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Kinematics Modeling and Control of Spherical
Rolling Contact Joint and Manipulator
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Abstract—Rolling contact joints are attracting increasing in-
terest in applications to robotic fingers and manipulators, due
to the potential of the absence of abrasion wear, simplification
of the controller, enlargement of reachable configurations, etc.
This paper first proposes a novel 2-DOF spherical rolling contact
(SRC) joint, with the joint model elements being formulated,
including such as rotation matrix, position vector, free modes, as
with those of classic joints. As an application, a new kind of
serial manipulator formed by the SRC joints is presented, and
its forward and inverse kinematics are modeled. The motions of
the 2-DOF SRC joint and manipulator are implemented using the
FreeBOT, and the control method is proposed for the FreeBOT,
such that the SRC joint and manipulator realize the motion
control. The kinematics and control of the 2-DOF SRC joint
and manipulator are validated using physics simulations and on
a real manipulator formed by FreeBOTs.

Index Terms—rolling contact joint, manipulator, modular self-
reconfigurable robot, forward kinematics, inverse kinematics

NOMENCLATURE

Bi links of the manipulator
JBn

Jacobian matrix of the SRC joint manipulator
Kp end-effector position control gain
Ka end-effector orientation control gain
kφi steering control gain of the driving trolley i
ksi forward control gain of the driving trolley i
li radius of the sphere body Bi, m
li,w wheel interval of the driving trolley i, m
n number of the joints
Pi virtual tangent plane between Bi and Bi–1
qi unit quaternioin that represents the orientation

of Bi with respect to Bi–1
qi,1 unit quaternioin that represents the orientation

of Bi with respect to Pi

qi–1,2 unit quaternioin that represents the orientation
of Bi–1 with respect to Pi

∗R# rotation matrix of body # relative to body ∗
∗

∗∗r# position of body # with respect to ∗ and
expressed in the frame ∗∗, m
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ri,w wheel radius of the driving trolley i, m
ri,out outer radius of the FreeBOT sheel, m
ri,in inner radius of the FreeBOT sheel, m
r right-superscript that represents reference

values
si forward arc distance of the driving trolley i, m
uif forward speed of the driving trolley i, m/s
uis steering speed of the driving trolley i, rad/s
wir rotation speed of the right wheel, rad/s
wil rotation speed of the left wheel, rad/s
Φi free modes matrix of the SRC joint i
∗

∗∗v# linear velocity of body # with respect to ∗ and
expressed in the frame ∗∗, m/s

∗
∗∗ω# angular velocity of body # with respect to ∗

and expressed in the frame ∗∗, rad/s
ω SRC joint velocity set of the manipulator, rad/s
φi steering angle of the driving trolley i, rad
ηi scalar part of the unit quaternion qi
ϵi, vector part of the unit quaternion qi
∆θi,1êi,1 Bi rotates through the angle ∆θi,1 around the

unit axis êi,1 relative to Pi

∆θi–1,2êi–1,2 Bi–1 rotates through the angle ∆θi–1,2 around
the unit axis êi–1,2 relative to Pi

× cross product of two vectors
□̃ conjugate of a quaternion

I. INTRODUCTION

ROLLING contact in which one body rolls without slip-
ping over the surface of the other is widespread in

robotics, such as spherical robots [1], multifingered robotic
hands [2, 3], and manipulator joints [4, 5]. When forming a
rolling contact (RC) joint, it has the advantages of the absence
of abrasion wear, simplification of the controller design, and
enlargement of reachable configurations due to the nature of
non-holonomic constraints [3, 6]. Research on single joint
having multi-degree of freedom (DOF) that can be actuated has
been on going, which will make the robots smaller, less costly,
or more functional than conventional robots [7]. However, few
works have proposed multi-DOF RC joints, nor have the joint
modeling, implementation, and applications been studied.

Rolling contact actually encompasses several different ge-
ometries, sphere on a plane or on another sphere, for exam-
ple. Hence, rolling contact pair allows relative motions with
different dimensions, forming rolling contact kinematic joint
with one, two, or three DOFs [8]. Regardless of the number of
DOFs, the no-slip condition associated with rolling contact, as
non-holonomic constraints [8], represents the principle basis
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of its kinematics modeling, which requires the instantaneous
relative velocity between the contact points on the two bodies
be zero. Li et al. in [6] review the geometries of contact
surfaces and the kinematics of contact. Using Darboux frame,
the kinematics of spin-rolling contact motion are studied in
[3, 9, 10]. These works provide alternative ways of describing
rolling contact motion in a general sense, which are inspira-
tional for formulating RC joints model.

Rolling contact joints are attracting increasing attention
on their potential applications to robotic fingers [11–16],
manipulator [4, 5, 17–22], etc. The kinematics of the 1-DOF
circular rolling contact (CRC) joint is modeled in [11], which
is used to form a 2-joint robot finger. To improve compli-
ance of the robotic hands, RC joints have been adopted to
manufacture sophisticated fingers [12–14]. The optimal design
of underactuated fingers and hand implant using RC joint is
studied to increase performance in robotic and prosthetic hands
applications [15, 16]. A 3-DOF serial chain [17] and a 3-DOF
planar parallel mechanism [4] using CRC joints is designed,
respectively, with the forward and inverse kinematics being
analyzed. Contributing to the compactness, miniaturization
potential, and lower part count, the RC joints are used to
construct hyper-redundant manipulators for minimally invasive
surgery [5, 19, 20], with the performance of the RC joints
in terms of payload, force, and stiffness are continuously
being optimized [18, 21, 22]. It is worth noting that so far
only 1-DOF CRC joint has been explored, and the robotic
fingers and manipulators perform only planar motions. To the
authors’ knowledge, there is only one work, inspired by human
knee anatomy, considering using coupled spheres rather than
cylinders to form a RC joint for usage as a knee joint in
lower limb exoskeletons [23]. However, the formed RC joint
is not specifically studied, whose kinematics are equivalently
simulated using those of multiple combined revolute joints. A
1-DOF rolling contact pair that can generate spatial relative
motion between links is proposed in [24–26], however, the
allowed spatial rolling motion needs be pre-specified, then
the shapes of the both pairing elements that can generate the
specified rolling motions must be manufactured.

This paper first proposes a 2-DOF spherical rolling contact
joint, abbreviated as SRC joint. The 2-DOF SRC joint is
formed by relative rolling motions about two axes on the
common tangent plane of the two sphere shells that may have
different radii. The joint model of the 2-DOF SRC joint is for-
mulated in this paper, which includes rotation matrix, position
vector, free modes, etc., as with those summarized for classic
joints, revolute joint for example [8]. Using the proposed 2-
DOF SRC joints, a new kind of serial manipulator is presented,
whose forward and inverse kinematics modeling are performed
using the 2-DOF SRC joint model. Due to the geometric
symmetry of the spherical units, the SRC joint manipulator
has the advantage of performing tasks in environments with
obstacles or narrow spaces.

The FreeBOT is used to implement the motions of the 2-
DOF SRC joint and manipulator [27], where a driving trolley
moves forward and steers inside the spherical iron shell to
drive the joint motions, and a magnet at trolley’s bottom
attracts the other body not to separate. This paper also develops

Fig. 1: Notations of the 2-DOF SRC joint and its Angle-axis
orientation representation

a physics simulation system for the proposed SRC joint and
manipulator, and builds a real SRC joint manipulator using
FreeBOTs, such that the 2-DOF SRC joint model, manipulator
kinematics and control method can be validated.

The main contributions of this paper are threefold:
(1) a new kind of robotic joint, termed as 2-DOF SRC joint,

is proposed, the joint model is formulated as with its other
classic joint counterparts;

(2) a new kind of serial manipulator composed of the SRC
joints is presented, whose forward and inverse kinematics are
modeled;

(3) the motion control of the 2-DOF SRC joint and manipu-
lator is realized using FreeBOT, which provides an alternative
way for actively actuating the 2-DOF SRC joint.

The rest of the paper is organized in the following way.
Section II formulates the 2-DOF SRC joint model. Section III
derives the forward and inverse kinematics model of the SRC
joint manipulator. Section IV uses the FreeBOT to implement
the motion control of the 2-DOF SRC joint and manipulator.
Section V validates the proposed 2-DOF SRC joint model and
the performance of the SRC joint manipulator with physics
simulation and physical experiments, respectively. Section VI
concludes the paper.

II. SPHERICAL ROLLING CONTACT JOINT

A RC joint is formed when one body rolls without slipping
over the surface of the other [8]. As shown in Fig. 1, this paper
introduces a novel 2-DOF SRC joint, including its rotation
matrix, position vector, free modes, etc, which connects two
spherical bodies that may have different geometric sizes.

The SRC joint provides two key constraints that combine
to form a 2-DOF joint. The first constraint ensures that the
bodies do not separate at the point of contact. The second
constraint is rolling without slipping about two axes on the
common tangent plane between the two bodies.

As shown in Fig. 1, this paper represents the bodies through
their body-fixed frames

∑
Bi and

∑
Bi–1 located at the sphere
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centers, with their radii denoted as li and li–1, respectively, that
li ̸= li–1 is possible. For ease of joint modeling derivation, we
introduce the virtual common tangent plane Pi between the
bodies, and its body-fixed frame

∑
Pi located at the point of

contact of the two bodies. Supposing the 2-DOF SRC joint
axes are aligned with the x̂ and ŷ axes of the frame

∑
Pi, the

initial joint state corresponds to that
∑

Bi,
∑

Bi–1 and
∑

Pi

have the same orientation.

A. Rotation Matrix

The rotation matrix of the SRC joint transforms a vector ex-
pressed in frame

∑
Bi to a vector expressed in frame

∑
Bi–1,

which represents the orientation of frame
∑

Bi relative to
frame

∑
Bi–1. There are different ways for the representation

of the orientation [8], such as Euler angles, Angle-axis, and
Quaternions, which can be used to equivalently calculate the
rotation matrix.

This paper uses unit quaternion to describe the orientation
of the body Bi with respect to the body Bi–1, denoted as
qi = [ηi, ϵi]

⊤ ∈ R4, with ηi and ϵi being the scalar and
vector parts of the quaternion, respectively.

Defining the SRC joint velocity Bi–1
Pi
ωBi , which represents

the angular velocity of
∑

Bi with respect to
∑

Bi–1 and
expressed in the frame

∑
Pi (note that the SRC joint axes are

aligned with the axes of the frame
∑

Pi), how the SRC joint
velocity Bi–1

Pi
ωBi

makes the rotation matrix Bi–1RBi
change is

the focus of this subsection. A more physically meaningful set
of angular velocities Pi

Pi
ωBi that closely relate to the driving

unit of the SRC joint, as shown in Section IV-A, is defined, it
has the following relationship with Bi–1

Pi
ωBi

:

Bi–1
Pi
ωBi =

li + li–1
li

Pi

Pi
ωBi

. (1)

Defining the unit quaternion qi,1 = [ηi,1, ϵi,1]
⊤ ∈ R4 to

represent the orientation of the body Bi with respect to the
tangent plane Pi, its derivative can be calculated from Pi

Pi
ωBi

as 
η̇i,1 = −1

2
Pi

Pi
ωBi

⊤ ϵi,1,

ϵ̇i,1 =
1

2

(
ηi,1

Pi

Pi
ωBi

− ϵi,1× Pi

Pi
ωBi

)
,

(2)

where ‘×’ represents the cross product.
The unit quaternion qi,1 is obtained by integrating over

Eq. (2). In order to calculate qi from qi,1, we define the
unit quaternion qi–1,2 = [ηi–1,2, ϵi–1,2]

⊤ ∈ R4 to represent
the orientation of

∑
Bi–1 relative to

∑
Pi, and first establish

the relationship between the angular displacements of
∑

Bi

and
∑

Bi–1 relative to
∑

Pi as follows. The Angle-axis
representations of angular displacement of

∑
Bi and

∑
Bi–1

relative to the
∑

Pi, denoted as ∆θi,1êi,1 and ∆θi–1,2êi–1,2,
are presented in Fig. 1, where frame

∑
Bi and

∑
Bi–1 rotates

through the angle ∆θi,1 and ∆θi–1,2 about an axis defined by
the unit vector êi,1 and êi–1,2 relative to frame

∑
Pi, respec-

tively. The following relationships exist between ∆θi,1êi,1 and
∆θi–1,2êi–1,2 according to the relativity principle in motion
and rolling without slipping condition between the two sphere
bodies:

êi–1,2 = −êi,1, (3)

and (refer to the Appendix A-A)

liθ̇i–1,2 = li–1θ̇i,1. (4)

The relationships (3) and (4) result in

∆θi–1,2êi–1,2 = − li–1
li

∆θi,1êi,1. (5)

Note that ∆θi,1êi,1 and ∆θi–1,2êi–1,2 actually can be viewed
as a geometry representation of ∆qi,1 and ∆qi–1,2 [8], where
∆qi,1 = qi,1(t)q̃i,1(t0) is the angular displacement calculated
with quaternions, similar for ∆qi–1,2, and the symbol ‘□̃’ rep-
resents the conjugate of a quaternion. Therefore, given initial
state qi,1(t0) and qi,1(t) integrated over Eq. (2), ∆qi,1 can
be calculated and converted to ∆θi,1êi,1. Then, ∆θi–1,2êi–1,2
is calculated from ∆θi,1êi,1 using Eq. (5), and converted
back to ∆qi–1,2 and then calculates qi–1,2(t) (the conversions
between the Angle-axis representation and quaternion refer to
the Appendix A-B).

So far, the orientations of the body
∑

Bi and
∑

Bi–1 with
respect to the tangent plane

∑
Pi, represented by qi,1 and

qi–1,2, have been obtained, and the orientation of
∑

Bi relative
to
∑

Bi–1, denoted as qi, can be calculated as

qi = q̃i–1,2qi,1. (6)

Correspondingly, the rotation matrix of the SRC joint
Bi–1RBi can be calculated from the unit quaternion qi as
shown in the Appendix A-C.

B. Position Vector

The position vector of the SRC joint is defined as the
translations from the origin of body

∑
Bi–1 to the origin of

body
∑

Bi along the SRC joint axes.
As shown in Fig. 1, the position vector of the SRC joint

can be expressed as

Bi–1
Pi
rBi =

 0
0

li + li–1

 . (7)

C. Free Modes

The free modes of the SRC joint define the directions in
which the motion of

∑
Bi relative to

∑
Bi–1 is allowed. They

are represented by the 6×ni matrix Φi whose columns are the
Plücker coordinates of the allowable motion [8], ni = 2 is the
number of the SRC joint DOFs. Defining the spatial velocity

vector of
∑

Bi, Bi–1
Bi–1

νBi
=
[
Bi–1

Bi–1
ω⊤

Bi
,
Bi–1

Bi–1
v⊤
Bi

]⊤
, the matrix

Φi relates the spatial velocity vector Bi–1
Bi–1

νBi to the SRC joint
velocities Bi–1

Pi
ωBix

and Bi–1
Pi
ωBiy

(note that the rotation about
the vertical axis of the tangent plane Pi between the bodies is
not allowed, i.e., Bi–1

Pi
ωBiz

= 0):

Bi–1
Bi–1

νBi
= Φi

[Bi–1
Pi
ωBix

Bi–1
Pi
ωBiy

]
. (8)

The angular velocities Bi–1
Bi–1

ωBi
and Bi–1

Pi
ωBi

satisfy the
relationship

Bi–1
Bi–1

ωBi
= Bi–1RPi

Bi–1
Pi
ωBi

. (9)
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Given the unit quaternion qi–1,2 in Section II-A, the rotation
matrix Bi–1RPi is obtained from qi–1,2:

Bi–1RPi
=
[
f1(qi–1,2) f2(qi–1,2) f3(qi–1,2)

]
, (10)

where the expressions of the functions fi refer to the Appendix
A-C.

Substituting Eq. (10) into Eq. (9) results in

Bi–1
Bi–1

ωBi
=
[
f1(qi–1,2) f2(qi–1,2)

] [Bi–1
Pi
ωBix

Bi–1
Pi
ωBiy

]
. (11)

Therefore, we obtain the angular free mode matrix Φiw =
[f1(qi–1,2), f2(qi–1,2)] that describes the generated angular
motion of

∑
Bi relative to

∑
Bi–1 when a SRC joint velocity

is given.
The linear velocity Bi–1

Bi–1
vBi is calculated as (a more detailed

derivation refers to the Appendix A-D)

Bi–1
Bi–1

vBi = (li + li–1)f
×
3 (qi–1,2)

(
Pi

Bi–1
ωBi–1

)
, (12)

where f×
3 (qi−1,2) is the skew-symmetric matrix of f3(qi–1,2).

Similar to the SRC joint velocity relationship in Eq. (1), one
has

Bi–1
Bi–1

ωBi = − li + li–1
li–1

Pi

Bi–1
ωBi–1 , (13)

which makes Eq. (12) be

Bi–1
Bi–1

vBi
= −li–1f

×
3 (qi–1,2)

Bi–1
Bi–1

ωBi
, (14)

and using Eq. (11), Eq. (14) turns into

Bi–1
Bi–1

vBi
=

− li–1
[
f×
3 f1(qi–1,2),f

×
3 f2(qi–1,2)

] [Bi–1
Pi
ωBix

Bi–1
Pi
ωBiy

]
. (15)

Therefore, the linear free mode matrix Φiv =
[−li–1f

×
3 f1(qi−1,2), −li–1f

×
3 f2(qi−1,2)] is obtained, which

describes the generated linear motion of
∑

Bi relative to∑
Bi–1 when a SRC joint velocity is given.
Combining Eqs. (11) and (15), the free modes matrix Φi

of the SRC joint in Eq. (8) can be expressed as

Φi =

[
f1(qi–1,2) f2(qi–1,2)

−li–1f
×
3 f1(qi–1,2) −li–1f

×
3 f2(qi–1,2)

]
, (16)

which reflects the spatial velocity of the body
∑

Bi relative
to the body

∑
Bi–1 due to the SRC joint velocity.

As a summary, Section II establishes the SRC joint model,
which describes the motion of frame

∑
Bi fixed in one body of

the SRC joint relative to frame
∑

Bi–1 fixed in the other body.
The motion is expressed as a function of the SRC joint motion
variables qi and Bi–1

Pi
ωBix

, Bi–1
Pi
ωBiy

, and other elements of the
SRC joint. As with other classic robot joints (Table 2.5, 2.6
in [8]), the SRC joint’s elements include the rotation matrix
Bi–1RBi , position vector Bi–1

Pi
rBi , and free modes Φi, which

have been summarized and listed in Table I. The elements are
also important for deriving the kinematics model of the robot
manipulator composed of the SRC joints in Section III.

TABLE I: Joint model formulas for 2-DOF SRC joint

Joint type 2-DOF SRC

Rotation matrix,
Bi–1RBi

(see Eq.(6))

Position vector,
Bi–1

Pi
rBi

 0
0

li + li–1


Free modes,Φi

[
f1(qi−1,2) f2(qi−1,2)

−li–1f
×
3 f1(qi−1,2) −li–1f

×
3 f2(qi−1,2)

]
Pose variables qi

Velocity variables

[
Bi–1

Pi
ωBix

Bi–1
Pi

ωBiy

]

III. KINEMATICS MODELING OF SRC JOINT MANIPULATOR

In this section, a serial robot manipulator composed of SRC
joints is presented as shown in Fig. 2, with its forward and
inverse kinematics being thoroughly modeled.

Three kinds of coordinate frame are defined to describe
relative motions among the manipulator bodies: inertial frame∑

I , link body-fixed frame
∑

Bi, and virtual tangent plane
body-fixed frame

∑
Pi (also as the joint frame), where

i = 1, · · · , n, n is the number of the joints/links. B0 represents
the base of the manipulator, the last link Bn is treated as the
end-effector. Define the position of the geometry center of
the spherical link Bi in the inertial frame

∑
I as I

IrBi
, the

orientation of link Bi relative to
∑

I as the unit quaternion
qi,I , and the radius of the link Bi as li.

A. Forward kinematics

The forward kinematics of the serial SRC joint manipulator
determines the pose (i.e., position and orientation) of the end-
effector, I

IrBn and qn,I , (or its linear and angular velocities,
I
IvBn and I

IωBn , in the forward instantaneous kinematics
problem), given the positions qi (or velocities Bi–1

Pi
ωBix

,
Bi–1
Pi
ωBiy ) of all of the SRC joints and the values of all of

the geometric link parameters li.
For the SRC joint manipulator, it exists that

IRBn
= IRB0

n∏
i=1

(
Bi–1RBi

)
. (17)

Given the SRC joints positions qi, the rotation matrices of
the SRC joints Bi–1RBi

are calculated as shown in Section
II-A. Without loss of generality, IRB0 is the identity matrix
when the base B0 is fixed. Therefore, the rotation matrix of
the end-effector with respect to the inertial frame, IRBn

, can
be calculated from qi. Then, the orientation of the end-effector
relative to the inertial frame, qn,I , can be extracted from IRBn

[8].
In order to calculate the angular velocity of the end-effector

in the inertial frame I
IωBn when given the velocities Bi–1

Pi
ωBix ,

Bi–1
Pi
ωBiy of all of the SRC joints, according to the free modes

of the SRC joint Φi in Table I, one first has

Bi–1
Bi–1

ωBi = Φiω

[Bi–1
Pi
ωBix

Bi–1
Pi
ωBiy

]
. (18)
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Fig. 2: Diagram of the serial SRC joint manipulator

Then, the angular velocity I
IωBi

, i = 1, · · · , n can be iter-
atively calculated as (iterative process refers to the Appendix
B-A)

I
IωBi

=

i∑
j=1

(
IRBj–1Φjω

[Bj–1
Pj
ωBjx

Bj–1
Pj
ωBjy

])
+ I

IωB0 . (19)

Specially, one has

I
IωBn

=

n∑
i=1

(
IRBi–1Φiω

[
Bi–1
Pi
ωBix

Bi–1
Pi
ωBiy

])
+ I

IωB0 . (20)

By defining the involved SRC joint velocity set

ω =



B0

P1
ωB1x

B0

P1
ωB1y

...
Bn–1
Pn

ωBnx

Bn–1
Pn

ωBny


∈ R2n, (21)

as in Eqs. (19) and (20), the forward angular velocity equa-
tions of the SRC joint manipulator can be obtained as follows

I
IωBi

= I
IωB0

+ JBiω ω, (22)
I
IωBn = I

IωB0 + JBnω ω, (23)

where JBiω,JBnω are termed as the angular Jacobian matri-
ces of the SRC joint manipulator that map the joint velocities
into the angular velocities of the link i and end-effector, and

JBiω =
[
IRB0Φ1ω · · · IRBi–1Φiω 0 · · · 0

]
∈ R3×2n,

(24)

JBnω =
[
IRB0

Φ1ω · · · IRBn–1Φnω

]
∈ R3×2n. (25)

The positions I
IrBi

and I
IrBn

are calculated as follows

I
IrBi =

I
IrB0 +

i∑
j=1

(
IRBj–1

Bj–1
Bj–1

rBj

)
, (26)

I
IrBn = I

IrB0 +

n∑
i=1

(
IRBi–1

Bi–1
Bi–1

rBi

)
. (27)

According to the free modes of the SRC joint Φi in Table
I, one has

Bi–1
Bi–1

vBi
= Φiv

[Bi–1
Pi
ωBix

Bi–1
Pi
ωBiy

]
. (28)

Differentiating Eq. (26) and using the relations (22) and (28)
results in (a more detailed derivation refers to the Appendix
B-B)

I
IvBi

= I
IvB0

+
I

Ir
×
0i

I
IωB0

+ JBivω, (29)

where JBiv is termed as the linear Jacobian matrix of the SRC
joint manipulator that maps the joint velocities into the linear
velocity of the geometry center of the link i, and

I
Ir0i=

I
IrB0

− I
IrBi

= −
i∑

j=1

Bj–1
IrBj

∈ R3, (30)

J ′
Biv=

[
IRB0

Φ1v · · · IRBi–1Φiv 0 · · · 0
]
∈R3×2n, (31)

JBiv=J ′
Biv −

i∑
j=1

(
Bj–1

I
r×Bj

JBj–1ω

)
∈ R3×2n, (32)

Similarly, Eq. (27) can be derived and results in

I
IvBn

= I
IvB0

+
I

Ir
×
0n

I
IωB0

+ JBnvω, (33)

where JBnv is the linear Jacobian matrix that maps the joint
velocities into the linear velocity of the end-effector.

I
Ir0n = I

IrB0 − I
IrBn = −

n∑
i=1

Bi–1
IrBi ∈ R3, (34)

J ′
Bnv =

[
IRB0

Φ1v · · · IRBn–1Φnv

]
∈ R3×2n, (35)

JBnv = J ′
Bnv −

n∑
i=1

(
Bi–1

I
r×Bi

JBi–1ω

)
∈ R3×2n, (36)

Eqs. (29) and (33) present the forward linear velocity
equations of the SRC joint manipulator.

B. Inverse kinematics

The inverse kinematics (IK) problem for the SRC joint
manipulator is to find the values of the SRC joint positions qi
(or velocities Bi–1

Pi
ωBix , Bi–1

Pi
ωBiy in the inverse instantaneous

kinematics problem) given the pose, I
IrBn

and qn,I , (or linear
and angular velocities, I

IvBn
and I

IωBn
) of the end-effector
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relative to the inertial frame and the values of all of the
geometric link parameters li.

Given the forward kinematics equations of the SRC joint
manipulator, Eqs. (17) and (27), it is clear that the IK problem
for the SRC joint manipulator requires the solution of sets of
nonlinear equations, and is difficult to be presented in closed
form. This section presents the damped least squares (DLS)
based IK method for the SRC joint manipulator, which first
obtains the smooth SRC joint velocities that correspond to
a desired end-effector velocity, i.e., the inverse instantaneous
kinematics problem of the SRC joint manipulator is solved.
Then, the SRC joint positions, which correspond to the specific
pose of the end-effector, can be obtained by performing the
joint velocities integration resulted from the velocities of the
end-effector that lead to its desired pose and orientation.

In order to obtain the required SRC joint velocities ω that
guarantee the desired linear and angular velocities of the
end-effecotr simultaneously, the forward linear and angular
velocity equations (23) and (33) are combined together:[I

IvBn

I
IωBn

]
=

[
I3

I

Ir
×
0n

0 I3

] [I
IvB0

I
IωB0

]
+

[
JBnv

JBnω

]
ω, (37)

where I3 is the identity matrix.
Without loss of generality, this paper supposes that the SRC

joint manipulator has a fixed base, Eq. (37) can be simplified
as [I

IvBn

I
IωBn

]
= JBn

ω, (38)

where JBn
= [J⊤

Bnv
,J⊤

Bnω
]⊤ ∈ R6×2n is termed as the

Jacobian matrix of the SRC joint manipulator.
Using the adaptive DLS method to solve the kinematics

equations (38), one performs singular-value-decomposition on
the Jacobian matrix JBn [28]

JBn
= UΣV ⊤, (39)

where U ∈ R6×6 and V ∈ R2n×2n are unitary matrices com-
posed of the left and right-singular vectors of JBn . Σ ∈ R6×2n

is a rectangular diagonal matrix with singular values of JBn

on the diagonal, which is calculated as

Σ =

σ1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · σ6 0 · · · 0

 , for 6 ≤ 2n (40)

and

Σ =



σ1 · · · 0
...

. . .
...

0 · · · σ2n

0 · · · 0
...

...
0 · · · 0


, for 6 > 2n (41)

with σi being the singular values ordered so that σ1 ≥ · · · ≥
σr > 0 and σr+1 = · · · = σmin(6,2n) = 0, r is the rank of
JBn .

Using Eq. (39), the adaptive DLS based IK solution of Eq.
(38) is [29, 30]

ω = V Σ∗U⊤
[I
IvBn

I
IωBn

]
, (42)

where Σ∗ ∈ R2n×6 is the pseudoinverse of Σ and formed
by replacing every none-zero diagonal entry σi of Σ with its
damped reciprocal

σ∗
i =

σi

σ2
i + λ2

, i = 1, · · · , r, (43)

and transposing the resulting matrix. The damping factor λ2

is adaptively adopted according to the following law:

λ2 =


0, if σmin(6,2n) ≥ ξ(

1−
(
σr

ξ

)2
)
λ2

max, otherwise
(44)

where σr is the smallest positive singular value of JBn , and
ξ defines the size of the singular region; the value of λmax
is at user’s disposal to suitably shape the solution in the
neighborhood of a singularity.

The smooth SRC joint velocity ω that corresponds to the
specific end-effector velocities I

IvBn
, IIωBn

can be obtained
using Eq. (42). In order to solve the joint positions qi that
corresponds to the desired pose of the end-effector, I

IrBn and
qn,I , a closed-loop reference velocity profile I

I
vr
Bn

and I
I
ωr

Bn

for the end-effector reaching the desired pose is designed as
follows

I
I
vr
Bn

=
I

I
ṙdBn

+Kp(
I

I
rdBn

− I
IrBn

), (45)
I
I
ωr

Bn
=

I

I
ωd

Bn
+KaδBn,Quat, (46)

δBn,Quat = ηn,Iϵ
d
n,I − ηdn,Iϵn,I − ϵdn,I × ϵn,I , (47)

where the right-superscript ‘d’ denotes the desired values,
ηn,I and ϵn,I are the scalar and vector parts of qn,I respec-
tively, and the resulting end-effector orientation errors can
be calculated using Eq. (47). Kp,Ka ∈ R3×3 are suitable
positive definite matrix gains. It is readily to prove that
the end-effector pose errors globally asymptotically converge
to zeros by following the velocity profile I

I
vr
Bn

and I
I
ωr

Bn

[31]. Given the end-effector reference velocities I
I
vr
Bn

and
I
I
ωr

Bn
, the corresponding SRC joint reference velocities ωr

are solved using Eq. (42). Then, the required joint positions
qr
i for reaching the desired end-effector pose are obtained by

performing the joint reference velocity integration using the
SRC joint model in Section II.

C. Discussion

The SRC joint manipulator has the advantages of the
enlargement of motion range, the absence of abrasion wear,
provision of a transmission ratio directly at the joint, etc. It
is worth noting that due to the geometric symmetry of the
spherical units, the SRC joints can roll forward flexibly in
all directions, such that the manipulator can easily perform
tasks in environments with static and dynamic obstacles, as
well as in narrow spaces. The drive of the SRC joint can
also be novelly physically implemented. Unlike conventional
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Fig. 3: The components of a FreeBOT module

robotic manipulator that use combinations of revolute and
prismatic joints implemented by DC motors, the realization
of the SRC joint could be using the FreeBOT for example
[27], as shown in detail in Section IV, where a driving trolley
moves inside the spherical iron body and uses a magnet at
trolley’s bottom to attract the other body not separated. In
turn, performing chain-type motion is common for a MSRR
robot (like FreeBOT) in self-reconfiguration tasks [32], the
established SRC joint model and manipulator kinematics are
also useful for describing the reconfiguration motions of the
FreeBOT.

IV. CONTROL OF SRC JOINT MANIPULATOR

A MSRR robot whose module can be freely connected,
termed as FreeBOT, has been proposed by Liang et al. [27]
This section uses FreeBOTs to realize the kinematic motion of
the 2-DOF SRC joint and manipulator composed of SRC joints.
The desired SRC joint motions are translated into those of the
driving trolley inside the FreeBOT through path planning, then
control method is proposed for the trolley, such that the trolley
drives the SRC joint and end-effector of the manipulator to
move as expected.

A. FreeBOT components

As shown in Fig. 3, a FreeBOT is mainly composed of an
iron sphere shell, a differential-wheel driven trolley inside the
shell, a permanent magnet at the trolley bottom, and other
measurement and control units. When a FreeBOT moves over
another one, the magnetic force between the permanent magnet
of one FreeBOT and the iron shell of the other FreeBOT
guarantees the two FreeBOTs not separated. A layer of EVA
foam is applied to the outer surface of the iron sphere shell
to increase friction forces and torques, such that the two
FreeBOTs roll relatively without slipping at the contact point,
and the rotation about the vertical axis of the tangent plane at
the contact point is avoided.

Obviously, the 2-DOF SRC joint is singularity-free when
the driving trolley is holonomic, for instance, using omni-
directional wheels. Differential-wheel driven trolley, on the
other hand, are widely used in robotics owing to its simplicity.
In a FreeBOT, the trolley steers freely inside the shell about
the vertical axis of the tangent plane, and moves forward
along arbitrary direction inside the tangent plane, thus the 2-
DOF motions of the SRC joint are realized. The relationships

Fig. 4: FreeBOT realization of the SRC joint manipulator

between the trolley steering and forward velocities and the
SRC joint velocities Bi–1

Pi
ωBi

are discussed in Section IV-B.
In this paper, a Lyapunov-based control method is proposed

for the non-holonomic differential-wheel driven trolley to
realize the required motions of the SRC joint and manipulator.
By taking the first steering to the desired angle then moving
forward strategy can also simulate the control effect of a
holonomic trolley, i.e., simultaneously generating accurate
2-DOF angular velocity of the SRC joint, which will be
explained in detail in Section IV-C.

B. Trolley path planning

A serial-chain SRC joint manipulator formed by FreeBOTs
is presented in Fig. 4. For the end-effector (assumed as the
shell of the end FreeBOT) moving with specific velocities or
reaching a desired pose, the corresponding SRC joint reference
velocities ωr or final joint positions qr

i have been obtained
through solving the IK problem in Section III-B. This section
determines the desired motions of the driving trolleys, such
that the corresponding SRC joint can have the required velocity
Bi–1
Pi
ωr
Bix

,Bi–1

Pi
ωr
Biy

or reach the required joint position qr
i .

1) velocity planning: For the SRC joint generating the
required angular velocity Bi–1

Pi
ωr
Bix

,Bi–1

Pi
ωr
Biy

, we define the
forward and steering speed of the driving trolley i as uif and
uis, respectively, denote the angular displacement of the trolley
i caused by the steering motion as φi, the linear velocity of the
trolley i in the tangent plane

∑
Pi, Pi

Pi
vTi , can be calculated

as follows

Pi

Pi
vTi

=

uifcosφi

uif sinφi

0

 , (48)

with the steering dynamics

φ̇i = uis, (49)

where φi = 0 corresponds to that the forward direction of the
trolley i points towards the x̂ axis of

∑
Pi.

According to the non-holonomic constraint that rolling
without slipping occurs at the contact point between the two
FreeBOTs, the following relationship exists{

Pi

Pi
vTix

− li
Pi

Pi
ωBiy

= 0,

Pi

Pi
vTiy

+ li
Pi

Pi
ωBix

= 0.
(50)
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Substituting Eq. (48) and the SRC joint velocity relationship
(1) into Eq. (50) results in{

uifcosφi − l′i
Bi–1
Pi
ωBiy = 0,

uif sinφi + l′i
Bi–1
Pi
ωBix

= 0,
(51)

where l′i = li li–1/(li + li–1).
Using Eq. (51), in order to generate the required SRC joint

velocity Bi–1
Pi
ωr
Bix

,Bi–1

Pi
ωr
Biy

, the driving trolley i should move
with the forward speed ur

if along the specific direction φr
i ,

and ur
if , φ

r
i are calculated asur

if = l′i

√(
Bi–1

Pi
ωr
Bix

)2
+
(
Bi–1

Pi
ωr
Biy

)2
,

φr
i = atan2

(
−Bi–1

Pi
ωr
Bix

/Bi–1

Pi
ωr
Biy

)
.

(52)

2) position planning: For the SRC joint reaching the re-
quired joint position qr

i , the corresponding orientation of
∑

Pi

relative to
∑

Bi–1, represented by the unit quaternion q̃r
i–1,2,

is determined from qr
i using the SRC joint model in Section

II. The rotation matrix Bi–1Rr
Pi

is calculated from q̃r
i–1,2.

Therefore, the position of the contact point between the two
FreeBOTs in the

∑
Bi–1, which corresponds to the required

SRC joint position qr
i , is determined:

Bi–1

Bi–1
rrPi

= Bi–1Rr
Pi

Bi–1
Pi
rPi

= Bi–1Rr
Pi

[0, 0, li–1]
⊤
,

(53)

which is constant, and can be translated into the moving frame∑
Pi as

Pi

Pi
rrPi

= PiRBi–1(
Bi–1

Bi–1
rrPi

− Bi–1
Bi–1

rPi). (54)

It is intuitive that the target position of the contact point,
Pi

Pi
rrPi

, can be expressed as going through a circular arc from its
current position Pi

Pi
rPi in

∑
Pi, given that the contact point

always moves on the sphere surface of the FreeBOT Bi–1.
There are two parameters to describe the reference circular
arc, the arc distance sri and the arc azimuth φr

i , which are
calculated assri = li–1 acos

((
li–1 − abs

(
Pi

Pi
rrPiz

))
/li–1

)
,

φr
i = atan2

(
Pi

Pi
rrPix/

Pi

Pi
rrPiy

)
.

(55)

Therefore, in order to reach the required SRC joint position
qr
i , the driving trolley i should go through the arc distance sri

along the specific direction φr
i in the tangent plane.

C. Trolley control method

Herein, the forward and steering speeds of the driving
trolley uif and uis, as well as the rotation speeds of the two
differential wheels wir and wil, are sought, such that the driv-
ing trolley can move forward with the reference speed ur

if or
move through the reference arc distance sri along the reference
direction φr

i . As a result, the SRC joint (and correspondingly
the end-effector) can have the reference velocities or reach the
desired poses, respectively.

1) forward and steering dependent: Following the steering
dynamics of the trolley i in Eq. (49), the following trolley
steering speed guarantees that the steering angle converges to
the reference direction φr

i :

ur
is = φ̇r

i + kφi,1(φ
r
i − φi). (56)

In order to make the trolley i moves forward with the speed
ur
if along the reference direction φr

i , which generates the
reference SRC joint velocity Bi–1

Pi
ωr
Bix

and Bi–1

Pi
ωr
Biy

(as shown
in Eq. (52)), it is designed that the trolley moves forward and
steers simultaneously along the velocity{

uif = ur
ifcosφie,

uis = ur
is + kφi,2

ur
if sinφie,

(57)

where φie is the steering angle error, kφi,1
, kφi,2

are positive
constant gains.

Using Eq. (57) as the control rule of the trolley i, φie = 0 is
a uniformly asymptotically stable point. In this case, from Eq.
(57), it is guaranteed that uif = ur

if , which means the trolley
i can move forward with the speed ur

if along the reference
direction φr

i . As a result, the SRC joints (and correspondingly
the end-effector) can have the reference velocities.

Proof. A scalar function V as a Lyapunov function candidate
is proposed:

V = 1− cosφie. (58)

Clearly, V ≥ 0. If φie = 0, V = 0. If φie ̸= 0, V > 0.
Substituting the control rule Eq. (57) into the steering dy-

namics Eq. (49), one obtains the closed-loop steering dynamics

φ̇ie = −kφi,2
ur
if sinφie. (59)

Therefore, one has

V̇ = φ̇iesinφie

= −kφi,2
ur
if sin

2 φie ≤ 0.
(60)

Then, V becomes a Lyapunov function.
By linearizing the differential Eq. (59) around φie = 0,

φ̇ie + kφi,2u
r
ifφie = 0. (61)

It is readily to see that kφi,2
ur
if is continuously differen-

tiable and is bounded. The characteristic equation for Eq. (61)
is

s+ kφi,2
ur
if = 0. (62)

From Eq. (52), there exits a positive constant δ such that
ur
if ≥ δ for all t ≥ 0. Therefore, the root of Eq. (62) have real

parts less than or equal to −kφi,2
δ, which implies that φie = 0

is a uniformly asymptotically stable point of Eq. (61).

2) forward and steering independent: In order to simulate
the control effect of a holonomic driving trolley, i.e., simul-
taneously generating the accurate 2-DOF SRC joint velocity,
we adopt the first steering to the desired angle then moving
forward strategy. Although it requires extra time to wait for
the convergence of the steering angle error φie, the strategy is
sufficient for performing the position movements in Eq. (55),
such that the SRC joint can reach the required position qr

i .
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Since the trolley is only required to steer first, one has
ur
if = 0. Therefore, the control rule of the trolley Eq. (57)

is simplified as uis = ur
is in Eq. (56), which guarantees that

the steering angle converges to the reference direction φr
i .

Then, we design that the trolley moves forward with the
speed

uif = ṡri + ksi(s
r
i − si), (63)

where ksi are positive constant gains.
Given the forward dynamics of the trolley i that ṡi = uif ,

it is readily to prove that the forward speed in Eq. (63)
guarantees the trolley going through the required arc distance
sri . Therefore, the SRC joint i reaches the required position qr

i .
As a result, the end-effector reaches the desired pose I

I
rdBn

and
qd
n,I in the task space.
3) wheel speeds: For the FreeBOT shown in Fig. 3, the

forward and steering speeds of the driving trolley and the ro-
tation speeds of its two differential wheels satisfy the following
relationships (refer to the Appendix C)

uif =
ri,out ri,w√
4 r2i,in − l2i,w

(ωir + ωil) ,

uis =
ri,w
li,w

(ωir − ωil) ,

(64)

where wir, wil represents the rotation speeds of the right and
left wheels of the trolley i, respectively. Other parameters are
defined in the Fig. 5.

Having obtained the trolley forward and steering speeds
uif , uis in the trolley control method, the wheel speeds that
generate the uif , uis can be solved from Eq. (64):

wir =

√
4 r2i,in − l2i,w

2 ri,out ri,w
uif +

li,w
2 ri,w

uis,

wil =

√
4 r2i,in − l2i,w

2 ri,out ri,w
uif − li,w

2 ri,w
uis.

(65)

Therefore, by applying rotation speeds in Eq. (65) to the
differential wheels, the SRC joint and end-effector can realize
the reference velocities, as well as that the SRC joint can reach
the reference joint position and the end-effector reaches the
desired pose. A whole flow-chart that brings the end-effector
using FreeBOTs is presented in Fig. 6.

V. EXPERIMENTS

This paper constructs a physics simulation system for the
SRC joint and manipulator composed of FreeBOTs using the
Simscape Multibody environment [33], termed as FreeBOT-
SIM. The gravity, collision detection and frictions, as well
as the effects of magnetic forces among the FreeBOTs can
be successfully simulated. The wheel speeds of the driving
trolley solved in Section IV-C are applied to the wheel block in
FreeBOT-SIM, which causes the motions of the FreeBOT-SIM
according to the physical laws. The FreeBOT-SIM provides a
wide variety of sensors to measure the states of FreeBOTs,
the SRC joint and manipulator. As a result, the SRC joint
model, the kinematics models as well as the path planning and

(a) Rear view (b) Right view

Fig. 5: Geometry parameters of the FreeBOT, li,w is the wheel
interval of the trolley, ri,w is the wheel radius of the trolley,
ri,out, ri,in are the outer and inner radii of the shell of the
FreeBOT.

control method of FreeBOTs can be readily validated using the
FreeBOT-SIM.

A physical SRC joint manipulator is also built using real
FreeBOTs, on which the effectiveness of the manipulator
kinematics models as well as the path planning and control
method of FreeBOTs are validated, by realizing that the
manipulator moves as expected.

A. SRC joint model validation

This section first validates the established 2-DOF SRC joint
model. Considering that the sizes of the two bodies connected
by the SRC joint is generally different, as shown in Fig. 7,
we form the 2-DOF SRC joint in FreeBOT-SIM instead of
using two real FreeBOTs that have the same size. The radii
of the bodies Bi and Bi–1 are 0.03m and 0.04m, respectively.
Assigning the angular velocity Pi

Pi
ωBix

= −0.1 rad/s, Pi

Pi
ωBiy

=
−0.05 rad/s at the SRC joint i, the motion sequences of the
SRC joint at different time instants are presented in Fig. 7.

In order to validate the relationship between the SRC joint
velocity Bi–1

Pi
ωBi

and Pi

Pi
ωBix

, Pi

Pi
ωBiy

in Eq. (1), the calculated
SRC joint velocity using Eq. (1) and that measured using
the FreeBOT-SIM sensor are presented in Fig. 8. The value
consistency implies the correctness of the relationship in Eq.
(1).

The rotation matrix of the SRC joint i at different time
instants when given Pi

Pi
ωBix

, Pi

Pi
ωBiy

is calculated using the
model equations in section II, which represents the orientation
of the body Bi relative to the body Bi–1. The orientation
errors between the calculated values and that measured using
FreeBOT-SIM sensor are presented in Fig. 9, for intuitive
purposes, which is represented using X-Y-Z Euler angles. It can
be seen that the peak angle error is smaller than 2×10−2◦, and
the average angle error is [4.92, 0.01, 9.83]× 10−4◦, which is
mainly caused by the numerical integration errors. Therefore,
the correctness of the rotation matrix model of the SRC joint
is validated.

When applying the SRC joint velocity, the generated spatial
velocity of the body Bi relative to Bi–1, Bi–1

Bi–1
νBi

, are calculated
through the free modes matrix Φi in Eq. (8). The calculated
spatial velocity Bi–1

Bi–1
νBi and that measured using the FreeBOT-

SIM sensors are presented in Fig. 10. The coincidence of the
calculated and measured values validates the correctness of
the free modes model of the SRC joint.
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forward kinematics
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, geometric link parameters

Fig. 6: Control diagram of the SRC joint manipulator using FreeBOTs

(a) t = 0 s (b) t = 5.9 s (c) t = 14.9 s (d) t = 24.2 s (e) t = 30 s

Fig. 7: 2-DOF SRC joint motion frames in FreeBOT-SIM with different body sizes

Fig. 8: 2-DOF SRC joint velocity measured and calculated
using Eq. (1)

B. SRC joint manipulator reaching target pose

As shown in Fig. 4, a 6-DOF SRC joint manipulator
is built using FreeBOTs, and its simulation counterpart is
constructed in the FreeBOT-SIM. In tasks where the end-
effector of the SRC joint manipulator needs to reach a target
pose, the required SRC joint positions are first solved using
the proposed IK method in Section III-B, and then realzied
with the FreeBOT driving trolley motions using the proposed
path planning and control method. The kinematic geometry
and control parameters of the SRC joint manipulator are listed

Fig. 9: Euler angles of the rotation matrix error of the SRC
joint

in Table II.
Supposing that the end-effector needs to reach the target

poses A and B, as shown in Table II, respectively. The
corresponding SRC joint reference positions qr

i are solved
using the IK method

qr
1,A =

[
0.7992 0.1912 −0.5698 0.0016

]
,

qr
2,A =

[
−0.5579 −0.1939 −0.7714 −0.2366

]
,

qr
3,A =

[
0.1270 −0.4998 −0.3887 0.7636

]
,

(66)



IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. X, MAY 2022 11

Fig. 10: Spatial velocity of Bi relative to Bi–1 measured and
calculated using free modes model

TABLE II: Kinematic geometry and control parameters of the
SRC joint manipulator

Parameters Values
ri,in, ri,out, li 0.032, 0.034, 0.034 m

ri,w , li,w 0.005, 0.046 m
ξ, λmax 0.01
Kp, Ka 2In

ksi , kφi,1 , kφi,2 3, 6, 1
I
I
rB0

[
0 0 0

]⊤ m
qB0,I

[
1 0 0 0

]⊤
q1, q2, q3, q4 at t0

[
1 0 0 0

]⊤
φ(t0)

[
0.33 −0.42 0.30 −0.52

]⊤ rad
target I

IrA
[
−0.0036 0.1636 0.0924

]⊤ m
target I

IrB
[
0.1151 0.1489 0.0291

]⊤ m
target I

IrC
[
−0.0924 0.1597 −0.1154

]⊤ m
target qA,I

[
0.8610 0.4687 0.1356 −0.1437

]⊤
target qB,I

[
0.8520 0.3289 −0.2300 −0.3362

]⊤
target qC,I

[
0.9682 −0.0874 0.2220 0.0756

]⊤
obstacle 1, position

[
−0.0948 0.0985 −0.0467

]⊤ m
obstacle 2, position

[
−0.0948 0.2107 −0.0467

]⊤ m

and
qr
1,B =

[
−0.4558 0.5135 −0.7261 −0.0367

]
,

qr
2,B =

[
−0.0130 −0.6933 0.0267 −0.7200

]
,

qr
3,B =

[
0.0880 0.2577 0.8231 −0.4983

]
.

(67)

Given the reference positions of the SRC joints, the trolley
position planning (in Section IV-B2) and the forward and
steering independent control (in Section IV-C2) strategy are
adopted to drive the SRC joints to the reference joint positions.
The required measurements of the real-time trolley direction
φi and arc distance si are measured with simulated sensors
and calculated using Eqs. (53)-(55) in the FreeBOT-SIM, and
converted from the counts of the optical encoder mounted on
the wheels in the physical manipulator. The pose of the end-
effetor is measured using the related FreeBOT-SIM sensors
and motion capture system in the FreeBOT-SIM and physical
system, respectively.

Some motion frames captured at different time instants
during the SRC joint manipulator reaching the target pose A
and B are presented in Figs. 11 and 12, respectively. It can be
seen that the simulated and physical manipulators go through
the similar trajectories.

In order to show the motion precision of the SRC joint
manipulator under the proposed method, the position and
orientation errors of the end-effector during reaching the target
poses A and B are presented in Figs. 13 and 14, respectively. It
can be seen that the position and orientation errors of the end-
effector finally converge to zero in both cases in the FreeBOT-
SIM, which validates the effectiveness of the kinematics mod-
eling of the SRC joint manipulator and the path planning and
control methods of FreeBOTs. The final end-effector position
errors are [4.17,−0.21,−4.19]mm and [−3.51, 3.9, 1.47]mm,
and orientation errors (represented with X-Y-Z Euler angles)
are [1.07,−0.8, 1.45]◦ and [0.13, 1.86, 0.52]◦ for the physical
manipulator reaching the target pose A and B, respectively.
The experimental error is mainly caused by the deformation of
the anti-slip EVA foam layer, which makes the spherical shell
radius not exactly the same in the experiment and simulation.
A slight slip may also happen due to the deformation of the
EVA foam layer along the gravity direction.

C. SRC joint manipulator avoiding obstacles

In a cluttered environment with obstacles, the SRC joint
manipulator needs to complete specific tasks while avoiding
obstacles. The SRC joint manipulator has the advantage of
performing tasks in environments with obstacles or narrow
space due to its geometric symmetry of spherical units. As
shown in Fig. 15, the SRC joint manipulator needs to reach
for the target pose C through the narrow space between the
horizontal bars. Herein, the manipulator adopts the velocity
damping method [34] to formulate the obstacle avoidance
constraints using the established velocity kinematic equations
(29). A sequence of quadratic programs (QP) that generalize
the task-priority framework [35] are solved for the reference
joint velocity, which formulate reaching the target pose and
avoiding obstacles as equality and inequality constraints on
joint velocity, respectively. Once the reference SRC joint
velocity is obtained, the trolley velocity planning (in Section
IV-B1) and the forward and steering dependent control (in
Section IV-C1) strategy are used to ensure that the SRC joint
moves along the reference velocity, so that the manipulator
can avoid obstacles and the end-effector can reach the target
pose.

The task-related parameters are listed in Table II. As shown
in Fig. 15, the SRC joint manipulator smoothly avoids the
obstacles in the narrow space and makes the end-effector
successfully reach the target pose. It is worth pointing out that,
the SRC joint can easily roll towards the generated obstacle
avoidance direction and determine the closest point on the
linkage to the obstacle, due to the geometric symmetry of the
spherical shell.

The position and orientation deviations of the end-effector
during the whole movement are shown in Fig. 16, and the
closest distances on the manipulator to the obstacles are shown
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Fig. 11: Motion frames of the 6-DOF SRC joint manipulator reaching the target pose A.

Fig. 12: Motion frames of the 6-DOF SRC joint manipulator reaching the target pose B.

in Fig. 17. It can be seen that the target pose is reached
accurately, and the distances to the obstacles are always greater
than the set safety distance of 0.01m, which validates the
performance of the SRC joint manipulator in performing tasks
in narrow spaces with obstacles.

VI. CONCLUSIONS

Rolling contact joints have attracted interests in the field
of robotics. This paper first proposes a novel 2-DOF SRC
joint, with its joint model being formulated thoroughly. Then,
a serial manipulator formed by the 2-DOF SRC joint, termed
as the SRC joint manipulator, is presented, whose forward
kinematics are established based on the 2-DOF SRC joint
model. The Jacobian matrix that relates the SRC joint velocity
and the end-effector velocity are obtained, and the inverse
kinematics is solved using the adaptive DLS method. The

FreeBOT is used to implement the motions of the 2-DOF SRC
joint and manipulator, where the path planning and control
methods, including the velocity/position planning as well as
forward and steering dependent/independent control, for the
driving trolley are proposed. As a result, the SRC joint and
manipulator can generate the reference velocities and reach
the target positions. In addition, a physics simulation platform
FreeBOT-SIM and a real manipulator composed of FreeBOTs
are built for the SRC joint and manipulator, on which the
SRC joint model, the kinematics of the SRC joint manipulator,
and the path planning and control methods of the FreeBOTs
are validated, through performing SRC joint motions as well
as the tasks of the manipulator reaching target poses in a
free or obstructed space. In future applications, the SRC joint
manipulator could work in the environments with obstacles or
narrow spaces, for example, embedded pipes in buildings and
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truss mechanisms for some infrastructure, using the geometric
symmetry advantage of its spherical units. Motion planning
of the SRC joint manipulator performing tasks in narrow and

cluttered environments with complex obstacles will be further
studied in future work.

(a) simulation (b) experiment

Fig. 13: Position and orientation errors of the end-effector for reaching the target pose A

(a) simulation (b) experiment

Fig. 14: Position and orientation errors of the end-effector for reaching the target pose B

Fig. 15: Motion frames of the 8-DOF SRC joint manipulator reaching the target pose with obstacle avoidance.
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Fig. 16: Position and orientation errors of the end-effector for
reaching the target pose C.

Fig. 17: Closest distances between the SRC joint manipulator
and obstacles.

APPENDIX A
DERIVATIONS IN THE SRC JOINT MODELING

A. Angle-axis relationships between the bodies Bi and Bi–1
relative to the tangent plane Pi

In the inertial frame, since the body Bi and Bi–1 have the
same linear velocity at the contact point, one has

liθ̇i = li–1θ̇i–1, (68)

where θ̇i and θ̇i–1 are rotation speeds of Bi and Bi–1 relative
to the inertial frame. The rotation speed of the tangent plane
Pi satisfies the relationship:

θ̇pi
= θ̇i − θ̇i–1. (69)

The rotation speeds of Bi and Bi–1 relative to the dynamic
tangent plane Pi satisfy{

θ̇i,1 = θ̇i − θ̇pi
,

θ̇i–1,2 = θ̇i–1 + θ̇pi
.

(70)

Substituting Eq. (69) into Eq. (70) results in

θ̇i,1

θ̇i–1,2
=

θ̇i–1

θ̇i
=

li
li–1

(71)

B. Conversion between Angle-axis and quaternion represen-
tations

The angular displacement of ∆qi,1 = [∆ηi,1,∆ϵi,1]
⊤ ∈

R4 is transformed into the Angle-axis representation ∆θi,1êi,1
using the relationship [8]

∆θi,1 = 2 cos−1(∆ηi,1),

êi,1 =
∆ϵi,1

sin (∆θi,1/2)
.

(72)

The unit quaternion representation of the angular displace-
ment of

∑
Bi–1 relative to

∑
Pi, denoted as ∆qi–1,2 =

[∆ηi–1,2,∆ϵi–1,2]
⊤ ∈ R4, can be calculated from ∆θi–1,2êi–1,2

as follows {
∆ηi–1,2 = cos (∆θi–1,2/2),

∆ϵi–1,2 = êi–1,2sin (∆θi–1,2/2).
(73)

C. Calculating rotation matrix from the corresponding unit
quaternion

The rotation matrix Bi–1RBi
is calculated from the unit

quaternion qi as shown in Eq. (74) [8]:
Similar to Eq. (74), the rotation matrix Bi–1RPi

can be
expressed as the functions of the unit quaternion qi–1,2 in Eq.
(10), where

f1(qi−1,2)=

 1−2
(
ϵi–1,2(2)

2+ϵi–1,2(3)
2
)

2 (ϵi–1,2(1)ϵi–1,2(2)−ηi–1,2ϵi–1,2(3))
2 (ϵi–1,2(1)ϵi–1,2(3)+ηi–1,2ϵi–1,2(2))

, (75)

f2(qi−1,2)=

 2 (ϵi–1,2(1)ϵi–1,2(2)+ηi–1ϵi–1,2(3))
1−2

(
ϵi–1,2(1)

2+ϵi–1,2(3)
2
)

2 (ϵi–1,2(2)ϵi–1,2(3)−ηi–1,2ϵi–1,2(1))

, (76)

f3(qi−1,2)=

2 (ϵi–1,2(1)ϵi–1,2(3)−ηi–1,2ϵi–1,2(2))
2 (ϵi–1,2(2)ϵi–1,2(3)+ηi–1,2ϵi–1,2(1))

1−2
(
ϵi–1,2(1)

2+ϵi–1,2(2)
2
)

. (77)

D. Calculating linear velocity Bi–1
Bi–1

vBi

Bi–1
Bi–1

vBi =
Bi–1
Bi–1

ωPi ×
(
Bi–1
Bi–1

rBi

)
=−

(
Bi–1RPi

Bi–1
Pi
rBi

)
×
(
Bi–1
Bi–1

ωPi

)
=−

(
Bi–1RPi

[0, 0, li+li–1]
⊤
)
×
(
Bi–1
Bi–1

ωPi

)
=−(li + li–1)f

×
3 (qi–1,2)

(
Bi–1
Bi–1

ωPi

)
= (li + li–1)f

×
3 (qi–1,2)

(
Pi

Bi–1
ωBi–1

)
.

(78)

Bi–1RBi =

1− 2
(
ϵi(2)

2 + ϵi(3)
2
)

2 (ϵi(1)ϵi(2)− ηiϵi(3)) 2 (ϵi(1)ϵi(3) + ηiϵi(2))
2 (ϵi(1)ϵi(2) + ηiϵi(3)) 1− 2

(
ϵi(1)

2 + ϵi(3)
2
)

2 (ϵi(2)ϵi(3)− ηiϵi(1))
2 (ϵi(1)ϵi(3)− ηiϵi(2)) 2 (ϵi(2)ϵi(3) + ηiϵi(1)) 1− 2

(
ϵi(1)

2 + ϵi(2)
2
)
 . (74)
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APPENDIX B
DERIVATIONS IN THE MANIPULATOR MODELING

A. Iterative process of calculating I
IωBi

I
IωBi

= IRBi–1
Bi–1
Bi–1

ωBi
+ I

IωBi–1

= IRBi–1
Bi–1
Bi–1

ωBi
+ IRBi–2

Bi–2
Bi–2

ωBi–1 +
I
IωBi–2

=

i∑
j=1

(
IRBj–1

Bj–1
Bj–1

ωBj

)
+ I

IωB0

=

i∑
j=1

(
IRBj–1Φjω

[Bj–1
Pj
ωBjx

Bj–1
Pj
ωBjy

])
+ I

IωB0 .

(79)

B. Calculating linear velocity I
IvBi

Differentiating Eq. (26) results in

I
IvBi =

I
IvB0 +

i∑
j=1

(
I

I
ω×

Bj–1

IRBj–1

Bj–1
Bj–1

rBj

)
+

i∑
j=1

(
IRBj–1

Bj–1
Bj–1

vBj

)
= I

IvB0
−

i∑
j=1

(
Bj–1

I
r×Bj

I
I
ωBj–1

)
+

i∑
j=1

(
IRBj–1

Bj–1
Bj–1

vBj

)
.

(80)

Substituting Eqs. (22) and (28) into Eq. (80) results in

I
IvBi

= I
IvB0

−
i∑

j=1

(
Bj–1

I
r×Bj

(
I
IωB0

+ JBj–1ω ω
))

+

i∑
j=1

(
IRBj–1Φjv

[
Bj–1
Pj
ωBjx

Bj–1
Pj
ωBjy

])

= I
IvB0 −

i∑
j=1

(
Bj–1

I
r×Bj

)
I
IωB0−

i∑
j=1

(
Bj–1

I
r×Bj

JBj–1ω

)
ω + J ′

Bivω

= I
IvB0 +

I

Ir
×
0i

I
IωB0 + JBivω,

(81)

where the expressions of I
Ir0i,J

′
Biv

,JBiv are shown in Eqs.
(30)-(32).

APPENDIX C
RELATIONSHIPS BETWEEN THE TROLLEY FORWARD AND

STEERING SPEEDS AND WHEEL SPEEDS

As shown in Fig. 5b [8], wheel 1 and virtual wheel 2 have
the same velocity at the tangent point c:

riw
1

2
(ωir + ωil) = r′iω

′
ir, (82)

with
r′i =

√
r2in − (lw/2)2. (83)

Therefore, one has

ω′
ir = riw

1

2
(ωir + ωil)/

√
r2in − (lw/2)2, (84)

and

ui,1 = ri,outω
′
ir =

ri,outri,w√
r2in − (lw/2)2

1

2
(ωir + ωil). (85)

For the rotation of the trolley, as shown in Fig. 5a, one has

uis
lw
2

=
ωir + ωil

2
ri,w, (86)

which gives
uis =

ri,w
lw

(ωir + ωil). (87)
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Gosselin, “A compliant rolling contact joint and its
application in a 3-dof planar parallel mechanism with
kinematic analysis,” in International Design Engineering
Technical Conferences and Computers and Information
in Engineering Conference, vol. 46954, 2004, pp. 689–
698.

[5] J. Kim, S. i. Kwon, Y. Moon, and K. Kim, “Cable-
movable rolling joint to expand workspace under
high external load in a hyper-redundant manipulator,”
IEEE/ASME Transactions on Mechatronics, 2021.

[6] Z. Li and J. Canny, “Motion of two rigid bodies with
rolling constraint,” IEEE Transactions on Robotics and
Automation, vol. 6, no. 1, pp. 62–72, 1990.

[7] K. Abe, K. Tadakuma, and R. Tadakuma, “Abenics: Ac-
tive ball joint mechanism with three-dof based on spher-
ical gear meshings,” IEEE Transactions on Robotics,
vol. 37, no. 5, pp. 1806–1825, 2021.

[8] B. Siciliano and O. Khatib, Springer handbook of
robotics. Springer, 2016, pp. 13–31.

[9] L. Cui and J. S. Dai, “A polynomial formulation of
inverse kinematics of rolling contact,” Journal of Mech-
anisms and Robotics, vol. 7, no. 4, pp. 1–9, 2015.

[10] S. A. Tafrishi, M. Svinin, and M. Yamamoto, “Darboux-
frame-based parametrization for a spin-rolling sphere on
a plane: A nonlinear transformation of underactuated sys-
tem to fully-actuated model,” Mechanism and Machine
Theory, vol. 164, pp. 1–13, 2021.

[11] C. L. Collins, “Kinematics of robot fingers with circu-
lar rolling contact joints,” Journal of Robotic Systems,
vol. 20, no. 6, pp. 285–296, 2003.



IEEE TRANSACTIONS ON ROBOTICS, VOL. XX, NO. X, MAY 2022 16

[12] M. G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Pi-
azza, and A. Bicchi, “Adaptive synergies for the design
and control of the pisa/iit softhand,” The International
Journal of Robotics Research, vol. 33, no. 5, pp. 768–
782, 2014.

[13] C. Della Santina, C. Piazza, G. Grioli, M. G. Catalano,
and A. Bicchi, “Toward dexterous manipulation with
augmented adaptive synergies: The pisa/iit softhand 2,”
IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1141–
1156, 2018.

[14] H. Liu, K. Xu, B. Siciliano, and F. Ficuciello, “The mero
hand: A mechanically robust anthropomorphic prosthetic
hand using novel compliant rolling contact joint,” in
IEEE/ASME International Conference on Advanced In-
telligent Mechatronics (AIM). IEEE, 2019, pp. 126–132.

[15] S. W. Hong, J. Yoon, Y.-J. Kim, and H. S. Gong, “Novel
implant design of the proximal interphalangeal joint
using an optimized rolling contact joint mechanism,”
Journal of orthopaedic surgery and research, vol. 14,
no. 1, pp. 1–13, 2019.

[16] J. M. Boisclair, T. Laliberté, and C. Gosselin, “On the
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