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Abstract— For massive large-scale tasks, a multi-robot system
(MRS) can effectively improve efficiency by utilizing each
robot’s different capabilities, mobility, and functionality. In this
paper, we focus on the multi-robot coverage path planning
(mCPP) problem in large-scale planar areas with random
dynamic interferers in the environment, where the robots have
limited resources. We introduce a worker-station MRS consisting
of multiple workers with limited resources for actual work, and
one station with enough resources for resource replenishment.
We aim to solve the mCPP problem for the worker-station
MRS by formulating it as a fully cooperative multi-agent re-
inforcement learning problem. Then we propose an end-to-end
decentralized online planning method, which simultaneously
solves coverage planning for workers and rendezvous planning
for station. Our method manages to reduce the influence of
random dynamic interferers on planning, while the robots
can avoid collisions with them. We conduct simulation and
real robot experiments, and the comparison results show that
our method has competitive performance in solving the mCPP
problem for worker-station MRS in metric of task finish time.

I. INTRODUCTION

For massive large-scale tasks in hazardous environments,
Multi-Robot System (MRS) dramatically helps to reduce
human exposure to potential dangers and improves efficiency
effectively. There are various applications of MRS that have
come to reality, including search and rescue [1], persis-
tent surveillance [2], planetary exploration [3]. Typically, a
robot has only limited working resources, including energy
and consumables. For example, most robots are driven by
electrical or thermal energy stored in batteries or fuels in
advance. While some robots can obtain ambient energy from
the environment (e.g., solar energy), the energy transfer is
highly dependent on the environmental situation, and the
recharging process can sometimes be slow. Thus it can be
inefficient for robots in massive long-term tasks. In scenarios
like cleaning or agriculture on large-scale fields, the robot has
limited consumables like water or chemicals. Therefore, it is
essential for robots with large-scale tasks to constantly travel
between supply stations and working areas to replenish and
work, which is very inefficient for such tasks.

As discussed by Vaughan et al. in [4], the placement of
the supply station significantly influences work efficiency
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Fig. 1: Given an arbitrary target coverage area, a mCPP problem for
the worker-station MRS on planar areas can be decomposed into:
1) coverage planning for workers (blue robots) and 2) rendezvous
planning for station (yellow robot). There are random dynamic
interferers (red robots) in the environment.

for an MRS in the above scenarios. To further improve
the efficiency of the MRS, one might consider making the
supply station a mobile robot platform. Similar to the Frugal
Feeding Problem in [5], the station moves around to serve the
working robots. For consistency in this paper, we name such
an MRS as the ”worker-station” MRS, which is composed
of a mobile supply station robot and several working robots.
We consider the Multi-robot Coverage Path Planning (mCPP)
problem on planar areas for the aforementioned worker-
station MRS. As shown in Fig. 1, the workers are equipped
with a range device for general area coverage work, and the
station is loaded with sufficient resources to provide supplies
for workers. The joint objective is to cover a given target area
as soon as possible. Solving such a planning problem for the
worker-station MRS can be decomposed as below:

1) Coverage planning for each worker to finish general
planar coverage work of a given area;

2) Rendezvous planning for the station to service workers
in need of replenishment;

In this paper, we mainly focus on solving the mCPP
problem for the worker-station MRS on planar areas. There
are several challenges to the above problem. First, the
joint problem space comprised of the above two planning
problems is too large to solve directly and simultaneously.
A practical solution is to discretize state and action spaces in
mCPP problems [6] and rendezvous planning problems [7],
then solve by discrete combinatorial optimization methods
separately. However, the system dynamics are hard to model
and identify, where each robot has different capabilities and
functionality. Thus, such methods can still be infeasible
for such complex MRS, even after reducing the problem
size. Secondly, planning with dynamic collision avoidance
is another challenge for most offline planning methods.
One general solution is to combine offline planning with



local collision avoidance controllers. Nevertheless, such a
hierarchical planning scheme would alter the optimal policy
that is planned offline without the interference of dynamic
obstacles. For complex scheduling tasks like the mCPP
problem for worker-station MRS, it will cause conflicts
and even deadlocks between robots or planners, and the
planning efficiency will get worse as the number of robots
grows [8]. To tackle the above challenges, we adopt Deep Re-
inforcement Learning (DRL) to solve the mCPP problem for
worker-station MRS. However, the coordination behaviors of
different agents in the worker-station MRS are nontrivial to
learn together, and agents often struggle between exploration
and exploitation of the coverage task during training. We
summarize the main contributions of this paper below:

1) We propose an end-to-end decentralized online plan-
ning method to solve the mCPP problem for the
worker-station MRS. Our method manages to reduce
the influence of random dynamic interferers on plan-
ning, while the robots can avoid collisions with them.

2) We design a two-stage curriculum learning with an
intrinsic curiosity module and soft approximation of
the workers’ energy constraints, which successfully
guide the training for large-scale coverage tasks.

3) We provide ablation study, simulation, and real
robot experimental results. The results show that our
method outperforms decomposition-based and graph-
based baseline methods in coverage finish time metrics.

II. RELATED WORK

A. Multi-robot Coverage Path Planning

The mCPP problem evolved from the classical Coverage
Path Planning (CPP) problem by introducing multiple robots
to solve the coverage problem. Most approaches are based
on the graph structure, which is proven to be NP-hard
[9]. Zheng et al. designed a constant-factor approximation
algorithm in polynomial time [10]. Kapoutsis et al. uses an
area division algorithm to allocate tasks for multiple robots
[11]. Apart from graph-based methods, decomposition-based
methods also take large parts in the literature [12], [13],
which first partition the target area into obstacle-free convex
sub-regions for different robots and then apply single robot
coverage planning for each robot separately. Most graph-
based or decomposition-based mCPP methods do offline
planning, and some also require the coverage area to satisfy
specific assumptions (e.g., convex-shaped area). In addition,
classic offline mCPP methods can be undermined by random
dynamic interferers in the environment.

On the other hand, recently, some works have been extend-
ing the mCPP problem to various applications with specific
constraints, such as geophysical surveys [14], fault-tolerant
planning on large-scale outdoor [15]. However, to the best of
our knowledge, there are few works on the mCPP problem
for the aforementioned worker-station MRS.

B. Worker-Station Multi-robot System

Similar to the worker-station MRS, related works on
mobilizing the supply station into an autonomous robot

mainly focus on rendezvous planning for station to efficiently
recharge the workers in need. For example, Couture et
al. [4] only plans for station, while workers are dedicated
to delivering goods between fixed source and destination.
Similarly, in [16], only rendezvous planning of stations is
considered, whereas the workers are programmed to monitor
the environment by predefined trajectories persistently. Most
of these works consider the workers to be stationary in terms
of their motion patterns and state transitions, which reduce
the complexity to a solvable level for optimization.

More recently, Yu et al. [17] tried to solve both planning
problems for one worker and one station, but it is restricted to
node coverage for a given graph. Similarly in Sun et al. [18],
the worker is planned to travel between waypoints, while the
station is planned to rendezvous to charge the worker. Seyedi
et al. [19] planned trajectories for multiple workers and one
station with scheduled charging order, which also requires a
prior of the environment. Despite the above work managed
to plan for both workers and station, it is only applicable on
convex target areas with static obstacles, thus is infeasible in
an arbitrary target area with dynamic interferers.

III. PROBLEM FORMULATION

In this section, we provide our Multi-agent Reinforcement
Learning (MARL) problem formulation of the Multi-robot
Coverage Path Planning (mCPP) problem on planar areas, for
the worker-station Multi-robot System (MRS) (see Fig. 1).
Given target area Ω, the worker-station MRS consists of
m workers W i and n stations Sj , where i = 1, 2, ...,m
and j = 1, 2, ..., n. The goal is to find the optimal policy
for each robot in the worker-station MRS, to minimize
the coverage task finish time while avoiding collisions with
dynamic interferers in the environment.

A. Preliminaries

In this subsection, we first introduce several preliminary
concepts and assumptions in the rest of the paper.

1) Worker robot and station robot: we consider both
workers and station have limited range of perception and
communication: within the perception range, each robot can
detect collisions and objects precisely; within the communi-
cation range, each robot can receive information from other
robots (e.g., the rough global position of other robots). As
mentioned previously in the worker-station MRS, workers
also have limited energy, while station have unlimited energy
to replenish workers. Note that the coverage work range of
worker does not necessarily equal its perception range.

2) Energy Capacity and Rendezvous Recharge: denote the
energy capacity for worker W i as a constant ci. Suppose the
current energy left for W i at time t is eit, then current per-
centage of remained energy pit is defined as: pit =

eit
ci ∈ [0, 1].

A worker W i is said to be “exhausted” if pit is lower than a
threshold pe, otherwise it is said to be “normal”. Also, since
we mainly focus on the planning problem at a higher level
in this paper, the local rendezvous of workers and station
is simplified by comparing with a position threshold ε. We
assume a worker can be replenished by any station, then the



discharge and recharge for each worker W i is determined by
comparing ε with the euclidean distance between the global
positions of xW

i

t and xS
j

t for worker W i and station Sj :

eit =

{
max{0, eit−1 − edischarge}, ‖xW

i

t − xS
j

t ‖ > ε

min{ci, eit−1 + echarge}, ‖xW i

t − xS
j

t ‖ ≤ ε
(1)

3) Coverage Task and Synchronized Coverage Area:
coverage by workers is only carried out when worker has
energy left. Once a worker starts to recharge, it would be
released from station if and only if it is fully recharged (i.e.,
pit = 1). Denote the coverage area of each worker W i at
time t as Cit . Here we assume the overall covered area Ct
at time t can be updated and synchronized among all agents
during the task. The update and synchronization of Ct can
be implemented by mutual information exchange for robots
within the communication range: Ct =

⋃T
t=0

⋃m
i=1 Cit .

𝒙!
"!

‸
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(a) Coverage area 𝒞!" (b) Arbitrary target coverage area Ω

Fig. 2: Model the coverage task by uniform sampling

For a released worker W i with energy left (i.e., pit > 0),
the coverage area Cit at time t is determined by uniformly
sampling as depicted in Fig. 2: given the sampling resolution
mrasterization, the coverage area Cit is approximated by uni-
formly sampling the coordinates within the shape boundaries
of the target coverage area Ω (i.e., rasterization). Then, the
coverage area is represented by a set of coordinates in planar
space. Thus, the union operations on coverage areas Ct turn
into set union operations, which is computationally tractable
using a hash-set compared with area union operations.

B. Multi-agent Reinforcement Learning
We first introduce the Decentralized Partially Observable

Markov Decision Process (Dec-POMDP) [20] denoted by
(R,S,A,P,O, r, b), where R is the set of agents, S is the
joint state space, A is the joint action space, P is the state-
transition model, O is joint observation space, r is the shared
reward function and b is the initial state distribution. With a
shared reward function r, we can formulate the MARL prob-
lem by single-agent reinforcement learning objective [21]:

max
π

E

 ∑
t≤T,s0∼b

γtr (st, at, st+1) | ait ∼ π(· | oit)

 (2)

where π is the policy and γ is reward discount factor,
st ∈ S and at ∈ A are the joint state and action of agents
at time t respectively. Given the initial state of agents s0
and the observation oit at time t, the action ait is sampled
from the policy π. The goal is to maximize the expected
discounted reward within a time horizon of T . Note that
Eq. 2 can be adopted for agents with different observations
or functionalities (each corresponds to a different policy), as
long as they share a common reward function.

C. Worker-Station MRS Coverage Task Formulation

As introduced previously, the worker-station MRS consists
of two types of agents with different functionality: the
workers are responsible for coverage work with limited
energy, whereas the station is responsible for replenishing
workers with unlimited energy. Thus following Eq. 2, we
define the agents R = {W i}mi=1

⋃
{Sj}nj=1 as the set of

stations and workers, and A = {ai}m+n
i=1 are the actions

of workers and stations sequentially. We define policy πφ
and policy πθ for stations and workers respectively, and
a shared reward function r for both agents. Then, we can
formalize the mCPP problem for worker-station MRS as a
fully cooperative MARL problem [22]:

π∗θ , π
∗
φ = arg max

πθ,πφ

E

 ∑
t≤min{T,Tfinish}

γtr (st, at, st+1)


(3)

where ait ∼ πθ(· | oit), i = 1, 2, ...,m are the actions of
workers, and ajt ∼ πφ(· | ojt ), j = m + 1,m + 2, ...,m + n
are the actions of stations. Note that the planning horizon T
is replaced by the minimum of the original time horizon T
and the coverage task finish time Tfinish.

In order to finish the cooperative coverage task as soon
as possible, with collision avoidance and rendezvous to
recharge, we define the shared reward function r as below:

r =

k∑
i=0

(cr)i +

k∑
i=0

(er)i + rcollision + rtime (4)

The first component (cr)i is the covering reward for i-
th worker, which is the only positive term to guide the
coverage planning of workers. The second component (er)i

is a penalty term added when a worker’s energy is close to
its energy capacity, which guides the rendezvous planning
of station. The details of the first two reward components
are elaborated in Sec. IV. The third component rcollision is a
constant collision penalty whenever a collision occurs, which
guides the agents for dynamic collision avoidance. The last
component rtime is a constant time penalty in each time step
whenever the coverage task has not finished, which helps to
find more time-efficient planning policies.

Since the total coverage reward of the coverage area Ω
is a constant (i.e., only new covered area provide rewards),
and the other three penalty terms would stop accumulating
once the coverage task finishes, only a time-optimal coverage
and rendezvous planning policy with collision avoidance can
reach the optimal task performance. Therefore, by designing
and selecting appropriate rewards for the above components
in Eq. 3, we can apply MARL algorithms to train the agents
for the worker-station MRS coverage task to coordinate with
each other for theoretical optimal performance.

IV. DEEP REINFORCEMENT LEARNING APPROACH

In this section, we introduce key components of our DRL-
based planning method. We follow the paradigm of cen-
tralized training and decentralized execution (CTDE) [23],
which has been widely used in MARL for Dec-POMDP



modeled robot learning problems [24], [25]. The training
and planning phases are elaborated in Sec. IV-A. In Fig. 4,
we summarize our end-to-end planning pipeline. For an
ego agent (worker or station), the perception-range and
communication-range observations described in Sec. IV-B
are encoded into feature vectors by a convolution neural
network. Then, they are stacked upon zero-range observation,
constituting the final observation vector ôit in latent space.
The policy network πθ for worker and πφ for station are
both Multi-layer Perceptron (MLP) modules, each of which
takes ôit for the i-th agent at time t and output its action
ait. The action ait is then converted to velocity commands
as mentioned in Sec. IV-C, which solves both rendezvous
planning for station and coverage planning for workers.

A. DRL Training and Planning Phases

We follow the paradigm of CTDE to train the policy net-
work of each agent in Eq. 3, then deploy the corresponding
policy networks on robots for planning. During training, the
state of the whole system and observations of all other agents
are needed for better training performance in simulation.
During planning, each agent receives only its zero-range,
perception-range, and communication-range observations as
described in Sec. IV-B, then output the best action according
to the corresponding trained policy network. We unfold the
details in CTDE in the following two parts.

1) Centralized training phase: for training algorithm, we
use the multi-agent actor-critic algorithm MA-POCA [26] to
train the policy networks for workers and stations. During
training, a centralized critic network is trained to estimate
the value of the current system state, including the whole
system and observations of all agents. Note that states and
observations of the whole system are only needed during
training and can be easily accessed in simulations. According
to [27], such a centralized critic network would greatly help
the training of the actor network (i.e., policy network).

station

worker

interferer

(a) Stage-I (b) Stage-II

Fig. 3: Two-stage curriculum learning for mCPP problem of worker-
station MRS: (a) Stage-I: one station with single worker; (b) Stage-
II: multiple stations with multiple workers.

For better policy exploration of the coordination behaviors
towards the coverage task during training, we adopt the In-
trinsic Curiosity Module (ICM) [28]. In short, the ICM trains
a self-supervised inverse dynamic model that predicts the
consequences of an agent’s actions, and uses that prediction
error as an intrinsic reward to guide the agent’s exploration
during training. In considerations of training performance,
we designed a two-stage curriculum learning [29] evolving
from single worker into multiple workers, which guides
workers and station for better policies during training.

As shown in Fig. 3-(a), stage-I is designed to make it
easier for both worker and station to focus on learning some
basic behaviors, such as the ability of collision avoidance
with static obstacles and dynamic interferers. For worker, the
“cover and replenish” behavior is learnt when the remained
energy of worker is at a low level. For station, the behavior
of finding and following exhausted worker is learnt. Once
training of stage-I is converged, we can then extend the
worker and station to multiple ones, and adapt the pre-trained
policy networks to train for final policies (see Fig. 3-(b)).

2) Decentralized execution phase: unlike the centralized
training phase, each agent only needs its own observation
during the decentralized planning phase. Specifically speak-
ing, each agent only takes its own observation as introduced
in IV-B, and outputs optimal action by its observation and
the corresponding policy network πφ and πθ.

B. Observation Space

For both worker and station, the observation ôit of the i-th
ego agent at time t consists of following three types: 1) zero-
range observation (zo)it contains its own basic information;
2) perception-range observation (po)it contains precise local
information within its perception range; 3) communication-
range observation (co)it contains rough global information
within its communication range. A demonstration of obser-
vation is shown in the ego agent observation block in Fig. 4.

perception-range communication-range

worker worker station worker station
obstacle uncovered area uncovered area

station obstacle worker(normal) station worker(normal)
worker(exhausted) worker(exhausted)

TABLE I: Encoded objects in perception-range and communication-
range observations for ego agents in the worker-station MRS.

Here we elaborate on each type of observation for an ego
agent. For both workers and stations, (zo)it includes global
position and local velocity, which are then stacked vertically
as 1-D zero-range observation. Note that when the i-th agent
is worker, the percentage of remaining energy pit is also
included in (zo)it. Both (po)it and (co)it are encoded as images
with object positions (see Fig. 4), which are translated and
rotated with the i-th ego agent. The encoded objects in (po)it
and (co)it are listed in Tab. I. For (po)it, it is a 20×20 image
with np channels (i.e., the number of encoded objects) and
mperc grid resolution (i.e., length per pixel). For (co)it, it is a
30× 30 image with nc channels and mcomm grid resolution.

C. Action Space

We define the action space as a 2d continuous vector space
consisting of linear and angular velocities. Given the max
linear velocity vimax and max angular velocity ωimax of the
i-th robot , the sampled action ait is scaled by multiplying
vimax or ωimax to give the desired velocity commands.

D. Reward Design

As mentioned in Eq. 4, the shared reward r for all agents
consists of four components. Here we only elaborate on the
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Fig. 4: Our DRL-based mCPP pipeline for the worker-station MRS: during planning, each agent receives its own zero-range, perception-
range, and communication-range observations, and outputs the best action at each time step according to its trained policy network.

first two terms since the last two are simply penalty constants
as introduced previously. Recall that the first component
(cr)i is the covering reward for i-th worker at each time t,
where positive rewards are given when a new area is covered.
Once the coverage work is completed, the training episode
will terminate with a completion reward rfinish:

(cr)i =

{
rfinish, Ω =

⋃t
t′=0

⋃k
i=1 Cit′

rcover ×
(
|Cit | − |Cit−1|

)
, otherwise

(5)

The second component (er)i is a soft approximation
modeling on the hard constraint of worker’s capacity. For
worker W i, it allows pit to be less than zero during training,
which let W i still be able to move when pit ≤ 0 (i.e., no
energy left). More specifically, such a soft approximation
uses a truncated exponential function for (er)i as below:

(er)i =

{
−1×min{1, exp (pit − pe)}, pit < pe

0, otherwise
(6)

where pe is the threshold indicating whether the worker is
exhausted. Such design results from practical considerations:
1) direct modeling such hard constraint during training
makes worker struggles to learn the “cover and replen-
ish” behavior when energy is exhausted; 2) the truncated
exponential penalty approximation with a relatively large
derivative around pe makes worker aware of its exhausted
status when pit approaches pe. Note that the energy capacity
hard constraint of worker is only modeled as a soft constraint
during training; it is still a hard constraint (i.e., workers
cannot move once pit ≤ 0) during planning.

V. EXPERIMENTS & RESULTS

A. Implementation Details

Since we mainly focus on strategy-level planning problems
in this paper, we use Unity and ML-Agents toolkit [30] to
build the environment and system. The dynamic interferers
are modeled in a loop to first move in a constant speed and a

random direction within a given period, and then rotate with
a random angle. Such a loop for interferers repeats until the
coverage task finishes. Also, worker can only be replenished
when it is exhausted (i.e., pit < pe) and near the station.

B. Simulation Results

We modeled three simulation scenes in Unity to conduct
simulation experiments, including ablation study and the
coverage task performance comparison. As in Fig. 5-(a)

initial position
initial position

(a) The star scene (b) The corridor scene

(c) The CUHKSZ scene (for both test-cases cuhksz-1 and cuhksz-2) 

initial position
initial position

Fig. 5: Modeled simulation scenes in Unity. The target coverage
areas are bounded within the grey obstacle areas.

test-case name star corridor cuhksz-1 cuhksz-2
target area size 30×30 120×50 180×60 180×60

worker cover radius 4 4 2 2
# of workers 2 3 3 6
# of stations 1 1 1 2

# of interferers 1 6 6 6

TABLE II: Design details of simulation test-cases.

and (b), two irregularly shaped scenes are used in simulation
experiments, where robots of the worker-station MRS are
initialized in the initial position. In addition, we modeled
the CUHKSZ campus for coverage work in Fig. 5-(c), where



the buildings are considered static obstacles. Fig. 6 shows the
motion trajectories of the worker-station using our planning
method in simulation test-cases. Based on the three modeled

cuhksz-2

cuhksz-1

--- worker trajectory
— station trajectory

rendezvous endpoint
covered area

corridor

Fig. 6: motion trajectories of worker-station MRS using our method.

scenes, we designed four test-cases described in Tab. II.
Note that in cuhksz-2 test-case, only the left-bottom group
of robots is included for the coverage work.

1) Ablation Study: to validate the effects on training
performance brought by our curriculum learning design and
ICM, we conducted ablation study in the corridor test-case.
We also trained a centralized policy with PPO [31] to validate
the benefits of the CTDE decentralization paradigm. In short,
the PPO agent takes the observation of object-positions
encoded images, which should cover the whole coverage area
with high resolution as in the perception-range observation.
Therefore, it is much larger than the image observations for
each ego agent in CTDE. With the same visual encoder in
Fig. 4, the feature vectors are fed into MLP of the same size
to output the joint actions that are distributed to each robot.
It is evident in Fig. 7 that a centralized policy using PPO
failed in our problem. Such a failure is largely due to: 1) the
training difficulties on a much larger network (about 1.5e6
parameters with centralized PPO, 0.1e6 parameters for both
worker and station policies with CTDE); 2) and the lack of
cooperation between agents with centralized PPO.

We now compare the results within the CTDE paradigm.
For two-stage curriculum learning, as shown in Fig. 7,
when training from scratch without curriculum, agents in
the worker-station MRS struggle at a locally optimal policy
and cannot finish the coverage task. When initializing from
Stage-I, it provides basic policy networks for both worker
and station, which vastly improves the sample efficiency
and guides the training procedure. As for ICM, we first ini-
tialize policy networks from pre-trained Stage-I curriculum
learning. As shown in Fig. 7-(b), the task finish time tfinish
shows that agents trained with ICM are better than agents

trained without it, which reflects the reward gap between two
training curves (green and black) in Fig. 7-(a). Such reward
gap results from the earlier finish of the coverage task, which
eliminates more accumulating time penalty rtime.

(a) Accumulated reward (b) Coverage task finish time

1e4

1.2

1.1

1.0

0.9

1e4
0.3

-2.0

-3.0

0.2

-1.0

0.1

0

-0.1

-0.2

-0.3

Stage-I Stage-II Stage-I Stage-II

Fig. 7: Ablation study of two-stage curriculum learning, Intrinsic
Curiosity Module (ICM) and centralized PPO in corridor test-case.

2) Decomposition-based and Graph-based Baselines: to
evaluate the coverage task performance, we modified graph-
based and decomposition-based mCPP methods to several
heuristic baseline methods on discretized state space. In ad-
dition, since these offline centralized mCPP baseline methods
have no dynamic collision avoidance ability with interferers,
we adopt a wait-and-move policy for all baseline methods.

Mobile-BCD: for decomposition-based baseline method,
we follow the Boustrophedon Cellular Decomposition (BCD)
algorithm [32] and adopts it as the so-called mobile-BCD
for our problem. We briefly describe the procedure: 1) the
map is initially decomposed into cells via BCD; 2) in each
cell, back-and-forth trajectories on the uncovered area are
generated and evenly distributed to workers; 3) the stations
always move to the nearest exhausted worker to replenish it.

Static-MSTC*: for graph-based mCPP baseline meth-
ods, we first modify the state-of-the-art mCPP algorithm
MSTC* [33] into a static stations version, namely static-
MSTC*. In order to account for the continuous energy
capacity of workers in our problem setting, the critical
modification in static-MSTC* is the constraint approximation
from the node-based energy capacity constraint in the origi-
nal MSTC* to the travel time-based constraint as in Eq. 1.

Mobile-MSTC*: based on the static-MSTC* method, we
further mobilize the stations and design the mobile-MSTC*
baseline as follows: 1) the target area is first decomposed
into sub-regions via k-means clustering; 2) depth-first-search
is applied to plan for the stations loaded with workers, to
travel to the center of next uncovered sub-region; 3) at each
sub-region, the workers cover the area via the static-MSTC*
baseline method. Note that the k value in the k-means
clustering algorithm is chosen according to the capacity ci

to make partitions suitable for efficient planning.
3) Coverage Task Performance: we compared the cov-

erage task finish time Tfinish among our method and the
above baseline methods on all the test-cases in Tab. II. The
smaller Tfinish is, the better the planning strategy for the
mCPP problem is. Note that to adopt the mobile-MSTC*
baseline method, we decompose the CUHKSZ map into two



equal-sized areas, and each area runs the mobile-MSTC*
baseline separately to finish the coverage work.

Test-cases star, corridor, cuhksz-2: we first compare
static-MSTC* with mobile-MSTC* and mobile-BCD. In
test-cases star and corridor, the performance of mobile-
MSTC* and mobile-BCD is nearly the same as static-
MSTC*. In test-case cuhksz-2, the mobile-MSTC* and
mobile-BCD manage to improve task performance by mobi-
lizing the station and planning for station and workers sep-
arately. However, there remains vast space for coverage task
performance improvement; the mobile-station and mobile-
BCD baselines that separately plan for stations and workers
with dynamic interferers still perform inefficiently.

We now compare our method with baseline methods. In
general, the comparison results on the three test-cases show
that our planning method can generate good coordination
behaviors of coverage planning and rendezvous planning for
workers and station, which leads to a better performance in
metrics of tfinish after around 0.5e7 to 1.5e7 training steps.
Compared with the mobile-MSTC* baseline in test-cases
corridor and cuhksz-2 with larger target areas, our method
unlocks more benefits by mobilizing the station and utilizing
the mobility of each robot in the MRS. Interestingly, when
an exhausted worker leaves the perception or communication
range of station, the rendezvous for recharge is still possible,
as stations would explore to search exhausted workers.
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Fig. 8: Comparisons of the coverage task finish time.

Test-case cuhksz-1: compared with test-case cuhksz-2, the
MRS of test-case cuhksz-1 works in the same CUHKSZ
scene but with the numbers of workers and stations reduced
in half. The performance of our method is nearly the same
as mobile-MSTC* with the best performance, which is
mainly due to the following reason: for less number of
workers and a comparably smaller cover radius, workers
with continuous action space would leave uncovered gaps
during work, especially when trying to avoid static obstacles
or dynamic interferers. These uncovered gaps require the
workers to revisit some regions, making our method in this
test-case perform not as well as in the other three test-cases.

C. Real Robot Performance

As complementary to the simulated environments, we also
conduct hardware experiments of our method on real robots.
As shown in Fig. 9, we tested our method in Star scene, of
which we made a replica in the real world. The worker-
station MRS consists of two workers (black differential-
driven wheeled robots) and one station (yellow skid-steer
wheeled robot), the dynamic interferer is a quadruped robot.
The workers are considered replenished once its distance
to the station is smaller than a threshold. We use the PID
controller for velocity commands of all robots, with a motion
capture system providing their global position information.

station

interferer

worker #1 (exhausted)

worker #2 (normal)

rendezvous planning

coverage planning

coverage planning

rendezvous planning

--- station
--- worker#1
--- worker#2

simulation real robot

--- station
--- worker#1
--- worker#2

(a) Real robot setup of the worker-station MRS 

(b) Comparison of coverage area between simulation and real robot

Fig. 9: Real robot demonstration of our planning method.

Fig. 9-(a) depicts the worker-station MRS with our
method, where the station is moving towards worker #2
to replenish it and worker #1 is executing coverage work.
Fig. 9-(b) is a comparison of the coverage area between
simulation and real robot, the blue area is covered by workers
and the green area is the motion range of station, the whole
coverage task in the real world took 140 seconds.

D. Discussions

To the best of our knowledge, there is no existing online
and simultaneous planning method for the worker-station
MRS. Therefore, our choice of the baseline methods is
naive heuristics-based planning approaches, which also need
extensive research to reach optimal performance with fine-
tuned hyperparameters. There are several limitations of our
DRL-based planning method. First, when there is only a
comparably small number of workers with a small cover
radius, the unregulated trajectories of workers with continu-
ous action space would leave more uncovered gaps needed
for revisiting. Second, since our method mainly focuses on
strategy-level planning for workers and station towards the
coverage task, we use a relatively simple controller for the
generated velocity actions to control real robots, which could
cause a performance gap between simulation and reality.



VI. CONCLUSIONS & FUTURE WORK

In this paper, we introduce the worker-station Multi-robot
System (MRS) to solve the Multi-robot Coverage Path Plan-
ning (mCPP) problem, which can be generalized to various
applications in the real world. We provide a fully cooperative
multi-agent reinforcement learning formulation of the above
problem, and propose an end-to-end decentralized online
planning method based on Deep Reinforcement Learning.
Our method simultaneously plans for workers and station to
work together and utilize the mobility of each robot toward
the coverage task. We conduct ablation study, simulation and
real robot experiments and demonstrations. The experimental
results show that our method is more efficient in planning
for workers and station, and our method can better utilize
the mobility of each robot compared with the mobile-station
baseline method. For future work, there are two directions to
further improve the coverage task performance based on our
method. First, by regulating the trajectories with the graph-
based mCPP method, there would be fewer missing gaps
after workers covered an area. However, it might potentially
raise the time for random dynamic collision avoidance.
Second, by explicitly pre-allocating or negotiating which
exhausted workers should the stations be responsible for, the
stations can be more efficient to replenish specific workers.
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R. Sakagami, A. Dömel, L. Meyer, B. Vodermayer, R. Giubilato,
et al., “The arches space-analogue demonstration mission: towards
heterogeneous teams of autonomous robots for collaborative scientific
sampling in planetary exploration,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 5315–5322, 2020.

[4] A. Couture-Beil and R. T. Vaughan, “Adaptive mobile charging
stations for multi-robot systems,” in 2009 IEEE/RSJ international
conference on intelligent robots and systems. IEEE, 2009, pp. 1363–
1368.

[5] Y. Litus, R. T. Vaughan, and P. Zebrowski, “The frugal feeding
problem: Energy-efficient, multi-robot, multi-place rendezvous,” in
Proceedings 2007 IEEE International Conference on Robotics and
Automation. IEEE, 2007, pp. 27–32.

[6] R. Almadhoun, T. Taha, L. Seneviratne, and Y. Zweiri, “A survey
on multi-robot coverage path planning for model reconstruction and
mapping,” SN Applied Sciences, vol. 1, no. 8, pp. 1–24, 2019.

[7] Y. Litus, P. Zebrowski, and R. T. Vaughan, “A distributed heuristic for
energy-efficient multirobot multiplace rendezvous,” IEEE Transactions
on Robotics, vol. 25, no. 1, pp. 130–135, 2008.

[8] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[9] Xiaoming Zheng, Sonal Jain, S. Koenig, and D. Kempe, “Multi-robot
forest coverage,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2005, pp. 3852–3857.

[10] X. Zheng, S. Koenig, D. Kempe, and S. Jain, “Multirobot forest
coverage for weighted and unweighted terrain,” IEEE Transactions
on Robotics, vol. 26, no. 6, pp. 1018–1031, 2010.

[11] A. C. Kapoutsis, S. A. Chatzichristofis, and E. B. Kosmatopoulos,
“DARP: divide areas algorithm for optimal multi-robot coverage path
planning,” Journal of Intelligent & Robotic Systems, vol. 86, no. 3-4,
pp. 663–680, 2017.

[12] I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset, “Efficient
boustrophedon multi-robot coverage: an algorithmic approach,” Annals
of Mathematics and Artificial Intelligence, vol. 52, no. 2, pp. 109–142,
2008.

[13] L. Collins, P. Ghassemi, E. T. Esfahani, D. Doermann, K. Dantu,
and S. Chowdhury, “Scalable coverage path planning of multi-robot
teams for monitoring non-convex areas,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
7393–7399.
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