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Abstract— This work presents a novel dense RGB-D SLAM
approach for dynamic planar environments that enables si-
multaneous multi-object tracking, camera localisation and
background reconstruction. Previous dynamic SLAM methods
either rely on semantic segmentation to directly detect dynamic
objects; or assume that dynamic objects occupy a smaller
proportion of the camera view than the static background and
can, therefore, be removed as outliers. With the aid of camera
motion prior, our approach enables dense SLAM when the
camera view is largely occluded by multiple dynamic objects.
The dynamic planar objects are separated by their differ-
ent rigid motions and tracked independently. The remaining
dynamic non-planar areas are removed as outliers and not
mapped into the background. The evaluation demonstrates
that our approach outperforms the state-of-the-art methods
in terms of localisation, mapping, dynamic segmentation and
object tracking. We also demonstrate its robustness to large
drift in the camera motion prior.

I. INTRODUCTION

Simultaneous localisation and mapping (SLAM) is one
of the core components in autonomous robots and virtual
reality applications. In indoor environments, planes are com-
mon man-made features. Planar SLAM methods have used
the characteristics of planes to reduce long-term drift and
improve the accuracy of localisation [1], [2]. However, these
methods assume that the environment is static – an assump-
tion that is violated when the robot works in conjunction
with other humans or robots, or manipulates objects in semi-
automated warehouses.

The core problem of enabling SLAM in dynamic en-
vironments while differentiating multiple dynamic objects
involves several challenges:

1) There are usually an unknown number of third-party
motions in addition to the camera motion in dynamic
environments. The number of motions or dynamic
objects is also changing.

2) Static background is often assumed to account for the
major proportion of the camera view. However, without
semantic segmentation, dynamic objects that occupy a
large proportion of the camera view can end up being
classified as the static background.
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Fig. 1: Hierarchical segmentation based on planes and non-planar
areas. The planes are extracted from the depth map and the non-
planar areas are represented by a set of super-pixels.

3) The majority of the colour and depth information can
be occluded by dynamic objects and the remaining
static parts of the visual input may not be enough to
support accurate camera ego-motion estimation.

Many dynamic SLAM methods have considered multiple
dynamic objects [3], [4], [5], but either rely on semantic
segmentation or assume that the static background is the
largest rigid body in the camera view. To concurrently solve
these problems, we propose a hierarchical representation
of images that extracts planes from planar areas and over-
segments non-planar areas into super-pixels (Figure 1). We
consequently segment and track multiple dynamic planar
rigid objects, and remove dynamic non-planar objects to
enable camera localisation and mapping. For this, we assume
that planes occupy a major fraction of the environment,
including the static background and rigid dynamic objects. In
addition, the camera motion can be distinguished from other
third-party motions by a tightly-coupled camera motion prior
from robot odometry.

In summary, this work contributes:
1) a new methodology for online multimotion segmenta-

tion based on planes in indoor dynamic environments,
2) a novel pipeline that simultaneously tracks multiple

planar rigid objects, estimates camera ego-motion and
reconstructs the static background,

3) a RGB-D SLAM method that is robust to large-
occluded camera view caused by multiple large dy-
namic objects.

II. RELATED WORK

A. Dynamic SLAM

Dynamic SLAM methods can be categorised into outlier-
based, semantic-based, multimotion and proprioception-
aided methods.

Outlier-based methods assume that the static background
occupies the major component in the camera view and
dynamic objects can be robustly removed during camera
tracking. Joint-VO-SF (JF) [6] over-segments images into
clusters and classifies each cluster as either static or dynamic



by comparing the depth and intensity residuals. StaticFusion
(SF) [7] introduces a continuous score to represent the
probability that a cluster is static. The scores are used to
segment the static background for camera localisation and
mapping, while the remaining dynamic parts are discarded
as outliers. Co-Fusion (CF) [5] and MultiMotionFusion [8]
can further model the outliers as new objects and track them
independently.

Semantic-based methods directly detect dynamic objects
from the semantic segmentation. Based on Mask R-CNN [9],
which provides pixel-wise object segmentation, EM-Fusion
[10] integrates object tracking and SLAM into a single
expectation maximisation (EM) framework. ClusterVO [3]
can track camera ego-motion and multiple rigidly moving
clusters simultaneously by combining semantic bounding
boxes and ORB features [11]. DynaSLAM II [12] further
integrates the multi-object tracking (MOT) and SLAM into
a tightly-coupled formulation to improve its performance
on both problems. However, these methods require that the
object detector is pre-trained on a dataset which includes
these objects or that the object model is provided in advance.

Multimotion methods explicitly model the dynamic com-
ponent as third-party rigid motions and segment dynamic
objects by their different motions against the camera mo-
tion. Multimotion visual odometry (MVO) [4] is an online
multimotion segmentation and tracking method based on
sparse keypoints. It iteratively samples all keypoints using
RANSAC to generate motion hypotheses and automatically
merge them when the merging can decrease the total energy.
In addition to RANSAC, motion hypotheses can be generated
from the increased N-points using a grid-based scene flow
[13]. Instead of merging motion hypotheses, DymSLAM
[14] computes a residual matrix from hypothetical motion
models and directly estimates the number of dynamic objects
from the residual matrix. The dense segmentation of multiple
dynamic objects based on super-pixels [15] is acquired
after the number of objects is specified. However, all these
methods assume that the largest body of motion in the camera
view is the static background and they have not demonstrated
their effectiveness when the major proportion of the camera
view is occluded by dynamic objects.

Robot proprioception, such as IMU and wheel odometry,
can be fused with visual sensors to improve the accuracy
and robustness of localisation in dynamic environments [16],
[17]. Kim et al. [16] uses the camera motion prior from
an IMU to compensate for the camera motion and select
static keypoints based on motion vectors. RigidFusion (RF)
[17] uses the camera motion prior from wheel odometry and
additional object motion priors to enable SLAM with single
dynamic object reconstruction when the major part of the
camera view is occluded. However, these methods are unable
to track multiple dynamic objects independently.

B. Planar SLAM

Planar features have been widely used in indoor dynamic
SLAM methods. Infinite planes can be used as landmarks
in the pose graph SLAM problem [18]. Based on keyframe

management, a global dense planar map can be reconstructed
using only a single CPU [19]. Planes can also be combined
with keypoints and lines [2], [1] for more robust cam-
era tracking. In structured environments, planes have been
demonstrated to significantly reduce accumulated rotational
drift under Manhattan world (MW) assumption [1]. All these
methods assume static environments, because planes in the
indoor environment, like walls, are often static. However, this
assumption is violated when planar objects, such as boxes,
are transported or manipulated by humans or robots.

III. METHODOLOGY

A. Overview and notation

The overview of our pipeline is illustrated in Figure 2.
Our method takes RGB-D image pairs from two consecutive
frames. At the t-th frame, we have a depth image Dt and an
intensity image It computed from the colour image.

A plane is represented in the Hessian form Π = (nT ,d)T ,
where n = (nx,ny,nz) is the normal of the plane and d is
the perpendicular distance between the plane and camera
origin. For each image frame, we extract planes directly
from the depth map using PEAC [20], which can provide the
number of planes P, the pixel-wise segmentation of planes
Vp : {V p

i |i∈ [1,P]} and their corresponding plane parameters.
After plane extraction, the remaining non-planar areas are
over-segmented into S super-pixels: Vnp : {V np

i |i ∈ [1,S]}.
For the i-th plane, we extract a set of keypoints Ki

using ORB features [21]. We then conduct multimotion
segmentation on planar areas Vp and cluster the planes into
M planar rigid bodies of different motions. For simplicity,
we name the camera motion relative to objects’ egocentric
frames as object egocentric motion [4] and denote them as
egoT = {ξ̃m ∈ se(3)|m ∈ [1,M]}. Since the static background
may not be the largest rigid body in the camera view,
we use the camera motion prior ξ̃c with potential drift to
simultaneously classify all planes and super-pixels into either
static or dynamic, and estimate the camera ego-motion.

We use the score γi ∈ [0,1] to represent the probability
that a plane or super-pixel is static. The scores γγγ : {γi|i ∈
[1,P+S]} are assigned to each plane and super-pixel, where
{γi|i ∈ [1,P]} and {γi|i ∈ [P+1,P+S]} represent the scores
of planes and super-pixels respectively. At time t, the pixel-
wise static dynamic segmentation Γt ∈ Rw×h can be esti-
mated from γγγ . The static parts of intensity and depth images
are used to estimate the camera motion ξc ∈ se(3). The dy-
namic planar rigid bodies are used to track dynamic objects.
The non-planar dynamic super-pixels, such as humans, are
removed as outliers.

The world-, camera-, and the m-th object-frames are W ,
C and Om respectively. The camera motion T (ξc) := exp(ξc)
is TCt−1Ct = T−1

WCt−1
TWCt , which transforms homogeneous co-

ordinates of a point in the current camera frame Ct to the
previous frame Ct−1. The function exp(ξ ) is the matrix
exponential map for Lie group SE(3). The m-th object
egocentric transformations is the camera motion relative to
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Fig. 2: The pipeline of our proposed method. (1) We first represent the input image in the current frame t as a combination of planes and
super-pixels. The ORB features [11] are extracted and matched to the previous frame. (2) Planes with similar rigid motions are clustered
into M planar rigid bodies and their corresponding egocentric motions are estimated respectively. However, we are uncertain which planar
rigid body belongs to the static background. (3) We, therefore, jointly separate the static background from the planes and super-pixels, and
estimate the camera motion via frame-to-frame alignment. (4) The static part is used to reconstruct the background and refine the camera
motion. (5,6) Dynamic non-planar super-pixels are removed as outliers, while dynamic planar rigid bodies are matched with planar rigid
bodies in the previous frame. The matched planar rigid body is tracked using RANSAC on their ORB features and plane parameters.

this object [4]:

T (ξ̃m) =
mT−1

Ct−1Ct
= T−1

Om
t−1Ct−1

TOm
t Ct . (1)

B. Multimotion segmentation based on planes

To extract planes, we transform the depth map to a point
cloud and cluster connected groups of points with close nor-
mal directions using the method from [20]. To match plane i
in the current frame with one in the previous frame, we first
estimate the angle and point-to-plane distance between plane
i and all planes in the previous frame. A plane is chosen as a
candidate if the angle and distance are below 10 degrees and
0.1 m respectively, which is the same as [2], [1]. However,
rather than choosing the plane with minimal distance [2], [1],
we further consider overlap proportion between two planes
using the Jaccard index, J(V1,V2) =

|V1∩V2|
|V1∪V2|

, where |V1| is
the number of pixels in planar segment 1. We choose the
candidate plane that has the maximal Jaccard index as the
matched plane for plane i and denote it as plane i′.

To estimate object egocentric motion Ti =
iT−1

Ct−1Ct
of plane

i, we extract and match ORB keypoints from plane i and i′.
The error function is defined as:

ei(Ti) = ∑
k∈χii′

ρ(||xk
i −T xk

i′ ||Σ)+λh||q(Πi)−q(T−T
i Πi′)||22,

(2)
where χii′ is the set of keypoint matches between planes i and
i′. xk

i and xk
i′ are homogeneous coordinates [x,y,z,1] of the

two matched keypoints. ρ (·) is the robust Huber error func-
tion [21]. λh is the parameter to weight the error between the
Hessian form of planes. q(Π) =

[
arctan( nx

nz
),arctan( ny

nz
),d

]
avoids over-parametrisation of the Hessian form [1].

To cluster planes with similar motions, we introduce a
score bi j ∈ [0,1] for each pair of neighbouring planes i and
j in the current frame. bi j represents the probability that
the motion of planes i and j can be modelled by the same

rigid transformation. We further introduce a new formulation
based on planes to jointly estimate motion of planes and
merge planes into rigid bodies:

min
egoT,b

P

∑
i=1

ei(Ti)+λ1 ∑
(i, j)∈Ep

bi j f (Ti,Tj)−λ2 ∑
(i, j)∈Ep

bi j,

s.t. bi j ∈ [0,1] ∀i, j.

(3)

egoT is the set of egocentric transformations {T1, · · · ,TP} for
all planes in the current frame. b= {bi j|(i, j)∈Ep}. Ep is the
connectivity graph of planes in the current frame and (i, j)∈
Ep means that planes i and j are connected in space. The first
term ei(Ti) is introduced in Equation (2). In the second term,
we propose f (Ti,Tj) = [ei(Tj)+ e j(Ti)]− [ei(Ti)+ e j(Tj)] to
quantify the error between two planes with egocentric motion
Ti and Tj respectively. The last term penalises the model
complexity by maximising the sum of probabilities that
neighbouring planes have similar motions.

The novelty of the formulation is that we treat each
individual plane as a motion hypothesis and estimate the
likelihood b of any two neighbouring hypotheses having the
same motion. This is in contrast to MVO [4], which dis-
cretely decides whether two motion hypotheses are merged
or not.

To minimise Equation (3), egoT and b are decoupled.
We firstly initialise all egocentric motions Ti to identity
and all scores bi j to 0. Then, at each iteration, we fix b
and find optimal egoT by optimising each transformation
independently. b is analytically solved subsequently by fixing
the optimised transformations. After minimisation, we set a
threshold b̂ = 0.9 and merge planes i and j if bi j > b̂. We
therefore acquire M planar rigid bodies and use RANSAC
to estimate their prior egocentric motions {ξ̃1, · · · , ξ̃M} re-
spectively. However, since the dynamic objects can occupy
the major part of the images, we still need to decide which
planar rigid body belongs to the static background.



C. Joint camera tracking and background segmentation

We jointly track the camera motion and segment the
static background based on a hierarchical representation
of planes and non-planar super-pixels. This representation
is more efficient in planar environments than uniformly
sampled clusters used in previous work [7], [17]. In addition,
compared to RigidFusion [17], our method only requires
the camera motion prior. The dynamic planar objects are
detected by their different rigid motions compared to the
camera motion while dynamic non-planar areas are removed
by their high residuals. To achieve it, we propose to minimise
a combined formulation that consists of three energy terms:

min
ξc,γγγ

R(ξc,γγγ)+G(ξc,γγγ)+H(ξc) s.t. γi ∈ [0,1] ∀ i, (4)

where γγγ is the full set of probabilities that each plane or
super-pixel is static. ξc ∈ se(3) is the camera ego-motion in
the world frame. Importantly, planes that belong to the same
planar rigid body are assigned with independent scores γ .
The first term R(ξc,γγγ) aligns the static rigid body using
weighted intensity and depth residuals. The second term
G(ξc,γγγ) segments dynamic objects by either different mo-
tions or high residuals and maintains segmentation smooth-
ness. The last regularisation term H(ξc) adds a soft constraint
on the camera motion.

1) Residual term: Following the previous work [7], [17],
we consider image pairs (It−1,Dt−1) and (It ,Dt ) from two
consecutive frames. For a pixel p with coordinate x

p
t ∈ R2

in the current frame t, the intensity residual rp
I (ξ ) and depth

residual rp
D(ξ ) against the previous frame under motion ξ

are given by:

rp
I (ξ ) = It−1

(
W (xp

t ,ξ )
)
− It

(
x

p
t
)

(5)

rp
D(ξ ) = Dt−1

(
W (xp

t ,ξ )
)
−|T (ξ )π−1(xp

t ,Dt
(
x

p
t )
)
|z , (6)

where π : R3 →R2 is the camera projection function and | · |z
returns the z-coordinate of a 3D point. The image warping
function W is:

W (xp
t ,ξ ) = π

(
T (ξ )π−1(xp

t ,Dt(x
p
t ))

)
, (7)

which provides the corresponding coordinate x
p
t−1 in the

previous frame. Similar to SF, the weighted residual term
is:

R(ξc,γγγ) =
N

∑
p=1

γi(p)[F(αIw
p
I rp

I (ξc))+F(wp
Drp

D(ξc))] , (8)

where N is the number of pixels with a valid depth value
and i(p) ∈ [1,P+S] indicates the index of the segment that
contains the pixel p. αI is used to weight the intensity
residuals. The Cauchy robust penalty:

F(r) =
c2

2
log

(
1+

(
r
c

2
))

(9)

is used to control robustness of minimisation and c is the
inflection point of F(r). Compared to SF, which assigns
scores to each cluster, we represent the image a combination
of planes and super-pixels.

2) Segmentation term: The objective of G(ξc,γγγ) is to
detect dynamic planar rigid bodies by their motions and
dynamic non-planar super-pixels by their high residuals.
G(ξc,γγγ) is computed by the sum of three items:

G(ξc,γγγ) = λpGp(ξc,γγγ)+λnpGnp(γγγ)+λrGr(γγγ), (10)

where λp, λnp and λr are parameters to weight different
items. The first term Gp(ξc,γγγ) classifies planes as dynamic
when their egocentric motions are different from the camera
motion ξc:

Gp(ξc,γγγ) =
P

∑
i=1

γiρ(||ξc − ξ̃m(i)||22), (11)

where m(i) is the planar rigid body that contains the plane i.
ξ̃m(i) is the egocentric motion prior of the m-th planar rigid
body and Huber cost function ρ(·) is used to robustly control
the error.

The second term Gnp(γγγ) handles non-planar dynamic
areas. We follow StaticFusion and assume they have a
significantly higher residual under the camera motion:

Gnp(γγγ) = F(ĉ)
P+S

∑
i=P+1

(1− γi)Ni, (12)

where we only consider super-pixels in non-planar area and
Ni is the number of pixels with valid depth in the i-th super-
pixel. The threshold ĉ is chosen as the average residual over
all S super-pixels.

The last term Gr(γγγ) maintains the spacial smoothness
of segmentation γγγ for both planar and non-planar areas by
encouraging neighbour areas to have close scores:

Gr(γγγ) = ∑
(i, j)∈Ep

bi j(γi − γ j)
2 + ∑

(i, j)∈Enp

(γi − γ j)
2, (13)

where Ep and Enp is the connectivity graph for planes and
non-planar super-pixels respectively. bi j is directly acquired
from the minimisation of Equation (3). This means that rather
than directly assigning the same score γ to planes that belong
to the same rigid body, we encourage them to have a close
score γ .

3) Motion regularisation term: We add a soft constraint
on the camera motion ξc based on the motion prior ξ̃c:

H(ξc) = λc(1−αs)ρ(||ξc − ξ̃c||22), (14)

where αs ∈ [0,1] is the proportion between the the number
of pixels that are associated to the static background over
the total number of pixels with valid depth reading. This
means that we rely more on the camera motion prior when
the dynamic objects occupy a higher proportion of the image
view. The robust Huber cost function ρ(·) is used to handle
large potential drifts in the camera motion prior.

The solver of Equation (4) is based on StaticFusion and
a similar coarse-to-fine scheme is applied to directly align
dense images. Specifically, we create an image pyramid for
each incoming RGB-D image and start the optimisation from
the coarsest level. The results acquired in the intermediate
level are used to initialise the next level, to allow correct



convergence. We also decouple the camera motion ξc and
γγγ for more efficient computation. Concretely, we initialise
the camera motion ξc as identity and all γγγ to 1. For each
iteration, we first fix γγγ and find the optimal ξc. The closed-
form solution for γγγ is then obtained by fixing ξc. The solution
for the previous iteration is used to initialise the current
iteration.

D. Background reconstruction and camera pose refinement

In the current frame t, after the minimisation of Equa-
tion (4), we acquire the optimised camera motion ξ̂c and
the static parts of intensity and depth images (Is

t ,D
s
t ). These

images are used to reconstruct the static background and
refine the camera pose ξc using frame-to-model alignment.
Concretely, we render an image pair (Ir

t−1,D
r
t−1) from the

current static background model at the previous camera pose.
The rendered image pair (Ir

t−1,D
r
t−1) is directly aligned with

(Is
t ,D

s
t ) by minimising

min
ξc

R(ξc,γγγ = 1)+H(ξc). (15)

The first term R(ξc,γγγ = 1) is the same as Equation (8) but
the γγγ is fixed to 1 because the input should only contain the
static background. We append H(ξc) in Equation (14) as a
soft-constraint for the frame-to-model alignment and αs is
estimated from pixel-wise dynamic segmentation Γt . Since
we have already solved Equation (4), we directly start from
the finest level of the image pyramid and initialise the solver
with the camera pose ξ̂c for the solver of Equation (15). The
refined camera pose is used to fuse the static images (Is

t ,D
s
t )

with the surfel-based 3D model as described in SF [7].

E. Planar objects tracking

After removing the static planes, we further track dynamic
planar rigid bodies independently. This is different to our
previous work RigidFusion [17] which models the whole
dynamic component with a single rigid transformation. For
each dynamic planar rigid body m, we match it to the
previous dynamic rigid bodies using the plane association
and estimate the egocentric motion. If all the currently
associated planes are static in the previous frame, we detect
the dynamic planar rigid body m as a new object and the
initial pose of the object relative to the camera frame is
denoted as Tinit . If the initial time of frame for an object
is t0, the object pose in the object’s initial frame can be
acquired by [14]:

TOm
t0

Om
t
= TCt0Ct

mTCt0Ct T
−1

init . (16)

IV. EVALUATION

A. Setup

The sequences for evaluation are collected with an Azure
Kinect DK RGB-D camera which is mounted on an omni-
directional robot (Figure 3a). The camera produces RGB-
D image pairs with a resolution of 1280 x 720 at 30 Hz.
The images are down-scaled and cropped to 640 x 480
(VGA) to accelerate the speed of pre-processing (Figure 2),
such as super-pixel and plane extraction. In the solver of

(a) Mobile manipulator Ada (b) Object 1 (c) Object 2

Fig. 3: (a) An omnidirectional wheeled platform with Vicon mark-
ers. (b) The first rigid object is put on a board with wheels and
moved by a human. (c) The second rigid object is put on the youBot
and is controlled remotely.

Equation (4) and (15), we further down-scale images to 320
x 240 (QVGA).

The dynamic objects are created from stacked boxes and
are either moved by humans or via a remotely controlled
KUKA youBot (Figure 3). The ground truth trajectories of
the camera and objects are collected using a Vicon system by
attaching Vicon markers on the camera and dynamic objects.
The camera motion prior is acquired by adding synthetic
drift on camera ground truth trajectories with a magnitude
of around 7 cm/s (trans.) and 0.4 rad/s (rot.).

For quantitative evaluation, we estimate the absolute tra-
jectory error (ATE) and the relative pose error (RPE) [22]
against the ground truth. The proposed method is compared
with PlanarSLAM (PS) [1], EM-Fusion (EMF) [10], Joint-
VO-SF (JF) [6], StaticFusion (SF) [7], Co-Fusion (CF) [5]
and RigidFusion (RF) [17]. We additionally provide the
camera motion prior with drift to CF as the variant CF∗. The
original RF uses motion priors for both camera and object.
Here we only provide RF with the camera motion prior and
denote it as RF∗, while our method with the camera motion
prior is denoted as ours∗.

We collect eight sequences with various camera and object
movements in different planar environments. For example, in
the seq1, a human moves the taller box to clear way for both
the robot and the other object so that the potential collision
can be avoided, while in the seq5, the robot tries to overtake
two dynamic objects ahead (Figure 4). All trajectories are
designed such that the two dynamic objects and a human
can be visible in the image at the same time and frequently
occupy the major proportion of the camera view. We also run
experiments on sequences sitting xyz and walking xyz from
TUM RGB-D dataset [22] which includes a large proportion
of non-planar areas and denote them as seq9 and seq10
respectively.

B. Camera localisation

We estimate the ATE root-mean-square error (RMSE) and
RPE RMSE between the estimated camera trajectories and
ground truth (Table I). In planar dynamic environments (seq.
1-8), the evaluation demonstrates that our method outper-
forms all other state-of-the-art methods (Figure 5). With the
help of the camera motion prior, our method achieves the best



Fig. 4: The ground truth trajectories of camera and dynamic objects
in both 2D and 3D perspectives. Trajectories of humans are not
plotted. The red segment of camera trajectories represents the part
when there are moving objects in the camera view, while the blue
segment means the camera moves in static environments. We mark
trajectories’ start position with a black solid dot and end position
with a circle-cross marker. The black arrows point to the direction
of camera view.

performance and corrects the large drift of the camera motion
prior. Even without the camera motion prior, we still achieve
better performance than the baseline of JF, SF and CF. PS
is unable to estimate the correct camera pose because there
are dynamic planes in the environment while PS assumes all
planes are static. Our method also outperforms EMF because
the semantic segmentation method [9] can only detect and
segment certain categories of dynamic objects, like humans.

In non-planar dynamic environments (seq. 9-10), EMF
outperforms all other methods because the dynamic humans
can be directly segmented by Mask R-CNN [9]. However,
even without relying on semantic segmentation, our method
has close performance compared to StaticFusion. This is
because our method can still detect dynamic super-pixels by
their high residuals under the camera motion.

C. Multimotion segmentation

For planar environments, we visualise the segmentation
results of our method and compare them with SF, RF∗ and
CF (Figure 6). SF is unable to detect all dynamic objects
because they as a whole occlude a large proportion of the
camera view, while RF∗ tends to classify parts of the static
background as dynamic. Both CF and our method can further
distinguish between different dynamic objects. However, the
segmentation of CF is not complete and CF tends to have a
delay when detecting a new object. We use two different
colours (green and purple) to represent that our method
treats the taller object as a new one after it passes behind
the front object. In non-planar environments, our method
can still provide correct binary segmentation of the static
and dynamic objects (Figure 7). However, we are unable

MP SLAM Method
PS EMF JF SF CF CF∗ RF∗ ours ours∗

1 26.7 38.5 50.6 30.5 22.9 10.4 10.2 16.5 20.1 4.23
2 49.5 88.7 63.6 28.2 27.4 26.0 7.30 14.3 6.81 6.32
3 41.7 53.1 37.0 24.3 74.0 21.6 10.6 4.38 4.01 3.42
4 36.0 36.8 34.0 28.9 87.2 18.9 20.3 8.39 22.6 8.37
5 16.2 31.4 14.7 10.3 13.6 4.73 8.35 14.1 25.2 6.74
6 11.7 39.6 35.5 52.8 23.5 10.1 3.67 7.57 8.37 4.67
7 25.5 19.1 25.5 34.7 57.6 14.7 8.71 41.3 6.43 7.60
8 28.4 46.8 25.6 26.5 62.1 69.8 18.9 14.2 8.33 10.3

9 273 2.15 3.7† 11.1† 4.0† 2.7† 5.63 9.73 3.81 5.54
10 197 29.8 6.6† 87.4† 12.7† 69.6† 48.7 19.5 14.9 11.6

(a) Trans. ATE RMSE (cm)
MP SLAM Method

PS EMF JF SF CF CF∗ RF∗ ours ours∗

1 7.64 23.8 43.6 28.4 17.2 7.58 9.07 9.41 10.9 4.50
2 7.31 51.6 22.8 26.9 11.2 12.6 5.61 3.99 3.58 3.06
3 7.87 25.1 14.8 23.5 26.1 6.8 4.22 7.13 3.11 2.78
4 7.38 29.9 26.5 28.2 64.3 15.9 15.7 6.13 14.2 6.52
5 7.61 25.8 6.31 31.4 3.31 3.62 6.34 3.90 13.5 4.77
6 7.51 17.1 30.6 25.4 18.1 7.02 4.67 4.26 4.38 3.18
7 7.52 12.8 15.4 31.3 62.4 7.54 6.43 25.1 4.73 4.09
8 7.29 20.0 15.6 24.1 36.4 28.3 11.2 7.54 5.91 4.41
9 7.36 3.12 2.6† 5.7† 2.8† 2.7† 3.01 3.48 2.95 2.98

10 7.34 49.0 6.0† 27.7† 12.1† 32.9† 41.9 13.4 9.59 8.67

(b) Trans. RPE RMSE (cm/s)

TABLE I: ATE and RPE RMSE for all ten RGB-D sequences.
The asterisk (∗) symbol represents that the method uses the camera
motion prior with drift and the dagger (†) symbol means the result
is taken from the original paper [10]. Our method achieves the
best performance in custom robotic sequences collected from planar
environments (seq. 1-8) and estimates correct camera trajectories in
TUM RGB-D dataset [22] which contains a large proportion of non-
planar areas (seq. 9-10).

to segment and track different non-planar dynamic objects
independently.

D. Background reconstruction

We qualitatively evaluate the reconstruction result of seq3
(Figure 8). Since we have no ground truth segmentation, we
re-collect a new sequence with the same camera trajectory
but no dynamic objects to recover the true background. As
shown in the results, RF∗ maps the dynamic objects into
the static background model. CF has mapped the same static
object twice, which is caused by wrong camera pose esti-
mation. Only our proposed method can remove all dynamic
objects and correctly reconstruct the background.

E. Planar rigid objects trajectory

For both objects, we compute the ATE RMSE between
the estimated and ground-truth trajectories when they are
in the camera view (Table II). Since the object can move
out of or move into the camera view several times, one
object trajectory can be divided into multiple parts. For each
object, we, therefore, use the maximal ATE RMSE among
the estimated trajectories of different parts for the final result.
Our method can provide more accurate and complete object
trajectories than CF, but loses track of a dynamic object
when the object stops moving or is occluded by other objects
(Figure 9).

F. Impact of drift in motion prior

We increase the drift magnitude of the camera motion
prior to test our methods’ robustness to different levels of
drift. By comparing the RPE RMSE of the camera motion
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seq6: obj_split

camera ground truth
camera motion prior

StaticFusion baseline (SF)
CoFusion baseline (CF)

RigidFusion with camera motion priors (RF*)
ours with camera motion priors (ours*)

trajectory start
trajectory end

Fig. 5: Visualisation of the estimated camera trajectories, camera motion prior and ground truth. The start position of all trajectories is
aligned to the same position and is marked with a black solid dot. Our method (blue) achieves the lowest error compared to the ground
truth (black solid) and can correct the drift of the camera motion prior (black dashed).

segmentation
seq4: opposing move2 seq8: obj transfer

RGB input with
planes and

super-pixels
segmentation

SF

RF∗

CF

ours∗

Fig. 6: Segmentation result of the static background and dynamic objects. We visualise the input RGB images with the segmentation of
planes and super-pixels in the first row. In all four methods, the static part is marked by blue. In SF and RF, we use red to represent
dynamic parts. In CF, we use different colours to show different objects. In our method, the non-planar dynamic areas are marked by red,
the planar rigid objects are marked by other colours. Results show that only our method can segment multiple dynamic objects correctly
and is robust to large occlusion.

seq1 seq4 seq7
object1 object2 object1 object2 object1 object2

CF 21.5 10.6 24.2 5.36 33.8 6.57
CF∗ 20.9 16.3 20.5 6.21 17.1 12.9
ours∗ 13.1 4.95 4.95 8.84 7.27 3.93

TABLE II: ATE RMSE of the object trajectories estimated from
CF baseline, CF∗ and ours∗.

prior and estimated trajectories, we find that our method
can outperform Co-Fusion baseline with drift up to 24 cm/s
(Figure 10). Even when the motion prior has a drift of
nearly 30 cm/s, we can still reduce the drift to around 12
cm/s. Compared to Co-Fusion with camera motion prior, our
method is always better using the motion prior with the same
magnitude of drift.

V. CONCLUSION

This work presented a dense RGB-D SLAM method that
tracks multiple planar rigid objects without relying on se-
mantic segmentation. We also proposed a novel online mul-
timotion segmentation method and a dynamic segmentation
pipeline based on a hierarchical representation of planes and
super-pixels. The detailed evaluation demonstrates that our
method achieves better localisation and mapping results than
state-of-the-art approaches when multiple dynamic objects
occupy the major proportion of the camera view. If one dy-
namic object is occluded by another, our method fails to track
the object but detects the object as new after it reappears in
the camera view. Our future work would be re-detecting the
dynamic objects based on their models to support long-term
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Fig. 7: Static/dynamic segmentation results on the walking xyz
sequence [22]. The first row shows the RGB images with seg-
mentation of planes and super-pixels. Our method achieves close
segmentation performance to SF in non-planar environments.

Ground truth RF∗

CF ours∗

Fig. 8: Reconstruction result of the RGB-D sequence 3. The
reconstruction failures are marked with red rectangles. RF has
mapped dynamic objects into the background. CF has mapped the
same static poster twice, which indicates wrong localisation results.

object tracking. We also plan to extend our method to non-
planar environments and enable independently tracking of
multiple large non-planar rigid objects.
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