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Abstract—In this paper, the 3-D inter-robot relative localization
problem is addressed using noise-corrupted odometric and dis-
tance measurements. Unlike the existing solutions, we are devoted
to providing a relative localization method that has an “overall
best performance”, which means that the tradeoffs between the
estimation accuracy (EA), the number of measurements (NoMs),
and the computation efficiency (CE) are considered. We demon-
strate that an existing formulation of the 3-D relative localization
problem, the square distances weighted least square (SD-WLS),
can be equivalently reformulated as a non-convex quadratic
constrained quadratic programming (QCQP) problem. Further,
to handle the non-convex nature of the QCQP problem, we
adopt the semidefinite programming (SDP) relaxation approach,
which drops the rank constraint and recovers the solution of
the QCQP via an eigenvalue decomposition strategy. Finally,
a refinement step is introduced to solve the problem that the
quadratic constraints might not be satisfied due to the SDP
relaxation. The simulation and experiment results show that,
compared to existing methods, our method has the best overall
performance when the three factors, i.e., EA, NoMs, and CE, are
important for a relative localization application.

Index Terms—3-D inter-robot relative localization, non-convex
optimization, QCQP, SDP.

I. INTRODUCTION

Multi-robot systems (MRSs) have received considerable
attention in recent years due to their significant advantages
in the aspects of robustness to failure, extensive coverage,
and high estimation accuracy through data fusion. A variety
of applications, such as search and rescue [1], environment
surveillance [2], distributed power grids [3], have exhibited
powerful capacity of MRSs. Undoubtedly, for the successful
employment of these applications, expressing each robot’s
pose (translation and orientation) with respect to a common
frame of reference is a prerequisite and hence an accurate
localization system is required.
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Generally, existing localization systems can be divided into
two major categories: absolute and relative localization sys-
tems. Global Positioning System (GPS) is a well-known abso-
lute localization system, which determines all robots’ locations
in a global frame. However, GPS signal interference (e.g.
jamming) may happen in some environments like underwater,
underground, outer planets, and indoor space, which hinders its
applications [4]. Other absolute localization systems, such as
indoor motion capture systems and Ultra-WideBand (UWB)
anchors with known constellation, are not suitable for an
unknown environment because a pre-installation of the sensors
is required. Compared to absolute localization, relative local-
ization, which refers to determining relative locations between
each pair of robots, is more prevalent for accomplishing tasks
in an unknown environment.

Manually measuring the relative pose between robots is
simple, but tedious, often with low accuracy, and not applica-
ble to large robot teams. Alternatively, utilizing the absolute
localization systems, such as GPS, motion capture system,
and UWB anchors, is surely possible for relative localization
but may encounter same problems in absolute localization
systems. To resolve the disadvantages of the above solutions,
many researchers prefer using proprioceptive sensors (e.g.,
camera, LiDAR, radar, UWB, IMU, wheel encoder, etc.) to
achieve relative localization. For example, in [5], a laser-
camera scheme is presented to solve the multi-robot map-
alignment problem in simultaneous localization and mapping
systems. A Visual-Inertial-UWB solution, which addresses
the 3-D relative localization problem in an unmanned aerial
vehicle collaboration application, is proposed in [6]. In our
previous work [7] and some other related work [8], [9], the
odometric (IMU and/or wheel encoder) information and UWB
ranging measurements are combined to determine the relative
pose between robots. Essentially, the above literature addresses
the relative localization by combining odometric information
and inter-robot measurements like bearing, distance, position,
or some combination of them.

In this paper, we are interested in the distance-based solution
for solving the 3-D relative localization problem. Unlike the
existing solutions, we provide a relative localization method
that has an “overall best performance”. Specifically, for prac-
tical implementation of the relative localization algorithm, the
following three factors are of vital importance: i) estimation
accuracy (EA); ii) number of measurements (NoMs); and iii)
computation efficiency (CE). Understanding the connections
between those factors and finding out a tradeoff scheme that
has good performances in all aspects are expected. However,
there are few methods in the existing literature that address
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this consideration.
The main contributions of this paper are threefold:

1) We prove that an existing formulation of the 3-D relative
localization problem using odometric and distance mea-
surements, i.e., square distances weighted least square
(SD-WLS), can be equivalently reformulated as a non-
convex quadratically constrained quadratic programming
(QCQP) problem.

2) A semidefinite programming (SDP) relaxation approach,
which drops the rank constraint and recovers the solution
of the QCQP via eigenvalue decomposition, is developed.
In addition, to solve the problem that the quadratic con-
straints might not be satisfied due to the SDP relaxation,
a refinement step is introduced, which seeks to find the
closest quaternion of the estimate quaternion obtained
from the SDP relaxation.

3) Simulation and experiment results (with real data) are
both provided to demonstrate that our method has the
best performance in terms of an overall consideration of
EA, NoMs, and CE.

II. RELATED WORK

Existing methods for 3-D relative localization using odo-
metric information and distance measurements can be catego-
rized into two types: algebraic-based and optimization-based
methods. The algebraic-based methods, which rely purely on
system geometry and do not consider measurement noises,
are studied in [10]. However, as noise is unavoidable in
measurements and has a severe impact on EA, optimization-
based methods are preferable in practice. A typical example
for the optimization-based methods is the WLS formulation
and its improvement, i.e., SD-WLS. As reported in [11], to
determine a unique solution of the relative pose of two robots,
solving the WLS problem is computationally impracticable.
With regard to the SD-WLS problem, the authors of [11] tried
several approaches, including eigendecomposition, Sum-of-
Squares-relaxation, and Lagrange-relaxation. Unsatisfactorily,
even for the fastest method, i.e., the Lagrange-relaxation-based
method, it will take 3-5s using the toolbox PHCpack [12]. As
an alternative, formulating the relative localization problem as
a QCQP problem and using SDP relaxation to deal with non-
convexity is proven to be a promising solution [13], which only
takes around 0.4s using the CVX toolbox in Matlab. This idea
is quite similar to our previous paper [7], which solves a 2-D
relative localization problem using odometry and UWB.

In a recent work [13], though the authors realized the
importance of the EA, CE, and NoMs for a relative localization
algorithm in real applications, they did not provide any specific
attempts to minimize the NoMs. In particular, since there are
16 unknowns in their formulation, each robot needs to collect
16 measurements to solve a 3-D relative localization problem.
Some quadratic constraints on the unknowns are introduced,
but they are used to improve the accuracy of the solution. In
contrast, we treat these constraints from a new perspective.
In particular, inspired by the method in [14], we point out
that the NoMs can be reduced by taking advantage of these
constraints. In Section V, through simulations and experiments,

Fig. 1. An illustration of the relative localization: the blue arrow denotes the
displacement of Robot 1, the red arrow denotes the displacement of Robot
2, and the green dashed line denotes the distance between Robots 1 and 2.
Our goal is to determine p and q̄ using these displacement and distance
measurements.

we demonstrate that the EA of our method can achieve similar
performance as the methods of [13] with almost the same CE
but fewer NoMs.

III. PROBLEM FORMULATION

Consider two robots R1 and R2 moving in a 3-D space.
Their initial poses are indicated by the frames of reference
F1 and F2, respectively. As shown in Fig. 1, R1 and R2

are equipped with odometric sensors (e.g. IMU), thus the
displacement estimates s1,l ∈ R3, l = 1, ..., N and s2,l ∈
R3, l = 1, ..., N of the two robots with respect to their own
frames can be recorded. Along their trajectories, N+1 distance
measurements, d0 and dl ∈ R, l = 1, ..., N , are acquired
with range sensors, such as UWB. In this paper, our goal
is to determine the relative pose between R1 and R2 using
the odometric and distance measurements. Without loss of
generality, we only discuss the case of determining the relative
pose of R2 with respect to R1.

Let p := [x, y, z]
⊤ and the rotation matrix C denote the

relative translation and the relative orientation of frame F1

with respect to frame F2, respectively. To avoid the gimbal
lock problem [15], we parameterize the rotation matrix C
using a 4 × 1 unit quaternion rather than Euler angle, which
is given as

q̄ = [q1, q2, q3, q4]
⊤
= [q, q4]

⊤
, q̄⊤q̄ = 1,

where q = [q1, q2, q3]
⊤ and q4 is the scalar term of a

quaternion. The rotation matrix C can be expressed in terms
of quaternion components as [16]:

C =

 1− 2q22 − 2q23 2 (q1q2 − q3q4) 2 (q1q3 + q2q4)
2 (q1q2 + q3q4) 1− 2q21 − 2q23 2 (q2q3 − q1q4)
2 (q1q3 − q2q4) 2 (q2q3 + q1q4) 1− 2q21 − 2q22

 .

(1)

At each time instant l, we assume that the distance measure-
ment dl is corrupted by Gaussian noise vl with zero mean and
covariance σ2

l , and produced according to

dl =
√

w⊤
l wl + vl, (2)

where wl represents the relative translation at each time instant
l and is defined by

wl := p+Cs2,l − s1,l. (3)
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Since distance measurements dl, l = 1, · · · , N are recorded,
we will have N nonlinear equations as of (3). By stacking
those equations, it is easy to have

d = h+ v, (4)

where d = [d1, · · · , dN ]
⊤, h =

[√
w⊤

1 w1, · · · ,
√
w⊤

NwN

]⊤
and v = [v1, · · · , vN ]

⊤. Let v ∼ N (0,Σ), then we know that
Σ = diag

(
σ2
1 , · · · , σ2

N

)
, where diag(·) denotes a diagonal

matrix with the elements of the corresponding vector on the
main diagonal.

Next, we will briefly introduce the SD-WLS method pre-
sented in [11]. Firstly, taking the square of both sides of (2),
we have

d2l = w⊤
l wl + 2vl

√
w⊤

l wl + v2l . (5)

Though the noise term v̂l := 2vl

√
w⊤

l wl + v2l is not zero-
mean Gaussian, the non-Gaussian random variable can be well
approximated by a Gaussian density function with matching
first and second order moments [11]. We assume that v̂l ∼
N (v̄l, σ̄

2
l ), and thus (5) can be rewritten as:

dl = w⊤
l wl + vl, (6)

where v̄l = E[v̂l] and E[·] denoting the expectation of a
specific matrix, and we assume v̄l is a constant and known.
The variables dl = d2l −v̄l and vl = v̂l−v̄l follow a zero-mean
Gaussian distribution, i.e., vl ∼ N (0, σ2

l ), where σl = σ̄l can
be obtained by σl = E[v2l ]. Again, we stack those equations,
which gives

d = hsd + v, (7)

where d = [d1, · · · , dN ]
⊤, hsd =

[
w⊤

1 w1, · · · ,w⊤
NwN

]⊤
and v = [v1, · · · , vN ]

⊤ ∼ N (0,Σ), Σ = diag(σ2
1, · · · , σ2

N ),
and σ1 = σl(4w

⊤
l wl + 2σl). Consequently, based on (7), the

3-D SD-WLS optimization problem can be formulated as:

min
p,q̄

1

2
(d− hsd)

⊤Σ−1(d− hsd),

s.t. q̄⊤q̄ = 1.
(8)

However, due to that the 3-D SD-WLS optimization problem is
highly nonlinear, existing approaches are not computationally
efficient [11]. In our previous work [7], the 2-D SD-WLS
optimization problem is reformulated as a non-convex QCQP
problem and addressed using an SDP strategy. In the next
section, we propose to demonstrate that the 3-D SD-WLS can
be addressed using a similar method.

IV. SEMIDEFINITE-OPTIMIZATION-BASED METHOD FOR
3-D RELATIVE LOCALIZATION

In this section, we prove that the 3-D SD-WLS optimization
problem can be reformulated as an equivalent non-convex
QCQP problem. The SDP relaxation technique is used to
handle its non-convex nature, and a recovery strategy is
provided to obtain the solution of the original 3-D SD-WLS
optimization problem. Further, to solve the problem that the

quadratic constraints might not be satisfied due to the SDP
relaxation, a refinement step, which seeks to find the closest
quaternion of the estimate quaternion obtained from the SDP
relaxation, is introduced 1.

A. Non-convex QCQP
To formulate the non-convex QCQP problem, the following

two lemmas are firstly presented.

Lemma 1. By introducing two auxiliary variables r =
C⊤p and q̃ = [q11, q12, q13, q14, q22, q23, q24, q33, q34, q44]

⊤ ∈
R10×1, where qij = qiqj , i, j = 1, · · · , 4, i ≤ j, the cost
function of (8) can be reformulated in a quadratic form, i.e.,

1

2
x⊤M0x, (9)

where x = [q̃⊤, r⊤,p⊤, 1]⊤, and M0 is a constant matrix,
which is given in Appendix A.

Proof. See Appendix A.

Remark 1. The cost function in (8) can be written as a poly-
nomial of the unknown variables p and q̄. The introduction of
the two auxiliary variables r and q̃ reduces the order of the
polynomial function, i.e., the cost function of the optimization
problem (8), from hexagonal to quadratic. In particular, as we
will see in (15) in Appendix A, the computation of d − hsd

produces a term p⊤C. Since the rotation matrix C can be
written in a quadratic form of q̄ as given in (1), we know
that d − hsd is cubic in terms of p and q̄. Then the order
of (8) should be hexagonal. However, by introducing the two
variables r and q̃, the reformulated cost function given in (9)
has a quadratic form in terms of x.

Lemma 2. The introduction of variable r and q̃ creates 6
and 20 different constraints for x, respectively. Together with
the constraints p⊤p = d20 and q̄⊤q̄ = 1, the newly defined
variable x in (9) has 28 constraints in total. In addition, all
of those constraints can be written in a quadratic form, which
is expressed as

x⊤Mox = 0, o = 1, ..., 28 (10)

where Mo, o = 1, ..., 28 are all constant matrices, which will
be introduced in detail in Appendix B.

Proof. See Appendix B.

Based on Lemma 1 and Lemma 2, we obtain the following
main theorem.

Theorem 1. Assume that d0, {s1,l, s2,l, dl}, l = 1, · · · , N are
available from odometry and range sensors, and v̄l is the mean
value of the squared noise, which is assumed to be a known
constant. Then the 3-D SD-WLS, i.e., the optimization problem
(8), can be equivalently reformulated as a non-convex QCQP
problem:

f∗
OPT = min

x

1

2
x⊤M0x

s.t. x⊤Mox = 0, o = 1, ..., 28
(11)

1To validate the correctness of our derivation in this section, Matlab testing
code is provided and can be found in: https://github.com/lyric12345678/RAL
Derivations of Section IV.
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where f∗
OPT denotes the optimal value of (11).

Proof. Substituting the two results of Lemma 1 and Lemma
2, i.e., (9) and (10), back to the 3-D SD-WLS formulation (8),
we can obtain (11).

Generally, there are two major differences of the 3-D QCQP
formulation between (11) and the formulation in [13]. Firstly,
the unknown variables for the QCQP problem are different.
This is because, in [13], the authors assume the elements of the
rotation matrix are unknown variables, while we consider q to
be unknown in our formulation. In many scenarios, using unit
quaternion to compute rotation matrix is more practical. For
example, the transformation information of the IMU sensor is
encoded by unit quaternion. In addition, compared to [13], the
relation p2 = d20 is used to reduce the number of unknowns in
x. Secondly, although both of our formulation and the QCQP
formulation in [13] include 16 unknown variables, the number
of constraints are different. In our formulation, we have 28
constraints in total, whereas 10 constraints are used in [13].

Remark 2. Since each entry of the rotation matrix should
be within the range of [−1, 1], more constraints on x can be
introduced. In other words, we are able to provide more con-
straints to (11) by introducing the reformulation-linearization-
technique constraints [17]. Due to the limited paper length,
we will not present more discussions on this topic.

B. SDP Relaxation

The SD-WLS is reformulated as a typical non-convex QC-
QPs problem in (11), which is hard to solve since it comprises
many NP-hard problems. However, it is well known that this
kind of problems can be relaxed to a convex SDP. Here, a
crucial first step in deriving an SDP of problem (11) is to
observe that

x⊤Mox = Tr(x⊤Mox) = Tr(MoX), o = 1, ..., 28

where Tr(·) denotes the trace of a given matrix, and we
define X = xx⊤. Then we obtain the following equivalent
formulation of problem (11)

min
X

Tr(M0X)

s.t. Tr(MoX) = 0 l = 1, · · · 28,
X ⪰ 0, rank(X) = 1.

Here, for the symmetric matrix X, X ⪰ 0 means that X
is positive semidefinite. As we see, we obtain an additional
property that the objective and constraints are affine in X,
besides the last constraint rank(X) = 1, which is non-convex.
By relaxing the rank constraint, we obtain an SDP relaxation:

f∗
SDP = min

X
Tr(M0X)

s.t. Tr(MoX) = 0 o = 1, · · · 28,
X ⪰ 0.

(12)

where f∗
SDP denotes the solution of (12). Globally optimal

solution to the above equations (12) can be found by available
numerical algorithms in polynomial time (often by interior-
point methods), and many solvers can achieve this, such as
CVX, SEDUMI and SDPT3.

Lemma 3. If the measurements, d0, {s1,l, s2,l, dl} for all
l = 1, · · · , N are noise free or corrupted by small noise,
2, the global optimum of the original QCQP can be found by
optimizing its SDP relaxation, which means that f∗

Opt = f∗
SDP.

Proof. See Appendix B in [7].

C. Recovery of Original Problem

We have introduced the method of computing the solution of
QCQP via SDP relaxation above. However, after obtaining the
solution X∗ in (12), we still encounter another difficulty: the
SDP solution X∗ may not fulfill the condition rank(X∗) = 1.
To address this problem, we may recover x∗ from the low
rank decomposition X∗ = x∗(x∗)⊤ [18]. Specifically, let R =
rank(X∗) and X∗ is expressed as

X∗ =

R∑
r=1

µru
∗
r(u

∗
r)

⊤

where µ1 ≥ µ2 ≥ · · · ≥ µR > 0 are the eigenvalues and
ur, r = 1, · · ·R are the respective eigenvectors. We write the
rank-one approximation to be

X̄∗ = µ1u
∗
1(u

∗
1)

⊤

To this end, the relative pose can be simply extracted by x̄∗ =√
µ1u

∗
1, where x̄∗ = [(q̃∗)⊤, (r∗)⊤, (p∗)⊤, 1]⊤.

D. Determining Relative Pose

After completing the SDP relaxation and the solution recov-
ery steps, we are capable to obtain x̄∗, and hence the relative
pose can be acquired. Apparently, the translation p∗ can be
read directly from x̄∗, while the elements of q̄∗ have to be
computed from q̃∗. This can be simply achieved by using the
following relationship q∗i = ±

√
q∗ii. To determine the sign

for q∗i , we can simply use the convention q∗4 ≥ 0 and the
remaining elemenents of q̄∗ follow sgn (qi) = sgn (qi4).

E. Relative Pose Refinement

In practice, due to the SDP relaxation, the constraints given
in (10) might not be satisfied anymore. It is not very important
to ensure all those constraints remain to be satisfied. For
example, for the equation r∗ = C⊤p∗, r∗ is an auxiliary
variable, hence it does not cause problem for relative pose
estimation. The key constraint is the quaternion constraint
(q̄∗)⊤q̄∗ = 1, i.e., the last constraint in (10). To guarantee
that the estimate q̄∗ remains to be a unit quaternion, a further
optimization refinement strategy is provided. In particular,
we seek to find the closet quaternion q̄∗

CL to q̄∗, which is
formulated as

q̄∗
OPT = argmin

q̄∗
CL

1

2
∥q̄∗

CL − q̄∗∥2

s.t. (q̄∗
CL)

⊤q̄∗
CL = 1.

(13)

2The term “small noise” is defined by an evaluation of the signal-to-noise
(SNR) ratio on the measurements: we define the measurement noise to be
“small” if SNR ≥ 20dB otherwise it is “large”.
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This is again a QCQP problem, which can be solved using a
gradient descent method [19].

Remark 3. In practice, one can introduce the WLS refinement
step given in [13] to further improve EA, where the relative
pose estimates obtained by our method can be used as an
initial guess. Although the WLS step can lead to an improve-
ment of the EA, we did not implement this step in this paper
because we propose to eliminate the influence of WLS for the
comparison of the three methods to be considered in Section
V. More precisely, for a comparison of the three methods, the
overall performance (i.e., EA, NoMs and CE) gaps can be
reduced if the WLS refinement step is included.

A summary of our SDP relaxation algorithm is given in
Algorithm 1. Note that once the relative pose is obtained,
additional distance measurements can be processed with an
extended Kalman filter or particle filter [20].

Algorithm 1: The SDP Relaxation Algorithm.
Input: Measurements {s1,l, s2,l, dl, d0}. Mean value and

covariance of the squared noise, i.e., v̄l and σ̄l for
l = 1, · · ·N .

Output: p∗ and q̄.
1: Construct M0 and Mo, o = 1, · · · 28 and formulate the

QCQP problem (11). M0 can be constructed via
A⊤Σ−1A, where A is given in Appendix A. In
addition, Mo, o = 1, · · · 28 can be obtained by utilizing
the strategies given in Appendix B.

2: Obtain X∗ by solving the SDP problem (12) via CVX
or other optimization tools.

3: Recover the solution of the original problem x∗ by
using x̄∗ =

√
µ1u

∗
1.

4: Determine p∗ and q̄∗ and provide its refinement using
the strategies given in Section IV. E.

V. SIMULATION AND EXPERIMENT RESULTS

In this section, extensive simulation and experiment (with
real data) results are exhibited to demonstrate the conclusion
that our method has the best overall performance when the
three factors, i.e., EA, NoMs, and CE, are all important. We
include the algebraic-based method in [10] and the QCQP-
SDP method in [13], and our method for comparison.

A. Implementation Details

In order to evaluate the performance of our localization
algorithm and provide a fair enough comparison with the
algebraic-based and QCQP-SDP methods, the following de-
scriptions of the implementation details are provided.

1) The simulated data and real data are both processed on a
64 bit Intel core i7-9750H with a 2.6-GHz processor in
Matlab 2019a with a CVX solver for SDP methods.

2) The CE is evaluated by the computation time of each
solver for finding the optimal solution, while excludes
other data processing steps, such as constructing M0 and
Mo, o = 1, · · · , 28 in our formulation.

3) We separate the quaternion and translation errors to
evaluate the relative localization error of each method
by using the following performance matrices,

Iq̄,e = ∥q̄∗
OPT − q̄∥, Ip,e = ∥p∗ − p∥, (14)

where q̄ and p are corresponding to the true values of
the relative pose generated in the simulations or reading
from the motion capture in the experiments.

4) For the results shown in the simulation part, the tra-
jectories and distance measurements are generated as
follows: i) The two drones are moving in a 3-D space
with x ∈ [0m, 20m], y ∈ [0m, 20m] and z ∈ [0m, 20m];
ii) The two drones start at initial positions 1m apart from
each other and record their first distance measurement;
iii) each drone moves randomly with the velocity bound
[−0.6m/s, 0.6m/s]; and iv) the drones record a distance
measurement at their new positions, and repeat steps iii)
and iv). In total 20 measurements are generated for the
analysis of the influence of the NoMs (we found that 20
measurements are sufficient to support the comparisons
and analysis).

5) In the simulation, the odometry and distance measure-
ments are generated from the noise-free data by adding
Gaussian noise. In addition, both odometry and distance
noises follow zero-mean Gaussian distributions. The cor-
responding covariances are Q = σ2

pI and R = σ2
l I,

respectively.
6) For the experiment, the real data are collected in the

Control Systems Group laboratory of TU/e. The setup
of the experiment is shown in Fig. 4, which consists of
two drones moving in a 3m × 3m × 3m region with an
approximate speed of 1.5m/s. The initial distance of the
two drones is 0.795m. We use the motion capture system
to obtain the relative pose, and regard the data as the true
quantity. The docking board is for safe landing of the two
drones. Similar to step 4), 20 measurements are recorded
(with a unified sampling rate of 10Hz, around 2s) for
comparison.

7) Each drone estimates its position from the IMU measure-
ments with a frequency of 500Hz, which has a standard
deviation of σp = 0.08m. To obtain the displacement
estimates, i.e., s1,l and s2,l, l = 1, ..., N , we adopt the
IMU preintegration strategy in [21]. It can be found that
the IMU data is quite accurate by estimating the change
of positions over short periods of time, where the errors
from IMU grow to around 0.04m in 2s in our experiment.
In addition, the distance measurements are generated by
the motion capture system (see Fig. 4) via adding a zero-
mean Gaussian noise with σl = 0.05m, and the sampling
rate is 10Hz.

8) When applying our method, one could face a similar
singularity problem as noted in [13]. For example, in
the special scenario that the distance between two drones
remains constant at all time, our method will be invalid.
This problem can be avoided by requiring that the drones’
trajectories contain small oscillations.
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Fig. 2. A comparison of the three methods with different noise level: Ip,e and
Iq̄,e denote the estimation error of translation and quaternion, respectively.
(a) log(σp) versus Ip,e. (b) log(σp) versus Iq̄,e. (c) log(σl) versus Ip,e.
(d) log(σl) versus Iq̄,e.

10 15 20

(a) NoM

0

0.5

1

1.5
Algebraic-based

QCQP-SDP

Our Method

10 15 20

(b) NoM

0

0.2

0.4

0.6

0.8
Algebraic-based

QCQP-SDP

Our Method

Fig. 3. A comparison of the three methods with different NoMs: Ip,e and
Iq̄,e denote the estimation error of translation and quaternion, respectively.
(a) NoMs versus Ip,e. (b) NoMs versus Iq̄,e.

B. Simulations

In this subsection, we propose to evaluate our method
from the aspects of EA, NoMs, and CE, and then draw the
conclusion that it has the best overall performance compared
to the algebraic-based and QCQP-SDP methods.

1) Estimation Accuracy: In this subsection, we propose
to show the influence of measurement noise on different
methods. Meantime, it is demonstrated that our method has
a much better EA than the algebraic-based method, and it has
almost the same EA as the QCQP-SDP method even if fewer
measurements are used.

Firstly, we set the NoMs of the algebraic-based, QCQP-
SDP, and our method to be 10, 16, and 10, respectively. Then,
we change the parameters σp and σl to show the influence of
the measurement noise on the EA. In particular, each factor
is analyzed separately, which means that we fix σp = 0 when
the influence of σl is discussed, and vice versa. As shown
in Fig. 2, σp and σl vary from 10−7m to 10−1m, and a
combination of the two parameters σp and σl with the two
estimation errors Iq̄,e and Ip,e is given. We first examine the
performance of the different algorithms when the measurement
noise is relatively small, i.e., the error is less than 10−4m. As
shown in Fig. 2, the curve of the QCQP-SDP and our method

Fig. 4. The setups of the experiment: the initial distance of two drones is
0.795m and the distance measurements are obtained by the motion capture
system via adding a zero-mean Gaussian noise with σl = 0.05m. The docking
board is used to ensure safe landing of the two drones.
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Fig. 5. A comparison of the three methods in terms of EA: Ip,e and Iq̄,e
denote the estimation error of translation and quaternion, respectively. (a)
Experiment Index versus Ip,e. (b) Experiment Index versus Iq̄,e.

is consistently lower than the algebraic-based method, which
means that both of the two methods have a higher EA than
the algebraic-based method. Because the EA of the algebraic-
based method is too small when σp or σl is greater than
10−4m, we conclude that the algebraic-based method is not
suitable for the scenarios that the measurements are corrupted
by large noise. In addition, we can find that the estimation
errors of p and q̄ of our method are both close to zero,
which supports our conclusion in Lemma 3. Further, we also
find that the estimation error can be limited to a quite small
level even though the measurement noise deviation is set to be
sufficiently large. In particular, for our method, Ip,e = 0.22m
when σl = 10−1m. Additionally, as shown in Fig. 2, the EA
of the QCQP-SDP and our method is almost the same, we
conclude that our method has almost the same EA as the
QCQP-SDP method even though 6 fewer measurements are
used.

2) Number of Measurements: To eliminate the influence
of the measurement noise, we set the noise of odometry and
distance measurement to be σp = 10−4m and σl = 10−4m. As
shown in Fig. 3, when the NoMs is less than 14, our method
has much better EA than the algebraic-based and the QCQP-
SDP method, which demonstrates that our method is preferable
when measurements are hard to be acquired. However, when
(N + 1) ≥ 14, we may find that the QCQP-SDP has almost
the same EA as our method.

3) Computation Efficiency: In this subsection, the com-
putation time of each method is evaluated. Generally, two
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TABLE I
EXPERIMENT INDICES WITH DIFFERENT INITIAL POSES

Index 1 2 3 4 5 6
p⊤ [0.7, 0.37, 0.07] [0.6, 0.51, 0.05] [0.51, 0.61, 0.02] [0.41, 0.68, 0.03] [0.29, 0.74, 0.01] [0.2, 0.77, 0.01]
q̄⊤ [0.99, 0.2, 0.1, 0.1] [−0.2, 0.7,−0.36, 0.6] [0.3, 0.8, 0.43, 0.3] [0.36,−0.7, 0.5,−0.43] [0.76, 0.17, 0.6, 0.24] [0.4, 0.57, 0.4,−0.6]
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Fig. 6. A comparison of the three methods with different NoMs: Ip,e and
Iq̄,e denote the estimation error of translation and quaternion, respectively.
(a) NoMs versus Ip,e. (b) NoMs versus Iq̄,e.

conclusions can be obtained: i) the algebraic-based method
is demonstrated to be the fastest method, which uses approx-
imately 0.1s to obtain a unique solution of the relative pose.
Our method has almost the same computation speed as the
QCQP-SDP method, which takes around 0.4s; and ii) The
complexity of our method and the QCQP-SDP method is
not influenced by the NoMs. This is because the number of
the constraints in our formulation, i.e., equation (11) is not
changed with the increase of the NoMs.

In terms of the comparison among the three methods in
the three aspects, we conclude that our method is the fastest
solution for the scenario where the measurement noise cannot
be ignored and only a limited NoMs can be obtained.

C. Experiments

In addition to simulations, we have tested our method with
real-world experiments. Also, we evaluate the performance of
our method from the three factors: EA, NoMs, and CE. The
experiment results strongly support the conclusion given in the
simulation part.

1) Estimation Accuracy: We keep the setup the same as
the simulation part and conduct 6 experiments to test the
three methods with different initial poses, which are listed
in TABLE I. The EA is evaluated by (14), and a comparison
of the three methods is given in Fig. 5. The algebraic-based
method is incapacitated when dealing with real data, while
both our method and the QCQP-SDP have a relatively small
estimation error on translation and quaternion. our method has
a better performance on EA than the QCQP-SDP for practical
implementations. The evaluations of CE are given in Fig. 5
and Fig. 6, which are in accord with those conclusions in the
simulation part.

VI. CONCLUSION

In this paper, an extension of the 2-D relative localization
method in [7] to a 3-D scenario is provided. In particular, the
SD-WLS is reformulated as an equivalent non-convex QCQP

problem and solved by an SDP relaxation approach. Compared
to the SD-WLS, our method has a much better CE, which only
requires 0.4s to obtain the relative pose using the CVX toolbox
in Matlab. Moreover, compared to the QCQP-SDP method in
[13], fewer NoMs are required for our method. Generally, 10
measurements are sufficient to determine the relative pose. The
simulation and experiment results demonstrate that, compared
to the existing algebraic-based and QCQP-SDP methods, our
method has the overall best performance in terms of EA,
NoMs, and CE.

APPENDIX A

According to (3) and (6), it is easy to show that

dl −w⊤
l wl = dl − (p+Cs2,l − s1,l)

⊤
(p+Cs2,l − s1,l)

= εl + 2 (s1,l − p)
⊤
Cs2,l + 2s⊤1,lp,

(15)

where εl = d2l −p2− s⊤1,ls1,l− s⊤2,ls2,l− v̄l, p2 = d20. Clearly,
εl is a constant since s1,l, s2,l d0, dl, l = 1, · · · , N can be
obtained from odometry and range sensors and v̄l is assumed
to be known. We adopt the idea of the algebraic-based method
given in [10], where a new variable r = C⊤p is introduced.
Then (15) can be simplified to the form of

dl −w⊤
l wl = εl + 2s⊤1,lCs2,l − 2r⊤s2,l + 2s⊤1,lp

= εl + 2e⊤l C + 2[−s⊤2,l, s
⊤
1,l]

[
r
p

]
,

(16)

where el = vec(s1,l · s⊤2,l) and C = vec(C), vec(·) is the
“vec”-operator that stacks one column of a matrix underneath
the other. In addition, the rotation matrix can be written as

C = Gq̃. (17)

Since C is composed of the concatenation of the elements in
(1) and q̃ = [q11, q12, q13, q14, q22, q23, q24, q33, q34, q44]

⊤ ∈
R10×1, the matrix G is a constant matrix, which takes a linear
combination of the elements in q̃ and produces C. To write G
in a compact form, the Matlab notation sparse(i, j, s,m, n)
is borrowed, where a m× n sparse matrix is generated from
the vectors i, j and s. Specifically, we define K to be the
number of non-zero elements of G, then i = [i1, · · · , iK ]⊤

is the vector of row index, j = [j
1
, · · · , j

K
]⊤ is the

vector of column index, and sk ∈ s, k = 1, · · ·K is the
value of G at index (ik, jk). As a result, we express
G in that G = sparse(iG, j

G
, sG, 9, 10), where iG =

[1, 5, 9, 2, 4, 3, 7, 6, 8, 1, 5, 9, 6, 8, 3, 7, 1, 5, 9, 2, 4, 1, 5, 9]⊤,
j
G

= [1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10,

10, 10]⊤ and sG = [1,−1,−1, 2, 2, 2, 2, 2,−2,−1, 1,−1, 2, 2,
−2, 2,−1,−1, 1, 2,−2, 1, 1, 1]⊤.
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Substituting (17) back to (16), we have

dl −w⊤
l wl = εl + 2e⊤l Gq̃+ 2[−s⊤2,l, s

⊤
1,l]

[
r
p

]
= a⊤l x,

(18)

where al = [2e⊤l G,−2s⊤2,l, 2s
⊤
1,l, εl]

⊤, x = [q̃⊤, r⊤,p⊤, 1]⊤.
Afterwards, we stack the equations (18) for l = 1, ...N ,
which gives a compact equation d − hsd = Ax, where
A = [a1, · · · ,aN ]⊤. Next, the cost function of (8) can be
expressed as

1

2

[
(d− hsd)

⊤Σ−1(d− hsd)
]
=

1

2
x⊤M0x,

where M0 = A⊤Σ−1A.

APPENDIX B

With the introduction of the variable q̃ =
[q11, q12, ..., q44]

⊤ ∈ R10×1, there are 20 constraints
formulated as below.

q11q44 = q214 q14q24 = q12q44 q23q34 = q33q24
q22q44 = q224 q24q34 = q23q44 q13q34 = q33q14
q33q44 = q234 q34q14 = q13q44 q23q24 = q22q34
q11q22 = q212 q12q13 = q11q23 q12q24 = q22q14
q22q33 = q223 q12q23 = q22q13 q13q14 = q11q34
q33q11 = q213 q13q23 = q33q12 q12q14 = q11q24

q12q34 = q13q24 q12q34 = q14q23

(19)

All constraints in (19) can be written in a quadratic form
with respect to x, which is given in (10). Note that Mo, o =
1, · · · 28 are all constant matrices. For the above 20 constraints,
taking q11q44 = q214 as an example, we know that

q11q44 = q214 ⇔ x⊤M1x = 0

where M1 = sparse([1, 4], [10, 4], [1,−1], 17, 17). Appar-
ently, the remaining 19 constraints can also be written in
quadratic forms by following the same rule. Next, using the
fact that r = C⊤p and p = Cr, we have other 6 constraints.
Consider the first constraint

r1 − (G(1 : 3, :)q̃)⊤p = 0,

where G(1 : 3, :) denotes the first three rows and
all columns of the matrix G, and r = [r1, r2, r3]

⊤.
Then we know that M21 = sparse(i21, j21, s21, 17, 17),
where i21 = [1, 2, 3, 5, 7, 8, 9, 10, 11]⊤, j

21
=

[14, 15, 16, 14, 16, 14, 15, 14, 17]⊤ and s21 =
[1, 2, 2,−1,−2,−1, 2, 1 − 1]⊤. The constraint p⊤p = d20
gives M27 = sparse(i27, j27, s27, 17, 17), where
i27 = [14, 15, 16, 17]⊤, j

27
= [14, 15, 16, 17]⊤ and

s27 = [1, 1, 1,−d20]
⊤. For the last constraint, we first

write it as (q̄⊤q̄ − 1)2 = (q11 + q22 + q33 + q44 − 1)2 = 0.
Then we know that M28 = sparse(i28, j28, s28, 17, 17),
where i28 = [1, 1, 1, 1, 1, 5, 5, 5, 5, 8, 8, 8, 10, 10, 17]⊤,
j
28

= [1, 5, 8, 10, 17, 5, 8, 10, 17, 8, 10, 17, 10, 17, 17]⊤ and
s28 = [1, 2, 2, 2,−2, 1, 2, 2,−2, 1, 2,−2, 1,−2, 1]⊤.
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