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Abstract— Transferring tools and objects to human hands is
an important ability of collaborative robots. Most of the existing
approaches focus on handover affordance, however, the comfort
of receiving objects with human hands is often neglected. In this
paper, we use advanced deep learning models to pre-generate
handover target configurations that are convenient for human
grasping based on the characteristics of the objects and tools,
and then the robot grasps and passes the objects to the human.
Experimental results on a mobile collaborative robot show that
our proposed framework can robustly and efficiently deliver
different shapes and types of objects to a human hand of any
pose within the robot’s field of view in a target pose that is
convenient for grasping and can quickly deliver objects to a
new target location even after the human hand moves to a new
position.

I. INTRODUCTION

It is a significant application that transfers objects be-
tween robots and people for human and robot cooperation.
Robots can improve factory efficiency by handing tools to
workers, or they can hand household items to people who are
inconvenient to move. It seems natural for people to pass the
object to the receiver quickly, accurately, and as effortlessly
as possible. However, many challenges remain to achieve a
fluent robot-to-human object handover for robots.

Firstly, the robot needs to consider how to grasp the
object suitably that humans will receive. Because the grasp
of a robot influences the grasp of the human. Humans can
only grasp the object on the unrestricted portion of the object.
Special attention should be paid to objects of particular use
and objects with tips, such as water cups and scissors. Robots
must ensure that people can safely complete the handover.
Secondly, unlike placing a static object on a plane, the
process of handover may involve hand movement, which
may result in unsuccessful handover attempts. Therefore, the
robot needs to track the human hand in real-time to ensure
that the robot arm can complete the handover after the human
hand moves. it can ensure that the robot arm does not collide
with the human hand during the movement process. Finally,
after the end effector moves to the target point, the robot
needs to detect whether the object is successfully grasped
by the receiver. Because the robot has to select whether to
release the gripper and return to the initial position after
the human hand retracts. Usually, the robot uses the data
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Fig. 1: Robots transport object that human hands can grasp
comfortably. Our system first predicts a suitable grasp for
the human hand, then based on the human hand tracking
and reconstruction, it delivers the object to the human and
can adapt to the scene of the human hand moving.

obtained by the end force sensor to judge whether the object
is successfully grasped by the receiver.

In response to the above issues, we propose a real-
time interactive robot-to-human handover framework. The
contributions are as follows:

• A vision-based robot-to-human handover system, the
robots can track human hands in real-time and quickly
deliver objects to the receiver.

• Suitable handover posture, the robot generates both
a safe human hand grasp posture and a robot grasp
posture on the object.

• Robust object handover strategy, The robot uses a multi-
threaded, reactive strategy to complete the handover of
different objects with a high success rate.

II. RELATED WORKS

A recent survey summarizes the progress of research
on robot handover capabilities [1]. It can be seen that the
results of human-robot handover research are rising year by
year. Handover is usually divided into two cases, robot-to-
human and human-to-robot. This paper restricts the research
scope to the robot-to-human handover. During the handover
process, humans should grasp the appropriate, safe part of
the object. Functional interaction of object parts with humans
is usually judged based on the object’s affordance. Here af-
fordance means the intuitive usage of the object [2]. Humans
reason about the affordance of objects mainly through vision,



Fig. 2: An overview of the proposed handover system. The system is divided into three modules namely grasp, hand tracking,
and delivering. The robot first predicts the grasping posture of objects commonly used by the human hand. Based on this
prior, it executes a feasible grasp and turns the waist. When it tracks hand and generates mesh successfully, the robot
calculates the ideal handover points and delivers the object based on a reactive strategy.

so there is a lot of work based on RGB or point clouds [3][4].
Besides Ardon et al. uses Markov logic networks to learn
semantic relationships between features such as properties,
location, and grasping functions of objects [5]. while later
using CNN to extract features of the inferred object from
RGB, querying specific grasps from the trained knowledge
graph. Corona et al. uses a single RGB image with one or
more objects to predict how humans will naturally grasp
these objects [6]. However, these works do not consider the
constraint of robotic grasping. Our system is close to the
work of Ardon et al. [7]. But the difference is that the pose
of the human hand can be changed arbitrarily in our scenario.

The handover must take place in a location that is acces-
sible to both agents. In robot-to-human handover tasks, many
works assume that the human hand does not move during the
process, so the handover point does not change. In reality,
however, the human hand usually moves. Therefore, we
propose a method to determine the handover point based on
the estimation of human hand pose. To determine the human
hand position in space, the robot needs real-time human hand
tracking. MediaPipe [8] firstly determines the position of the
hand using the hand detector. Then it inputs the bounding box
containing the hand into the landmark model and generates
the 2.5 dimension hand coordinate frame. The human hand
segmentation [9] in human-to-robot handover is similar to
hand tracking in robot-to-human handover. The first crop is
point clouds containing only hands and objects, and then
predicts a hand mask based on the RGB image. They both
use the feature pyramid network as the backbone, and the

network outputs a per-pixel segmentation. Each point in the
point clouds can be labeled as a hand or object using a hand
mask.

To improve system safety and avoid any contact be-
tween humans and robots, Rosenberger et al. add a body
segmentation module based on refinement [10] [11]. Zhang
et al. proposed to use human pose estimation method to
find dynamic human objects when robot is moving [12]
[13]. Zhou et al. gives a real-time 3D hand reconstruction
method for the MANO model [14] [15], and the method is
divided into two modules. The DetNet is used to regress
the 3D hand joint positions. the IKNet solves the pose
and shape parameters in the forward channel and inputs
the MANO model for human hand reconstruction. Hasson
et al. reconstructs hands and objects simultaneously from
RGB images [16]. The authors give a Pytorch version of
the differentiable MANO model and create a dataset with
human-manipulated object actions.

III. SYSTEM FRAMEWORK AND METHODS

In this study, we propose a fully automatic system to
complete the handover from robot to human. The method
pipeline is shown in Fig. 2. After finding people, the robot
generates the grasping posture for the handover task and
executes it. In addition, the robot detects the human hand and
calculates the best handover point. Finally, the robot plans
and executes the trajectory through the motion planner. When
a person has grasped the object, the robot actively releases
the object. The next arrangement is as follows.



Fig. 3: Examples of a suitable grasp type of hand mesh
generated on an object.

1) Quick and accurate calculation of the handover point.
Through real-time hand pose estimation, the robot can output
the pose of the target when the hand is moving.

2) Optimal grassing and delivery, the robot not only
makes people grasp objects comfortably but also comfortably
delivers objects.

3) By constructing a hierarchical and reactive execution
strategy, we can solve the uncertainty and change of the
current human state.

A. Hand detection and tracking
Our visual input comes from an RGB-D camera, and the

image pair is denoted as fi = (Ci,Di), where Ci : Ω → R3

and Di : Ω → R stand for the i-th color image and
depth image respectively. Ω ⊂ R2 is the image domain. So
we use Ci to predict hand skeletons. Each human hand is
detected by a learning-based algorithm, and hand detection
is refined based on geometric relationships. MediaPipe hand
is a high-fidelity hand and finger tracking solution, and it
uses machine learning to infer hands joint point informa-
tion. Through this method, we obtain 2D hand with joint
point pixels{(u1, v1), (u2, v2), ..., (u21, v21)} in real time.
The numerical sequence number of joints is the same as
this article [17]. The next step is to construct the coordinate
transformation of the end effector coordinate systemFrf ,
camera coordinate system Frc and hand coordinate system
Frh in the robot coordinate system Fr.

We store MediaPipe outputs containing joint points P
with confidence c > 0.5 as a set Hj = {1P j ,2 P

j , ...,21 P
j},

where j ∈ {0, 1} is the flag denoting which side of the
hand was detected in Ci. The 3D point P relative to Fr is
computed by the pinhole camera model:

kPc = (
uk − cx

fx
dk,

vk − cy
fy

dk, dk)
T (1)

where fx, fy, cx, cy are the intrinsic parameters of the cam-
era, and kPc, uk, vk are pixel value corresponding to the kth
point. Based on transformation tree in robot, we get Frc to
calculate Pr. Our work contributes to a comfortable handover
for humans. The robot needs a 6D target as motion planning
inputs, so we need to define Frh to describe arbitrary hand
pose. According to the article [18], index finger root, ring
finger root, and wrist have little deformation when moving
around. So we select points 0Pr, 5Pr, 13Pr to build hand
frame Frh = [x⃗, y⃗, z⃗, p⃗] and specify the inner side of the
palm as positive direction of z-axis. The x-axis is defined as
the connecting line between 0Pr and 5Pr, and the y-axis is

Fig. 4: Given a target object, we reconstruct the joints of the
hand manipulating object. Based on the constrained object,
graspit creates a safe and desired gripper pose. Finally, the
robot solves the global pose through coordinate transforma-
tion and executes the planned trajectory.

defined according to the right-hand rule.

z⃗ = (
(5Pr −0 Pr)× (13Pr −0 Pr)

∥(5Pr −0 Pr)× (13Pr −0 Pr)∥
)T (2)

B. Mesh Generation
We choose MANO [15] as the hand model to be driven

by the output of Section III-A, because model-based hand
reconstruction is significantly better than the model-free. The
surface mesh of MANO can be fully deformed and posed by
standard linear blend skinning function as

M(θ, β) =W(T (β, θ),J (β), θ, ω) (3)

where M(θ, β) ∈ R773×3 is hand mesh surface, β ∈ R10

and θ ∈ R16×3 are shape parameters and pose parameters,
ω is a constant. So our work is to use Hj to estimate β and
θ, called hand inverse kinematics.

Manolayer [16] is a differentiable Pytorch layer that maps
directly from β and θ toM and joint positions, which means
we can use an automatic differentiation engine to optimize β
and θ. Therefore, we first initialize β and θ to 0, then obtain
the 3D coordinates of the hand joints through the forward
channel of Manolayer. We regard Frh and Hj as a truth
value, then calculate the loss between truth and output of
Manolayer. When the first frame is initialized successfully,
β and θ are used as the initial value of the next optimization.
We reversely update the β and θ to generate the current hand
mesh.

C. Desired Hand Pose
Formally, given a CAD model T , we need a modelN that

provides a hand pose P and shape V mentioned in equation
(3), and grasp type C for an object in T :

N : T =⇒ {C, V, P} (4)

We choose Ganhand [6] as the hand generation method, and
there are three reasons. First, Ganhand predicts the optimal
human hand grasp type and generates a hand mesh on the
object. Second, Ganhand and our work both use the YCB
object set so that We could easily reduce the generalization
error. Third, the author uses the real grasped objects by



Algorithm 1 Reactive strategy

Input: Hand Pose Frh Object Pose Frb Effector Pose Frt

Robot Pose Fr

1: flag1← 1, f lag2← 0, f lag3← 0
2: for i ∈ all objects do
3: if flag1 = 1 then
4: F (i)

rb ← object grasp(Fr)
5: Fr ← turn waist(Fr)
6: flag1← 0, f lag2← 1
7: end if

Thread1:
8: if hand motion(Frh) = True then
9: Frt ← robot stop(Fr)

10: Thread2 Stop
11: flag2← 1, f lag3← 0
12: end if
Thread2:
13: if flag2 = 1 then
14: F (i)

rb ← plan execution(Frh)
15: flag2← 0, f lag3← 1
16: end if
17: if flag3 = 1 then
18: Frt ← open gripper(Fr)
19: flag3← 0, f lag1← 1
20: Thread1 Stop
21: Fr ← turn waist(Fr)
22: end if
23: end for
24: return ∅

human hands to train the model. Unlike their work, we
assume that the global pose of the object is known and the
object lies flat on the table. Because our task only needs to
consider the relative relationship between the human hand
and the object. We select images that meet the assumptions
to predict hand grasp types. Fig. 3 shows examples of hand
grasp configurations.

D. Handover Pose and Object Grasp
Based on the desired pose of the hand, the robot plans the

pose of the gripper and grasps the object. the object being
grasped is of the same size and shape as the set of YCB
objects. We firstly set the geometric center of the objects as
the coordinate origin and the table as the object placement
plane. We import the C, V, P, T into the graspit. The graspit
simulator includes fast collision detection system that can
generate grasp pose based on the gripper model. To achieve
better presentation, we prefer to choose the grasping posture
opposite to hands in addition to preventing collision with
hands. One reason is that the caliber of our gripper is small,
and the chance of grasping failure from other postures will
be greatly improved.

The coordinate frame Frb of the object is known, and the
target transformation Fbt between the end effector and object
is calculated by model N . So the grasping task is defined as
that robot plans from initial pose Fbi to pose FrbFbt. Fig. 4
shows examples of generating robot gripper configurations.

Fig. 5: Handover fail examples in our experiment. The failure
case with a red border means that the camera is blocked by an
object and can not find a human hand in the new position.
The blue border means the human hand and robotic arm
move at the same time and occlude the camera. Other means
the path is too long to deliver the object within the allotted
time.

E. Reactive strategy and execution
Because human behavior is uncertain, the robot needs

to decide what to do next according to the current state of
humans and itself. We design a task model presented in the
Algorithm 1 based on reaction strategy, and the Thread1 and
Thread2 are respectively responsible for detecting whether
the hand is moving and executing robot motion.

Firstly, we divide the whole process of handover into
three states: grasp, deliver and release. At runtime, we
repeatedly check the execution conditions of each state to
determine which state to enter. If the robot gripper opens, the
robot enters the grasp state. If the robot completes grasp, the
robot enters the delivered state. If the robot arm reaches the
desired position, the robot enters the release state. For safety
and to solve the problem that objects cannot be accurately
delivered to the human hand after the change of the human
hand in the previous work, the robot needs to determine
whether the human hand is moving in real time. We use the
hexahedral volume formed by three points 0Pr, 5Pr, 13Pr

to form a plane for a small period as a way to evaluate the
movement of the human hand. The execution of the robot
motion planning is done through an inverse kinematics solver
and self-collision detection.

IV. EXPERIMENTS RESULTS AND EVALUATIONS

In this work, we used the Moying dual-arm robot. Both
arms of this robot have 6 degrees of freedom, a maximum
range of motion of 705 mm, and a maximum hand load of 3
kg. The end effector of the robot arm is equipped with a two-
finger parallel gripper. The gripper can pick up objects with
a maximum width of 8 cm. A Robotiq FT85 torque sensor
can be added to the end. The head of the robot is installed
with Intel RealSense D435 RGB-D camera. The sensors on



Fig. 6: Handover success example. Three objects of different sizes and shapes were used: a can, a mug, and scissors. The
same user performed all experiments. For any hand pose, the robot successfully delivered the object to the human.

the robot have been calibrated. The motion planning and
execution module runs on the robot body computer. The
hand detection and mesh generation module run on a desktop
computer with Intel CoreTM i9-9980XE CPU @ 3.00 GHz
× 36, 128 GB System memory, and one GeForce RTX 2080
Ti GPU. The communication between the two computers is
done through ROS. Transformations Frames Tools in ROS
update Frh, Frb, Frt, Fr.

A. Handover Experiments
We conducted experiments to test the performance of our

system in response to different types of handover with arbi-
trary hand poses. Specifically, we looked at three different
objects. But, if the object model is known, our method can
be applied to any graspable object. As shown in Fig. 6, the
objects were a mug, scissors, and a can from the YCB object
[19] that fit the Moying robot gripper. The three objects are
placed on the operating table behind the waist of the robot
respectively, and the initial pose is known.

For each object, we ensure that the human hand is within
the workspace of the robot. The pose of the human hand can
be arbitrary, and the robot needs to send the object to the
human hand. When the position of the human hand changes,
the robot needs to respond in time, adjust the posture of the
end effector and deliver the object to the human again. We
conducted 30 experiments on each object. Each experiment
is divided into three stages. The first stage is that the end
effector sends the object to the human hand from the initial
position. The second stage is that after the first movement
of the hand, the manipulator will redeliver the object to the
hand from the current position. The third stage is the same
as the second stage. The purpose of this process is to test
whether our reactive strategy and perception system can cope
with the problem of hand movement.

To ensure the fluency of people’s subjective experience,
we need to set the maximum time for one delivery, if it
exceeds this time, we judge the experiment to fail. We

TABLE I: Success rate of 30 experiments per object

Object mug can scissors

Hand Still 1.0 0.96 1.0

First Hand Move 0.90 0.86 0.96

Second Hand Move 0.76 0.76 0.86

refer to the average time taken for a delivery in previous
work [9] to set the metric. Our metric is that a handover
must be completed within 8 seconds and free collisions with
the human hand. Some of our successful examples in the
experiment are shown in Fig. 6. It can be seen that we realize
handover based on arbitrary hand pose.

B. Evaluations
For three object handover, the robot execution success

rate and execution time are shown in the table I. As can be
seen from the data distribution in the table, the success rate of
our system does not depend on the handover object. There
are two reasons for the 20.7% failure rate after two hand
position changes First, the planning algorithm we use is not
globally optimal. Because the globally optimal planner will
consume too much time, which will affect people’s subjective
feelings. Exceeding the specified time in our experiments
will be considered a task failure. At the same time, due
to the prevention of collision with the human hand, we
cannot just use the inverse kinematics algorithm to solve the
desired pose. So we choose RRT-connect to reduce planning
time. However, this algorithm does not guarantee the globally
optimal path, which means that the path will become longer,
which will also lead to timeouts. Second, after the human
hand moves, some parts of the robot arm may occlude the
human hand in the new position, causing the robot to fail
to correctly estimate the pose of the human hand. Besides,



when the robotic arm delivers the object, it just blocks
the moving hand and cannot stop according to the reactive
strategy. However, our system does not cause harm to people
in these failure cases, such as collision with a human body or
hand. Our next work will also focus on solving the problems
in these three aspects to achieve a safer, faster, and more
comfortable robot-to-human handover.

V. CONCLUSION

In this paper, we have presented a robot-to-human han-
dover system for handover objects to humans in arbitrary
poses quickly and comfortably. When the hand moves, our
system can still accurately send objects to the hand and limit
the single execution time to less than 8s. Even after the
hands are moved twice, the interactive handover can still
be realized with a high success rate. At the same time, our
system eliminates areas that are not suitable for people to
grasp, so that people can easily get the required objects.
This work can help people with limited mobility to take
objects or help factory workers improve efficiency. In the
future, we will focus on optimizing the trajectory of the end
effector in the process of handover based on considering the
human hand model and applying our work to multi-robot
systems[20].
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