
tion for a long time. This work focuses on automatic abnormal
occupancy grid map recognition using the residual neural
network with multiple novel attention mechanism modules. We
propose an effective channel and spatial Residual Squeeze-
and-Excitation (csRSE) attention module, which contains a
residual block for producing hierarchical features, followed
by both channel SE (cSE) block and spatial SE (sSE) block
for the sufficient information extraction along the channel and
spatial pathways. To further summarize the occupancy grid
map characteristics and experiments with our csRSE attention
modules, we constructed a dataset called occupancy grid map
dataset (OGMD) for our experiments. On this OGMD test
dataset, we tested few variants of our proposed structure and
compared them with other attention mechanisms. Our exper-
imental results show that the proposed attention network can
infer the abnormal map with state-of-the-art (SOTA) accuracy
of 96.23% for abnormal occupancy grid map recognition.

I. INTRODUCTION

The occupancy grid map was first introduced for surface
point positions with two-dimensional (2D) planar grids [1],
which had gained great success in fusing raw sensor data into
one environment representation [2]. In narrow indoor envi-
ronments or spacious outdoor environments, an occupancy
grid map can be used for the autonomous positioning and
navigation by collecting the position information of obsta-
cles. In recent years, occupancy grid map has applications
in obstacle avoidance [3], multi-sensor data fusion [4], object
tracking [5], simultaneous localization and mapping (SLAM)
[6], and multi-robot global localization [7].

This work was supported in part by the National Key R&D
Program of China (2020YFB1313300), the funding (AC01202101025,
AC01202101026) from the Shenzhen Institute of Artificial Intelligence
and Robotics for Society, the special projects in key fields of Guang-
dong Provincial Department of Education (2019KZDZX1025), Guangdong
Science and Technology Major Special Fund (No.2019-252), Innovative
Program for Graduate Education (503170060259) from the Wuyi University,
and Shenzhen Peacock Plan of Shenzhen Science and Technology Program
(KQTD2016113010470345). We would also like to thank Dr. Li Nan
Nan from Macau University of Science and Technology for his valuable
discussion on this paper.
∗Authors contributed equally
1School of Intelligent Manufacturing, the Wuyi University, Jiangmen,

China.
2School of Science and Engineering, the Chinese University of Hong

Kong, Shenzhen, China.
3The Shenzhen Institute of Artificial Intelligence and Robotics for

Society, the Chinese University of Hong Kong, Shenzhen, China.
4The 3irobotix Co.,Ltd, Shenzhen, China.
†Corresponding author is Tin Lun Lam tllam@cuhk.edu.cn

Fig. 1. Problems with occupancy grid map in existing computer vision
tasks. Column (a) represent domain-specific scenarios, (b) show the corre-
sponding abnormal occupancy grid maps, and (c) represent attention heat
maps. In column (b), the regions marked in the red frame represent the
abnormal areas. In column (c), our attention network method can detect
these abnormal areas and then report these failure cases. More examples
are in Fig. 5

On the path to autonomous navigation, an occupancy grid
map is essential for the trajectory planning module [8]. In the
SLAM process, the occupancy grid maps aim at estimating
the occupancy probability and recording discretized object’s
locations [9]. In practice, many factors may affect the quality
of the obtained occupancy grid maps. As shown in the
1st row of Fig. 1 (a), when the mobile robot meets the
transparent glass walls, the laser sensor cannot receive the
laser light penetrating through the transparent glass, making
it hard to determine the specific location of walls. Moreover,
if the mobile robots without a loop detection module [10]
build an occupancy grid map on a long corridor in the
2nd row of Fig. 1 (a), they may lose some critical scan
measurement data. Due to these overlapped or incomplete
occupancy grid maps (e. g. Fig. 1 (b)), it would make mobile
robots hard to plan the path and avoid obstacles during
navigation.

For abnormal occupancy grid map recognition, there are
mainly three types of methods, including shape estima-
tion [11], [12], edge detection [13] and data-driven meth-
ods [14]. The shape-based and edge-based methods are
designed to associate measurements with object’s feature,
while some abnormal occupancy grid maps are falsely de-
tected as positive. For data-driven method, especially with
the convolutional neural networks (CNN) [15], the abnormal
occupancy grid map can be detected in terms of low-level
features (e. g. blur, burr, and overlap). The recognition
experiments with mainstream CNN-based method can get
the approximately 91% accuracy result (as shown in Tab. I,



e. g. ResNet32). Furthermore, based on attention mecha-
nism [16], Squeeze-and-Excitation (SE) block [17] and
convolutional block attention module (CBAM) [18] have
been embedded in the input feature map for adaptive feature
refinement from channel-wise and spatial axes. Specially,
these attention networks (with SE and CBAM) can achieve
an accuracy result of approximately 94% (as shown in Tab. I,
e. g. ResNet32 + SE). However, these methods are inefficient
in terms of global feature and multi-scale feature extraction.

To improve the representation ability of feature extraction,
an effective network with the attention module is designed to
aggregate specific features of occupancy grid map. Different
from the SE and CBAM, we design a channel and spatial
Residual Squeeze-and-Excitation (csRSE) attention module
for the global context extraction on the different aggrega-
tion strategies. The proposed csRSE module is a global
context modeling module which aggregates the features by
using residual block and hybrid attention mechanisms. In
csRSE module, the residual block can generate the hierar-
chical features and benefit gradient propagation. Besides, the
cSE block and sSE block automatically contain sufficient
channel-wise and spatial information of the intermediate
layers, then assign different attention weights to the abnormal
regions. In our attention network, csRSE attention modules
are embedded to generally focus on the multi-scale features
and suppress unnecessary information. As in Fig. 1 (c), the
visualizing results of our csRSE module show the important
feature in occupancy grid maps.

Main contributions of this work are listed as follows:
• We introduce a csRSE attention module for global

contextual extraction.
• We contribute an occupancy grid map dataset (OGMD)

for SLAM occupancy grid map recognition task.
• We propose an attention network with multiple csRSE

modules for SOTA abnormal occupancy grid map
recognition.

II. RELATED WORK

A. Occupancy Grid Map

The research on automatic map construction using robots
has always been a key point for researchers [19], [20]. Elfes
et al. [21] introduced a grid-based algorithm for 2D environ-
ment modeling. The continuous spaces of the environment
are discretized by these evenly-spaced grids. According to
the probabilistic formulation, each grid cell of constructed
map represents the probability of the corresponding region
that may be occupied, free or even not yet explored. With
the help of the occupancy grid map, the robot can identify
the presence or absence of an obstacle in the space of the
environment.

However, the occupancy grid map suffers from corrupted
obstacle silhouettes, occlusions, and false distance estimates
in static environments. To address these problems, a highly
engineered method [11] was proposed to extract information
for the environment modeling. A data-driven method for map
recognition was proposed in [13], where the radar sensor

measurement model was trained and this method outper-
formed the manually designed model. Piewak et al. [14]
trained a neural network to reduce false distance estimation
in a dynamic environment. Their approach referred to a pixel-
wise classification task to determine whether a cell in the
actual environment is occupied or free.

B. Deep Architectures and Attention Mechanisms

In the last years, many attempts have been made to
improve the original CNN architecture to achieve better accu-
racy. In image classification and object detection, recent ap-
proaches like AlexNet [22], VGG-16 [23], InceptionNet [24],
or MobileNet [25] are based on the plain CNN architecture.
However, CNN-based networks have problems in gradient
propagation and convergence with the amount of data [26].
To address this issue, ResNet [27] proposes a simple identity
skip-connection to ease the optimization problem of deep
networks. Our attention network is a backbone architecture
based on ResNet, which can enhance the input features but
also well benefit gradient propagation on the training process.

Recently, various attention mechanisms had been proposed
for image recognition tasks. Hu et al. [17] had proposed a
compact SE block to extract the inter-channel information.
Residual Attention Network (RAN) [28] modified ResNet by
stacking identical soft attention modules which is beneficial
to refine the feature maps. Spatial attention [29] had been
made to recalibrate the channel dependency as an effective
extraction module. Then, Woo et al. [18] introduced a CBAM
module that sequentially recalibrates channel and spatial
attention to refine intermediate feature maps. However, these
methods miss the global spatial information, which is an
important factor for feature fusion and accurate attention map
generation. Inspired by the global context block [30], our
csRSE attention network, which contains a residual block
for producing hierarchical features, followed by both cSE
block and sSE block for the sufficient channel-wise and
spatial information extraction and the hierarchical features
enhancement.

III. A NEW SLAM DATASET

To facilitate the research of the occupancy grid map
recognition problem, we contribute a new SLAM dataset
containing 6916 occupancy grid maps through an indoor
robot vacuum cleaner. To the best of our knowledge, OGMD
is a benchmark specifically for the occupancy grid map
recognition. We contribute the source code to simulate future
research and our dataset is available online1 .

A. Dataset Construction

The constructed OGMD covers diverse daily-life indoor
environment scenarios, such as residential houses, super-
markets, office buildings, hotels, and schools. These occu-
pancy grid maps are created with an initial size of 50m×50m.
To further increase the number of training examples, we
applied random rotation and offset to cropped areas of
34m×34m used as training examples. These occupancy grid

1The available online website: https://github.com/ThomerShen/OGMD



Fig. 2. Example 2D occupancy grid maps in our OGMD. (a) and (b)
represent normal occupancy grid maps, (c) and (d) represent abnormal
occupancy grid maps. The regions marked in the red frame represent the
abnormalities.

maps are labeled as two categories, including 3210 normal
occupancy grid maps and 3706 abnormal occupancy grid
maps respectively. In the following experiments, 6916 oc-
cupancy grid maps are randomly divided into 4150 training
examples, 2079 validation examples, and 690 test examples,
and the ratio is roughly 6:3:1.

B. Dataset Analysis

In OGMD, the occupancy grid maps are generated by the
scan data of the robot laser sensor. For detail, each cell of
occupancy grid map is obtained by the scan measurement
data. In a real indoor scene, the occupancy grid maps are
created by using either one scan or an accumulation of
multiple sensor scans. The occupancy grid maps created by
mobile robot are depicted in Fig. 2.

Through the scans of the laser sensor, all obstacles are
displayed as a line segment in the occupancy grid map. The
aggregation of the scans represents the feature parameters of
obstacles in the indoor environment. As shown in Fig. 2 (a)
and (b), the bright white region of the occupancy grid map
indicates a flat and open space. In contrast, the dark line
segment represents the obstacles in the indoor environment.

C. Dataset Evaluation

Each grid cell of occupancy grid map contains the dis-
tributed probability of obstacles and free-space in the actual
indoor environment. Fig. 2 (a)–(d) show the occupancy grid
maps in different indoor scenarios. The criteria for evaluating
the abnormal occupancy grid maps are as follows:

• The region in occupancy grid map is inconsistent with
the actual environment, such as the overlap region of
grid map, like Fig. 2 (c).

• The edges of obstacles on the map are unclear, like
Fig. 2 (d).

• The meaningful information is missing in the scanning
region of mobile robot, like Fig. 2 (c) and (d).

IV. METHOD

The detailed structure of our attention network is illus-
trated in Fig. 3. In the figure, for the input feature map
I ∈ RC×H×W , our attention network computes the channel
and spatial attention map O ∈ RC×H×W . Assuming the
input and output dimensions are the same, after the residual
block calculation, we get the feature I1, then the refined
feature map transformation I1 → O can be defined as

O = I1 + I1 ⊗ I3, (1)

where ⊗ denotes element-wise multiplication. Through the
residual block calculation and the attention mechanism recal-
ibration, the network can extract global informative features.
In our module, after the residual block calculation, we get
the feature I1, then we compute the channel attention Fc ∈
RC×1×1and the spatial attention Fs ∈ R1×H×W through the
cSE block and sSE block, so the attention map is computed
as

I2 = I1 ⊗ Fc(I1), (2)

I3 = I2 ⊗ Fs (I2) , (3)

where the I2 is the output feature map of channel attention.
The I3 is the final refined output feature map. The following
subsection will describe the details of cSE Block and sSE
block.

A. Channel SE Block

In the cSE block, we recalibrate the inter-channel rela-
tionship for the feature response, which involves two steps,
spatial squeezation and channel excitation. In the first step,
for the feature map I1 ∈ RC×H×W , we use the Global
Average Pooling (GAP) to squeeze the global information.
Then a unique channel vector Vc ∈ RC×1×1of each channel
is produced by the mean of GAP.

In the second step, to estimate attention from the c-th
element of statistic channel vector, we use the Multi-layer
Perceptron (MLP) which contains two Fully Connected (FC)
layers, the Rectified Linear Units (ReLU) function, and the
sigmoid function to capture channel-wise dependencies. The
purpose of this MLP is to emphasize the channels with
the meaningful information. In short, the output of channel
attention is computed as:

Fc(I1) = MLP (GAP (I1))

= σ (W2δ (W1GAP (I1))) , (4)

where W1 ∈ RC̄×C ,W2 ∈ RC×C̄ are the weights of the
FC layers, C̄ = C

r , r is the reduction ratio (r is set to 16). δ
refers to the ReLU function, σ refers to the sigmoid function.

B. Spatial SE Block

In the sSE block, we use the convolutional layers to
implement channel squeeze and spatial excitation. Here, it
is assumed an alternative representation of the input tensor
as I2. Four standard convolution layers W are concatenated
to produce the spatial attention map Fs(I2) = W ∗ I2. The



Fig. 3. The csRSE-integrated network (ResNet32 + csRSE) architecture for occupancy grid map recognition. The Conv, and csRSE module represent the
convolution layer, the channel and spatial Residual Squeeze-and-Excitation (csRSE) module. Given the input feature map I ∈ RC×H×W , through the
residual block calculation, we get the feature I1. Then through the cSE block and sSE block, it can compute corresponding channel attention map I2 and
final attention map I3. After the element-wise multiplication, we get the refined feature map O.

sigmoid function σ (Fs(I2)) determines the importance of
the specific location across the feature map. Like the previous
block, this recalibration process indicates which locations are
more meaningful during the training procedure. As a result,
the output of spatial attention block can be expressed as

I3 = σ (Fs(I2))

= σ (W ∗ I2) (5)

= σ
(
f1×1

4

(
f3×3

3

(
f3×3

2

(
f1×1

1 (I2)
))))

,

where σ refers to the sigmoid function, ∗ denotes the convo-
lution operation. The f1×1 and f3×3 represents a convolution
operation with the filter size of 1×1 and 3×3, respectively.

C. Network for Grid Map Recognition

For the occupancy grid map recognition task, the goal is
to improve representation ability of network architecture by
using the attention mechanism, which can focus on mean-
ingful features and suppress unnecessary ones. As illustrated
in Fig. 3 csRSE module, the residual block is designed
for aggregating hierarchical features at multiple levels and
accelerating convergence. To contain sufficient spatial infor-
mation of the intermediate layers, the sSE block are stacked
after the cSE block for spatial feature extracting. The sSE
block extracts the hierarchical features and improves the
representation of interests via four convolution operations.
All in all, cSE block and sSE block can be regarded as the
extracting core, which can aggregate specific global context
features of grid maps. These global features are weighted
averaged from all areas via a specific attention map to each
specific map areas. As attention maps are computed for
each area, the detailed heat maps of the OGMD dataset are
displayed for the specific areas (as shown in Fig. 5).

Secondly, to extract multi-scale features, the convolution
layers and csRSE modules are employed as the core of
feature extraction in the proposed network architecture.
Through the convolution operations, it can extract multi-
scale features by different kernel size of convolution layer.
After the convolution layer, we adopt a csRSE module to
emphasize meaningful grid map features along two principal

dimensions (channel-wise and spatial axes). To achieve the
abnormality in occupancy grid maps, we sequentially apply
cSE block and sSE block, so that the csRSE modules can
learn ‘what’ and ‘where’ to attend in the channel-wise
and spatial axes, respectively. As a result, the convolution
layers and csRSE modules efficiently help the information
flow within the network by learning which map feature
information to emphasize or suppress.

As illustrated in Fig. 3, there are four convolutional layers,
four csRSE modules, one GAP, and one FC layer in the
proposed csRSE-integrated network (ResNet32 + csRSE)
architecture. At the beginning of the proposed network, the
input 3-channel occupancy grid map image is transformed
into a 64-channel feature map. The ResNet in the proposed
csRSE-integrated network is similar to [27] but uses dilated
convolutions [31]. The stacked block is defined as one
consecutive convolution layer, one residual block, one cSE
block, and one sSE block. The outputs of two attention
blocks are fused to generate high-level contextual features,
which will be used to guide the low-level contextual features
extracted by the residual block. The residual block and two
attention blocks are stacked for blending cross-channel infor-
mation and spatial hierarchical features together. After each
stacked block, the max-pooling is performed and each filter
size gets doubled, which is designed to double the spatial
size of feature maps and halve channels. The bottom block
is stacked with GAP, FC and softmax layers to compute
probabilities of the predicted category.

V. EXPERIMENTS AND RESULTS

To evaluate the proposed method, we carry out experi-
ments on our OGMD dataset for occupancy grid map recog-
nition. Experimental results demonstrate that the proposed
attention network generally outperforms the networks with
the SE block and CBAM module, respectively.

A. Experimental Setups

We implement occupancy grid map recognition experi-
ments on our OGMD dataset using the PyTorch framework



TABLE I
COMPARISONS WITH METHODS THAT HAVE THREE DIFFERENT

ATTENTION MODULES ON OUR OGMD TEST DATASET.

Methods Param.
(M)

GFLOPs Accuracy
(%)

ResNet20 0.25 2.019 91.27

ResNet20 + SE 0.27 2.019 93.62

ResNet20 + CBAM 0.27 2.021 93.86

ResNet20 + csRSE(ours) 0.27 2.03 94.83

ResNet32 0.45 3.418 91.43

ResNet32 + SE 0.47 3.418 94.15

ResNet32 + CBAM 0.47 3.422 94.21

ResNet32 + csRSE(ours) 0.47 3.431 96.23

[32]. For training, the image resolution is converted to 224
× 224 and normalized with zero-mean normalization [33].
The entire network is trained end-to-end for 400 epochs by
Stochastic Gradient Descent (SGD) with the momentum of
0.9 and a weight decay of 1e-4. The mini-batch size is set
to 16. It takes about 8 hours for the network to converge
on an NVIDIA GTX 2080Ti GPU. We initialize the weights
according to the method in [34] and use binary cross-entropy
(BCE) loss function. The formulation of BCE loss is as
follows:

Loss = −(yi · log(ŷi) + (1− yi) · log(1− ŷi)), (6)

where yi and ŷi denote the actual label category and the
probability of prediction, respectively.

B. Experimental Results

We conduct experiments to validate the effectiveness of
csRSE module by comparing with two popular attention
modules (SE, CBAM). In experiments, we evaluate these
methods on strong backbones, by replacing two different
baseline network (ResNet20, ResNet32) and adding three
attention modules (SE, CBAM, and csRSE). From Tab. I,
all baseline network methods have achieved measurable
competitive results through few calculation parameters. The
networks with attention modules get better accuracy than
those without any attention methods.

Compared with the csRSE-integrated network (ResNet32
+ csRSE) and CBAM-integrated network (ResNet32 +
CBAM), we can find that the networks with two attention
modules get better performance than the methods with
only one channel-wise attention block (ResNet32 + SE).
Through the result of csRSE-integrated networks (ResNet32
+ csRSE), it is seen that the attention network shows a clear
advantage against the other as it gets the better accuracy
(96.23%) on the test dataset. By comparison results on SE
block and CBAM, the proposed csRSE attention modules
capture the global context information as well as preserve
more structural information.

Fig. 4. (a) Loss curve, (b) Accuracy curve, (c) Confusion matrix, (d)
Precision-Recall curve of experiment results on the test dataset.

C. Experimental Analysis

Fig. 4 (a) shows the training and validation loss curve
of the csRSE-integrated network. We can see that both
the training loss and the validation loss are high at the
beginning epochs. As the training epoch increases, both the
losses remain quite stable. Fig. 4 (b) shows the curve of
the training accuracy and validation accuracy based on the
OGMD dataset. In the beginning, both the training accuracy
and validation accuracy are getting stable as the learning rate
gradually shrinks. Finally, we can get the best accuracy as
the losses decrease.

Fig. 4 (c) shows the confusion matrix for our csRSE-
integrated network on the OGMD test dataset. The y-axis
is the true label and the x-axis is the predicted label.
Overall, the model has achieved a good prediction accuracy
of 96.23%. Fig. 4 (d) shows the precision-recall curve of our
OGMD test dataset. The y-axis shows the precision value and
the x-axis shows the recall value. The experiment results
show the actual prediction situation in the occupancy grid
map recognition.

D. Experimental Visualization

To intuitively verify the effectiveness of the csRSE mod-
ule, we visualize the attention maps (heat maps) by the Grad-
CAM [35] on OGMD test dataset. In recent years, Grad-
CAM is a visualization method that utilizes gradients to
calculate the spatial locations of convolutional layers. Since
the gradients are computed for a unique class, Grad-CAM
clearly show the image regions that have an impact on the
final prediction.

In Fig. 5, we randomly test six abnormal images with
different attention networks, including the baseline net-
work (ResNet32), SE-integrated network (ResNet32 + SE),
CBAM-integrated network (ResNet32 + CBAM) and our



Fig. 5. Visualization results of attention maps (heat maps) on the occupancy grid map recognition. We compare the visualization results of baseline
(ResNet32), SE-integrated network (ResNet32 + SE), CBAM-integrated network (ResNet32 + CBAM) and csRSE-integrated network (ResNet32 + csRSE).
The regions that marked in the red frame represent the abnormal regions. P denotes the softmax score of each network for the ground-truth class. The
higher P means the better classification.

csRSE-integrated network. It can be clearly seen that the
Grad-CAM masks cover attended regions that marked in the
red frame represent the abnormal regions. And our method
is capable of accurately detecting both duplicate maps (e.g.,
the abnormal1, abnormal2, and abnormal6 input images)
and overlapping maps (e.g., the abnormal3, abnormal4, and
abnormal5 input images). This is mainly because the global
contextual features extracted by the csRSE module can
help the network better locate abnormal regions and detect
abnormal occupancy grid maps. The P denotes the final
softmax score of networks for the ground-truth class. The
higher P has the better classification result, meaning that
how this network is making good use of features.

As can be observed, our method can successfully elim-
inate and detect the abnormal regions of occupancy grid
maps. This is mainly contributed by the proposed csRSE
attention network, which exploits contextual information in
target abnormal regions and provides more texture details for
abnormal region localization. Based on the visualization, we
conjecture that the proposed csRSE attention network can

more effectively detect the abnormal areas from occupancy
grid maps and store more global texture details for the
occupancy grid map recognition tasks.

VI. CONCLUSION

In this paper, we present a residual neural network using
attention mechanism for the abnormal occupancy grid map
recognition task. We contribute an OGMD dataset that covers
various occupancy grid maps. Then we propose a csRSE
attention module, which contains a residual block for pro-
ducing hierarchical features, followed by both cSE block and
sSE block for the sufficient global information from channel-
wise and spatial axes. Our attention network is constructed
via applying multiple convolution layers and csRSE modules
to multi-scale features extraction, which achieves a SOTA
prediction accuracy of 96.23% for the occupancy grid map
recognition. In future works, we are going to detect and
predict the moving obstacles in the outdoor environment.
Moreover, we will apply this attention network to study the
problem of global localization for vision-based multi-robot
SLAM.
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