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Abstract—Chain-type modular robots are capable of Self-
Reconfiguration (SR), where the connection relationship between
modules is changed according to the environment and tasks.
This article focuses on the connection planning of SR based
on Multiple In-degree Single Out-degree (MISO) modules. The
goal is to calculate the optimal connection planning solution: the
sequence with the fewest detachment and attachment actions.
To this end, we propose an auto-optimizing connection planning
method that contains a polynomial-time algorithm to calculate
near-optimal solutions and an exponential-time algorithm to
further optimize the solutions automatically when some CPUs
are idle. The method combines rapidity and optimality in the
face of an NP-complete problem by using configuration pointers,
strings that uniquely specify the robot’s configuration. Our
polynomial-time algorithm, In-degree Matching (IM) uses the
interchangeability of connection points to reduce reconfiguration
steps. Our exponential-time algorithm, Tree-based Branch and
Bound (TBB) further optimizes the solutions to the optimum by
a new branching strategy and stage cost. In the experiments, we
verify the feasibility of the auto-optimizing method combining IM
and TBB, and demonstrate the superiority of IM over Greedy-
CM in the SR of MISO modules and the near-optimality of IM
compared to the optimal solutions of TBB.

Index Terms—Modular robots, self-reconfiguration, connection
planning, graph matching, computational complexity

I. INTRODUCTION

A Modular Self-Reconfiguration Robot (MSRR) consists
of multiple homogeneous or heterogeneous modules

and can transform its overall configuration by changing the
connection relationship between modules. MSRR surpasses
robots with a fixed configuration in terms of versatility and
adaptability [1]. MSRR could perform various tasks such as
exploration, grasping, and rescue in unstructured environments
such as fires and earthquakes. The action process transforming
one configuration of modular robots into a final configuration
is defined as Self-Reconfiguration (SR). The significance of
the SR process is to build a bridge between configurations
suitable for different environments and tasks. SR is a critical
competence that reflects the advantages of modular robots.

Existing MSRR hardware can be classified into lattice-type
and chain-type [2]. Lattice-type MSRR includes Telecube [3],
Crystalline [4], ICubes [5], ATRON [6], Catom [7], Stochastic-
3D [8], Miche [9], Vacuubes [10], etc. Chain-type MSRR
includes CONRO [11], PolyBot G3 [12], M-TRAN III [13],
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Fig. 1. Meaning of the MISO module. (a)(b) Two hardware implementations
of the MISO module, SnailBot and FreeBOT. (c) 3D simulation of the MISO
module. The green and red circles represent the module pose. (d) 2D schematic
of the MISO module. The rectangle represents an active connection point, such
as the magnet inside FreeBOT. The circle represents multiple interchangeable
passive connection points, such as FreeBOT’s iron shell.

Molecule [14], SuperBot [15], CKBot [16], Odin [17], YamoR
[18], Roombot [19], FreeSN [20], etc. The reconfiguration
of lattice-type MSRR [21], [22] is achieved by each module
moving along the surface of adjacent modules in the lattice
space. The reconfiguration of chain-type MSRR [23], [24] gen-
erally aims to realize the detachment and attachment between
modules by moving the manipulator composed of modules
in a continuous space. Lattice-type MSRR is suitable for
composing static structure or dynamic fluids [25], while chain-
type MSRR is good at manipulation and locomotion [26].
Lattice-type and chain-type MSRR have different design prin-
ciples and function advantages, making their reconfiguration
algorithms fundamentally different. In this article, we focus on
the reconfiguration of chain-type MSRR. Due to the diversity
of MSRR hardware modules, we usually generalize an abstract
model to increase the applicability of developed algorithms,
such as Proteo [27], SlidingCube [28] and RollingSphere [29].
In this article, we study algorithms based on a new abstract
module, the Multiple In-degree Single Out-degree (MISO)
module, as illustrated in subsection III-A. It can represent the
hardware modules of most chain-type modular robots such
as FreeBOT [30], SnailBot [31], Ant3DBot [32], FireAnt-
3D [33], Cross-ball [34] and Swarm-Bot [35]. Fig. 1 takes
FreeBOT and SnailBot as examples to illustrate the physical
meaning of MISO:
(1) Multiple interchangeable passive connection points;
(2) Single active connection point.

The self-reconfiguration of chain-type MSRR can be divided
into two stages: connection planning and motion planning. The
connection planning provides several sub-goals that specify
which connections should be deleted and which connections
should be created during the SR process. Motion planning
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controls the movement of the chain composed of modules
to achieve these sub-goals. Therefore, whether sub-goals are
optimal or non-redundant determines the speed of the entire
SR process. This article focuses on the theoretical study of the
connection planning problem, without considering constraints
in motion planning. Optimal connection planning, also called
Optimal Reconfiguration Planning (ORP) in [36], is of great
significance to the self-reconfiguration of chain-type MSRR.
Unfortunately, ORP has been proved to be NP-complete based
on SuperBot [24], which means that an algorithm calculating
the optimal solution in polynomial time is unlikely to exist.
Therefore, the current works’ two main research directions are
calculating the near-optimal solution in polynomial time and
calculating the optimal solution in exponential time, denoted as
polynomial-time algorithms and exponential-time algorithms.

Existing works have not yet tried to combine the advantages
of polynomial-time algorithms and exponential-time algo-
rithms in one method. Nelson [37] proposed a numerical op-
timization method for optimal solutions based on permutation
matrices, but the computational complexity of the solver [38]
is O(n!) which is worse than the exponential computational
complexity. Nelson [37] further proposed a polynomial-time
algorithm to solve the near-optimal solution based on principal
components analysis and bipartite matching. The algorithm
does not exploit graph properties such as interchangeable con-
nection points. Additionally, it cannot handle configurations
with root modules whose adjacency matrices are nilpotent
[39]. Hou and Shen [36] proposed an exponential-time algo-
rithm and a polynomial-time algorithm, called MDCOP and
Greedy-CM, respectively. MDCOP converts ORP into Dis-
tributed Constraint Optimization Problem (DCOP) to call the
existing algorithms in the DCOP area rather than to develop
a new optimal solver for the ORP area from scratch. Greedy-
CM can compute the solutions with near-optimality, which is
verified by experimental comparison with the optimal solutions
calculated by MDCOP. Greedy-CM relies on SuperBot’s four
non-interchangeable connection points to match sub-graphs
greedily.

This article introduces an auto-optimizing connection plan-
ning method, which combines the rapidity of polynomial-time
algorithms and the optimality of exponential-time algorithms.
This method maintains a library where the near-optimal solu-
tions can be read and further optimized by the exponential-
time algorithm automatically when some CPUs are idle. The
configuration pointer can be used to read the solution after we
prove its isomorphic invariance by Theorem 2 in Subsection
IV-A. The auto-optimizing method converts computational
complexity into space complexity so that MSRR can quickly
obtain a further-optimized or optimal solution in actual use.
Second, we propose a polynomial-time algorithm, In-degree
Matching (IM), which demonstrates that the interchangeability
of connection points can be used to reduce reconfiguration
steps. Third, we propose an exponential-time algorithm, Tree-
based Branch and Bound (TBB), which develops an optimal
solver in the ORP area from scratch with a new branching
strategy and stage cost. The advantages of TBB are that
near-optimal solutions can be used to prune unpromising
branches, and further-optimized solutions can be output from

time to time before an optimal solution is guaranteed. The
contributions of this article are summarized as:
(1) The auto-optimizing method combines the rapidity

of polynomial-time algorithms and the optimality of
exponential-time algorithms by the reading of configu-
ration pointers.

(2) The IM algorithm improves the optimality of polynomial-
time algorithms by interchanging connection points.

(3) The TBB algorithm further optimizes the solution to the
optimum by a new branching strategy and stage cost.

(4) The code for all algorithms in this article is shared on
Github 1.

The content of this article is organized as follows. Section
II provides related works. Section III introduces the MISO
module and the definition of connection planning. Section IV
describes the contributions of this article: the auto-optimizing
method, the IM algorithm, and the TBB algorithm. In Section
V, well-designed experiments are used to verify the feasibility
of the auto-optimizing method and the superiority of the IM
algorithm. In Section VI, case studies are provided to help
understand the application of the proposed method.

II. RELATED WORKS

The existing self-reconfiguration algorithms are introduced
in the following four categories [1]: bio-inspired approaches,
agent-based approaches, control-based approaches and search-
based approaches. Bio-inspired approaches draw on the mor-
phological change control methods of multicellular organisms,
such as the gene regulatory network [40], the distributed
control protocol for hormone-like messages [11], etc. Bio-
inspired approaches do not pursue the optimal number of self-
reconfiguration steps. Agent-based approaches train multiple
agents who can observe their local environment and act
independently. The types of agents include Cellular Automata
[41], reinforcement learning [42], game theory [43], etc. For
example, Shiba et al. [44] apply Q-learning to transform
the overall shape of MSRR between line, ring and others.
Fitch and Butler [28] adopt the idea of the Markov decision
process to distributedly control a large-scale MSRR to achieve
locomotion and obstacle-crossing by changing the shape.
These agent-based approaches usually output local optimal
policies with a certain degree of randomness. Control-based
approaches simulate the feedback control loop to navigate the
sequence of configurations converging to a final configuration.
In the gradient-based [45] method, non-source modules follow
the steepest descent computed by the density of neighbors’
attractors, which are broadcast by a source module. Fur-
thermore, a distance-based method, a heat-based method and
a hybrid method are developed in [27]. The distance-based
control method is easily trapped by local minimums, such as
a long-chain configuration. The heat-based method is subject
to the slow broadcast speed of temperature, but it can jump
out of some local minimums. The hybrid method combines
the advantages of the above two methods. None of these
three methods can guarantee convergence. In general, control-
based methods are most suitable for lattice-type MSRR whose

1https://github.com/FreeformRobotics/MISO connection
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modules can move independently. For example, an obstacle-
crossing strategy is proposed in [29] to control multiple
modules in parallel to flow on the surface of obstacles by
splicing SR processes in the lattice space.

The algorithms proposed in this article can be roughly
classified into the search-based approach. Search-based ap-
proaches generally perform deterministic or heuristic searches
in the configuration space. One of the popular heuristic
searching methods is the A* search, which estimates the path
distances between initial, current, and final configuration based
on some metrics, such as the minimal number of steps, to
search for the shortest path. For example, Asadpour et al.
[46] propose the graph signature and the graph edit distance
metric. The graph signature is an isomorphic invariant code
that can be used to avoid repeated searches when searching
for an SR path. The graph edit distance metric can be used as a
heuristic function to evaluate the distance between the current
configuration and the final configuration. Further, Asadpour et
al. [47] add the graph edit distance metric from the initial
configuration to the current configuration in the heuristic
function. Search algorithms may fall into inadequate local
optimal solutions and are subject to the exponential growth
of the configuration space. Eden [48] gives the upper and
lower bounds of the number of exponential reproduction of n
biological cells on the 2D lattice as 2n−3 < S(n) < 1

n2
2n−1.

The configuration space of chain-type MSRR also increases
exponentially with the total number of modules. When the
configuration space is large enough, finding a tractable search
direction is difficult and computationally burdensome. For
another example, genetic algorithms can be used to search
for the task-oriented optimal configuration [49] and self-
reconfiguration steps. The genetic algorithm can jump out of
the local minimum and gradually approach the global optimal
solution as long as time permits. However, the range of feasible
descendants of the genetic algorithm increases exponentially
with the total number of modules.

We further analyze some self-reconfiguration algorithms
that can be divided into connection planning and motion
planning stages. Motion planning algorithms are beyond the
scope of this article, which involves completely different
theorems and concepts.

Hou and Shen [36] propose two connection planning algo-
rithms for SuperBot: MDCOP and Greedy-CM as presented in
Section I. The calculations of these two algorithms rely on the
four different connection points of SuperBot. Liu and Yim [50]
propose a distributed configuration recognition algorithm by
solving graph isomorphism problems through maximum sub-
graph matching and dynamic programming. Further, Liu et al.
[26] propose a self-reconfiguration algorithm for SMORES-EP
based on iterative configuration decomposition of rooted trees.
The algorithm replaces maximum common sub-configuration
with virtual modules and repeats the process for the remaining
sub-configurations. These two algorithms are customized for
SMORES-EP. Yim et al. [51] propose a graph-based con-
nection planning algorithm for PolyBot. The algorithm uses
a straight-line configuration as an intermediate configuration.
Similar are LineUp [52] and MorphLine [53]. These algo-
rithms serve as the upper bound of the least reconfiguration

TABLE I
MEANING OF THE MAIN SYMBOLS

Symbol Meaning
n Total number of modules
XI Adjacency matrix of the initial configuration
XF Adjacency matrix of the final configuration
MI

u Module in the initial configuration whose ID is u
MF

v Module in the final configuration whose ID is v
u, v, p, q Different module IDs
c0@MI

u Active connection point of MI
u

ci@MI
u The i-th passive connection point of MI

u

cj@MF
v The j-th passive connection point of MF

v
i,j, k, l Different indexes of passive connection point
Mci@MI

u Module connected to ci@MI
u

Nci@MI
u Number of modules in the sub-tree at ci@MI

u

Pci@MI
u Configuration pointer of the sub-tree at ci@MI

u
y.cost A variable of the node y in the TBB algorithm
d Maximum in-degree of the MISO module

P
MI

root
MF

[:]

A root module is matched with each vacancy

P
Mc[:]@MI

u

Mc[:]@MF
v

Match one by one in different permutations

steps [53]. There are also some general algorithms based
on abstract modules. Casal and Yim [23] consider general
chain-type modular robots and propose a divide-and-conquer
connection planning algorithm, but they do not seek the
optimal solution. Hou and Shen [53] propose the concept
of Connection Number (CN) and propose the corresponding
reconfiguration algorithm. This algorithm contains redundant
actions and is unsuitable for configurations that have circuits
or do not maintain overall connectivity.

There are some related topics, including NP-completeness
and configuration recognition. Hou and Shen [24] prove that
the ORP is NP-complete based on SuperBot and provide the
lower bound of the least reconfiguration steps. Gorbenko and
Popov [54] provide another way to prove the NP-completeness
of ORP. The configuration recognition task means matching
a new configuration to a library of known configurations.
Park et al. [55] provide two general configuration recognition
methods based on graph isomorphism algorithm nauty and
spectral decomposition respectively, as well as a customized
configuration recognition method for CKBot. Most existing
configuration recognition methods require isomorphism detec-
tion between the new configuration and each known config-
uration in the library without skipping. Thus, there is room
for improvement in the computational complexity of existing
configuration recognition methods.

III. PROBLEM FORMATION

This section explains the method to abstract non-lattice
modular robots as MISO modules, the definition of connection
planning, and the expression of graphs. Table I summarizes the
meaning of the main symbols used in this article.

A. Abstract as MISO Modules

The hardware modules in different chain-type modular
robots have different connection characteristics and drive
mechanisms, such as FreeBOT [30], Cross-Ball [34], FireAnt-
3D [33] and so on. This article proposes to abstract these



IEEE TRANSACTIONS ON ROBOTICS 4

hardware modules as Multiple In-degree Single Out-degree
(MISO) modules.

Take FreeBOT as an example. FreeBOT consists of a
rough metal spherical shell and an internal trolley with two
differential wheels and a permanent magnet, as shown in
Fig. 1(b)(d). The permanent magnet can be actively con-
nected to the spherical shell of another module, representing
a single active connection point. The spherical shell can be
connected by multiple other modules, representing multiple
interchangeable passive connection points. In graph theory,
the number of passive connection points and the number
of active connection points of the module are denoted as
the in-degree and out-degree of the module. Other hardware
modules can be abstracted as MISO modules by designating
a unique connection point as an active connection point and
other connection points as passive connection points, such as
Roombot, Molecube and ClicBot.

The abstracted MISO module has one active connec-
tion point and multiple interchangeable passive connection
points, denoted as c0@Mu and c1@Mu, c2@Mu, · · · , c5@Mu

as shown in Fig. 1(d) where ci@Mu is abbreviated as ci.
Abstracting as MISO modules can induce a hardware-forced
or artificial-forced direction to each edge in the connectivity
graph of the configuration and make it easier to express the
configuration as a tree. Second, the interchangeability of the
passive connection points of MISO modules can reduce redun-
dant steps for satisfying connection type restrictions. However,
if the hardware modules do not support interchangeability of
the connection points, the optimal solution calculated based
on MISO modules may not meet the hardware implementation
requirements.

B. Connection Planning

In this article, we define configuration as the connection
relationship between modules. This definition of configuration
does not involve the relative poses between modules, since
motion planning is not considered in this article. We further
assume that the underlying chain-type MSRR can be unfolded
by the Carpenter’s Rule Theorem [56] and is singularity-
free [57] between any two modules. In other words, motion
planning is assumed to be able to accomplish all detachment
or attachment actions required by the result of connection
planning.

Configuration can be expressed by adjacency matrices as
shown in Equation (1). In the adjacency matrix, the element
xuv = 1 means that the active connection point of the module
Mu is connected to any passive connection point of the module
Mv , denoted by Mu →Mv in Equation (1). An SR instance is
represented by the adjacency matrix of the initial configuration
XI and the adjacency matrix of the final configuration XF .
The element-wise subtraction between XF and XI generates
a difference matrix D [37], as shown in Equation (2). In the D
matrix as shown in Equation (3), duv = 1 means that the active
connection point of the module Mu in the initial configuration
is to be connected to one passive connection point of the
module Mv . duv = −1 means that the connection between the
module Mu and the module Mv in the initial configuration is
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Fig. 2. A graph G may contain multiple Connected Components (CCs). Each
CC may contain four types of modules.

to be broken. Thus, one non-zero element in the D matrix is
defined as one reconfiguration step. The number of non-zero
elements in the D matrix is also regarded as the cost of the
solution output by connection planning algorithms.

X : xuv =

{
1 Mu →Mv

0 otherwise
u, v = 1, · · · , n (1)

D = XF −XI (2)

D : duv =


−1 detach Mu ; Mv

1 attach Mu ⇒Mv

0 otherwise
u, v = 1, · · · , n (3)

Different adjacency matrices can represent the same con-
figuration according to different ID assignments. Let’s assume
that each module in the initial configuration and the final
configuration has been assigned a unique ID [58] to generate
XI and XF for the input of connection planning algorithms.
The problem of optimal connection planning can be defined
as selecting an appropriate ID assignment for modules in the
final configuration, so that the D matrix calculated by Equation
(2) contains the fewest non-zero elements. The computational
complexity of traversing all possible ID assignments of the
final configuration is O(n!). In order to reduce the computa-
tional complexity, numerical optimization or graph matching
methods are generally used in the connection planning algo-
rithm to adjust the ID assignment in the final configuration.
The above connection planning model was first introduced by
Nelson [37].

C. Notations and Expressions of Graphs

We can draw the input adjacency matrix as a simple directed
graph G = (V,E). Each graph G may contain more than one
Connected Component (CC), where vertices are linked to each
other by paths, such as the two CCs in Fig. 2. There may be
four types of modules in each CC. They are defined as:
(1) Out-degree = 0 → root module;
(2) Out-degree = 1 and In-degree = 0 → leaf module;
(3) Out-degree = 1 and In-degree = 1 → stem module;
(4) Out-degree = 1 and In-degree ≥ 2→ bifurcation module.

The positive direction of a module is defined as the direction
of its active connection point, such as the N pole of the
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Fig. 3. A Connected Component (CC) that contains a unique root module is
itself a rooted tree. (a) The graph of the CC. (b) The tree structure diagram
of the CC. The numbers in parentheses represent the number of modules
included in the chain.
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Fig. 4. A Connected Component (CC) without a root module can be spanned
into a rooted tree by one detachment. (a) The graph of the CC. (b) The tree
structure diagram by spanning the CC. The numbers in parentheses represent
the number of modules included in the chain.

permanent magnet in FreeBOT. A chain is defined as one leaf
or bifurcation module and the possible stem modules in front
of it. For example, M[6],M[5,4] and M[3,2,1] in Fig. 2 are three
different chains.

An example explaining the meaning of some symbols is
introduced in the right of Fig. 2. In the example, the root
module with an ID u is denoted as Mu. Mu has a pas-
sive connection point, c1@Mu. The module with unknown
ID connected to the passive connection point c1@Mu is
denoted as Mc1@Mu. Mc1@Mu is also the root module
of a sub-tree connected to c1@Mu, and the number of
modules contained in this sub-tree is denoted as Nc1@Mu.
Nci@Mu is called the Connection Number (CN) [53], the
number of modules in the sub-tree whose root module is
connected to the passive connection point ci@Mu. The Con-
nection Number List (CNL) of a module Mu is defined
as [Nc1@Mu, · · · , Nci@Mu, · · · , Ncd@Mu], where d repre-
sents the maximum number of coexisting passive connection
points of the module Mu.

Figures 3 and 4 introduce two CCs for further examples.
To simplify the expression, Fig. 3(a) and Fig. 4(a) use a line
segment to represent the chain, and each chain is distinguished
by a letter. The positive direction of the chain is indicated by an
arrow. Different types of modules are highlighted in different
colors. Figure 3(b) and Fig. 4(b) shows the total number of
modules included in each chain. For example, A(26) in Fig.
3(b) represents that the chain A in Fig. 3(a) contains a total of
26 modules, including 25 stem modules and 1 leaf modules.

The CC in Fig. 3(a) has one unique root module and is a tree
itself. Starting from the unique root module, we can organize

Branch

Branch

Branch

1X

2X

3mX
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0c 1c

2c
0cK

K

K
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2

1

Fig. 5. An instance of the optimal reconfiguration problem constructed for
reducing a 3-PARTITION problem to an ORP.

TABLE II
NUMBER OF CONNECTIONS OF EACH TYPE IN TWO CONFIGURATIONS

c0 → c1 c0 → c2
Initial configuration n− 3m 3m− 1
Final configuration mK −m m− 1

Differences 2m −2m

the chains hierarchically in a tree structure as shown in Fig.
3(b). The root module is the first level of the tree structure.
The root module may be connected by multiple chains like
bifurcation modules. The chains after each bifurcation module
are located at the next level of the hierarchy diagram. And so
on, until the emergence of leaf modules.

The CC in Fig. 4(a) does not have a root module, but it has
one circuit composed of 3 chains P -R-N . This type of CC
can be spanned as a tree by disconnecting at any module in
the circuit. For example, in Fig. 4(a), we choose to disconnect
the active connection point of the red module in the circuit
to make it a root module, while the blue module originally
connected by the red module becomes a leaf module.

IV. CONNECTION PLANNING METHOD

This section introduces the connection planning method and
its main components.

A. Method Flowchart

Figure 6 shows the flowchart of the connection planning
method, which is motivated by Theorem 1 below.

Theorem 1. The Optimal Reconfiguration Problem (ORP) of
MSRR composed of MISO modules is also NP-complete, but
the interchangeability of passive connection points of MISO
modules reduces the lower bound of the least reconfiguration
steps.

Proof. The ORP based on modules with non-interchangeable
connection points is proven to be NP-complete in [36]. In the
following, we show that the ORP based on MISO modules
with interchangeable passive connection points is also NP-
complete, but the lower bound of the least reconfiguration
steps is reduced from 6m− 2 [36] to 4m.

The NP-completeness of the ORP can be proved by the
equivalent proposition that the known NP-complete prob-
lem, 3-PARTITION, is polynomial reducible to the acyclic
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Fig. 6. Method flowchart. The auto-optimizing connection planning method
combines the advantages of polynomial-time algorithms and exponential-time
algorithms.

ORP. We construct a SR instance based on MISO modules
in Fig. 5 to represent any given 3-PARTITION problem
S = X1, · · · , X3m as an acyclic ORP. In Fig. 5, the initial
configuration contains 3m branches, and each branch i has
Xi modules connected by the edge c0 → c1. The final
configuration contains m equal-length branches, and each
branch has K = n

m modules. The rightmost module of each
branch in both configurations is connected by c0 → c2.

Table II summarizes the number of connections of each type
in the two configurations of the constructed SR instance. Thus
the lower bound of the least reconfiguration steps of the con-
structed SR instance is calculated to be 4m = 2m+ ‖ −2m ‖.
Interchanging the two columns c0 → c1 and c0 → c2 in Table
II does not change the lower bound 4m. By substituting the
SR instance and lower bound into the proof in [36], it can
verify that the interchangeability of passive connection points
of MISO modules does not affect the NP-completeness.

The NP-completeness of ORP in Theorem 1 indicates that
the optimal solution of connection planning is probably not
solvable in polynomial time. Therefore, algorithms for solving
NP-complete problems can be divided into polynomial-time
algorithms for finding near-optimal solutions and exponential-
time algorithms for finding optimal solutions. The method
flowchart in Fig. 6 uses a polynomial-time algorithm and an
exponential-time algorithm in different CPU states to solve
the same connection planning problem of frequently used SR
instances. This provides a solution quickly, while allowing
further optimization and detection when the solution is not
yet globally optimal.

The method flowchart is based on two concepts, functional
isomorphic configuration [55] and isomorphic invariant signa-
ture [47]. Functional isomorphic configurations do not have
the same connection relationship but can complete the same
task or have similar properties to adapt to the environment.
These functional isomorphic configurations can be replaced
by a typical configuration that is frequently used. As the
number of uses of MSRR increases, so does the number
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0
subtree 2
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Fig. 7. The configuration pointer uniquely encodes a configuration in the
configuration space.

of self-reconfiguration between typical configurations. Further
optimizing the connection planning results of frequently used
SR instances can statistically increase the self-reconfiguration
speed of MSRR in actual use. This further optimization can
be done by exponential-time algorithms when MSRR has
idle computing resources, but an ability to store reachable
configurations and their cost is required. The second paragraph
below will introduce an isomorphic invariant signature of the
configuration composed of MISO modules, named configu-
ration pointer, which is a special case of the configuration
string from [53] for MISO modules as shown in Fig. 7. The
configuration pointers for isomorphic configurations do not
change as modules exchange IDs as the adjacency matrix does.
Therefore, the solution of any SR instance can be saved and
read by the configuration pointers of the two configurations.

The flowchart of the connection planning method mainly
contains a polynomial-time algorithm, an exponential-time
algorithm, and a library. The library is a piece of computer
memory that records three compressed matrices of each fre-
quently used SR instance: XI , XF and the optimal solution
D∗. As shown in Fig. 6, the method first encodes the input
XI and XF into two configuration pointers. If a D∗ matrix
can be read from the library based on these two configuration
pointers, the D∗ is output directly. If no D∗ matrix can be read
from the library, the IM algorithm in Subsection IV-B is called
to solve the near-optimal solution in polynomial time. When
MSRR has idle computing resources, the connection planning
results in the library will be read using configuration pointers
and further optimized by an exponential-time algorithm, TBB
in Subsection IV-C. TBB uses the cost of the near-optimal
solution as an upper bound and outputs further-optimized
solutions to update the library until an optimal solution is
guaranteed.

Reading in the library requires the configuration pointer
to be isomorphic invariant. The isomorphic invariance of
configuration pointers can be guaranteed by the following three
encoding rules. Rule (1): stack the CNLs of the modules on
each chain in the positive direction of the chain. For example,
in Fig. 7, the configuration pointer generated by the sub-
tree 2 is 210 ← [2][1][0]. Rule (2): when the CNL of the
bifurcation module contains equal CN values, these CN values
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are sorted by their corresponding configuration pointers. For
example, in Fig. 7, the CNL of the black module contains
two equal CN values Nc2@Mu = Nc3@Mu = 3, and their
corresponding configuration pointers generated from the sub-
tree 2 and the sub-tree 3 are 210 and 1100. Because of
1100 > 210, 1100 is written in front of 210 in the final
configuration pointer. Rule (3): the CNL of the bifurcation
module is sorted from largest to smallest, and the configuration
pointers corresponding to CNs are stacked in the CNs’ order.
For example, in Fig. 7, the sorted CNL of the black module
is [3, 3, 1]. Thus the configuration pointer generated by the
sub-tree 1 corresponding to Nc1@Mu = 1 is stacked at the
end of the final configuration pointer. Based on these rules,
the generated configuration pointer is isomorphic invariant
as explained in Theorem 2 below, which is proved in the
appendix.

Theorem 2. Configuration pointers are the unique digital sig-
natures of non-isomorphic configurations in the configuration
space, and their length growth rate is O(n log10 n).

The benefit of configuration pointers is to read solu-
tions of SR instances from the library quickly. The reading
task is to match a newly encountered SR instance to a
known SR instance in the library [55]. In our library, the
D∗ of each SR instance is saved in the memory table as
Library[p(XI)][p(XF )], where the row index (or the column
index) p(XI) (or p(XF )) represents the configuration pointer
generated from XI (or XF ). When a newly encountered SR
instance represented by XI

new and XF
new needs to be read

from the library, p(XI
new) (or p(XF

new)) is compared with
all row indexes (or all column indexes) of the library bit
by bit. For example, if p(XI

new) = 331100210 is compared
with p(XI) = 33111002100, their 5th digits from the left
are different. Thus XI

new and XI are determined to be
different configurations, and the comparison with the next row
index starts immediately. The computational complexity of the
comparison with all row indexes (or all column indexes) is
O(n log10 n), according to Theorem 2.

B. In-Degree Matching Algorithm

In this subsection, we introduce a connection planning
algorithm that can solve near-optimal solutions in polynomial
time, the In-degree Matching (IM) algorithm, as summarized
in Alg. 1. The IM algorithm assumes that the applied hardware
modules have been abstracted as MISO modules which have
the property as shown in Theorem 3 below.

Theorem 3. A connected component composed of single out-
degree modules contains exactly one root module or one
circuit, but not both.

Proof. Let us assume that there are x root modules in a CC
that meets two conditions: (1) the entire CC with n ≥ 2
modules maintains connectivity; (2) each module has a single
active connection point.

Because of condition (1), at least one passive connection
point of any root module must be connected by one module.
Simple directed graphs can be drawn starting from root

Algorithm 1 In-degree Matching (IM) algorithm
1: Input: XI , XF matrices
2: if Any configuration contains multiple CCs then
3: Add a virtual root module to be connected by CCs
4: end if
5: Initialize D = XF −XI

6: for Each (virtual) root/bifurcation module M I
u do

7: for Each (virtual) root/bifurcation vacancy MF
v do

8: Initialize D′ to zero matrix
9: if M I

u (MF
v ) is not the root module (vacancy) then

10: Add two pre-reconfiguration steps to D′

11: end if
12: while Number of matched modules < n do
13: Call the PAIRING(〈M I

u ,M
F
v 〉) function

14: Package the u-v rooted CSG
15: end while
16: Update D = D′ if ‖ D′ ‖F<‖ D ‖F
17: end for
18: end for
19: Output: near-optimal D
20: function PAIRING(〈M I

u ,M
F
v 〉)

21: if M I
u or MF

v is a leaf module then
22: return
23: end if
24: Initialize a bipartite graph
25: for each child module Mci@M I

u do
26: for each child vacancy Mcj@MF

v do
27: Add two vertices: Mci@M I

u and Mcj@MF
v

28: Add an edge with the weight:
‖ Pci@M I

u − Pcj@MF
v ‖

29: end for
30: end for
31: Minimum weight full matching the bipartite graph
32: for each matching result (Mck@M I

u , Mcl@MF
v ) do

33: Add a child node, 〈Mck@M I
u ,Mcl@MF

v 〉
34: PAIRING(〈Mck@M I

u ,Mcl@MF
v 〉)

35: end for
36: end function

modules. There must be a common module of any two graphs
to maintain the connectivity of the entire CC. The common
module belongs to two different chains of two graphs simulta-
neously. Thus the common module should have two different
output directions, which requires two active connection points
in a module. Contradiction with the condition (2) exists, thus
x ≤ 1.

If there are y circuits in the initial graph of CC, any
circuit can be converted to a line by disconnecting the active
connection point of any module Mu in the circuit. Thus, the
module Mu will become a root module. All chains outside
circuits remain connected to the converted lines, which means
the new graph generated by the disconnections of all circuits
still satisfies the condition (1). The number of generated root
modules in the new graph equals the number of circuits in the
initial graph. Because of x ≤ 1, there is only y ≤ 1 circuits
in the initial graph.

When a CC contains x = 0 root modules and y = 1
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Fig. 8. The In-degree Matching algorithm. (a) The Pairing function performs
bipartite matching with the sub-tree dissimilarity as the weight and generates
the child nodes with the minimum sum of weights. (b) The Common Sub-
Graph (CSG) can be calculated by iteratively calling the Pairing function.

circuits, it can be converted to a CC containing x = 1
root modules and y = 0 circuits through one detachment.
The mutual conversion between the case (x = 0, y = 1)
and the case (x = 1, y = 0) through one detachment or
attachment is complete and exclusive. Thus the other two
cases, (x = 0, y = 0) and (x = 1, y = 1), are impossible.

Theorem 3 shows that the CCs in the configuration com-
posed of MISO modules are either trees themselves or can be
converted as trees through one detachment, such as the CC in
Fig. 4. In the IM algorithm, the CCs in the configuration are
first converted to rooted trees and connected to a virtual root
module. Thus the entire configuration can be expressed as a
rooted tree composed of n+ 1 modules (Alg. 1 Line 2-4).

The core of the IM algorithm is to calculate u-v rooted
Common Sub-Graph (CSG) whose starting node is 〈M I

u ,M
F
v 〉

representing that the module M I
u and the vacancy MF

v are
matched. For the sake of distinction, we call the member of
the initial configuration as module and the member of the
final configuration as vacancy. The selection range of M I

u

(MF
v ) is the root and bifurcation modules (vacancies) of the

configuration (Alg. 1 Line 6-7). Different u-v combinations
will produce different D′ matrices, and the best one of them
is kept (Alg. 1 Line 16). The best one may be obtained by com-
puting the u-v rooted CSG starting from a node that matches
a bifurcation module and a bifurcation vacancy. When M I

u

(MF
v ) is not the root module (vacancy) in the configuration, the

configuration is first pre-reconfigured to make M I
u (MF

v ) the
root module (vacancy). Pre-reconfiguration is completed by an
attachment action and a detachment action (Alg. 1 Line 9-11).
Take the two configurations shown in Fig. 9 as an example.

 
 

 

 

Initial Configuration Final Configuration

1

IM

② detach

① attach

I

uM
F

vM

1

FM

 

 

 

 

Fig. 9. Pre-reconfiguration. When MI
u (or MF

v ) is not the root module (or
vacancy), pre-reconfigure the configuration to make MI

u (or MF
v ) become

the root module (or vacancy).

MF
v is not the root vacancy. The pre-reconfiguration actions of

the final configuration are attaching the original root vacancy
MF

1 to a passive connection point of MF
v , and detaching

the active connection point of MF
v . However, if neither M I

u

nor MF
v have redundant passive connection points, the pre-

reconfiguration will be canceled.
The calculation of u-v rooted CSG is done by recursively

calling the Pairing function (Alg. 1 Line 13). Take the two
configurations shown in Fig. 8(b) as an example. The start-
ing node in u-v rooted CSG is 〈M I

u ,M
F
v 〉, as shown in

Fig. 8(a). We represent the four child modules of M I
u as

Mc1@M I
u , Mc2@M I

u , etc. The same representation method
is followed by the three child vacancies of MF

v in Fig. 8(a).
The Pairing(〈M I

u ,M
F
v 〉) function creates a bipartite graph with

all child modules of M I
u on one side and all child vacancies

of MF
v on the other side (Alg. 1 Line 24-27). In the bipartite

graph, any two vertices from different sides, such as Mci@M I
u

and Mcj@MF
v , are connected by an edge whose weight is

the sub-tree dissimilarity ‖ Pci@M I
u − Pcj@MF

v ‖ (Alg. 8
Line 28). The sub-tree dissimilarity is defined as the absolute
difference between two configuration pointers to measure the
difference between two sub-trees connected at ci@M I

u and
cj@MF

v . The closer the dissimilarity of two subtrees is to
zero, the more similar two subtrees are. A dissimilarity of zero
means the subtrees are identical. The sub-tree dissimilarity
can be normalized in the code implementation using bit-
packed configuration pointers. Based on the above weights,
the minimum weight full bipartite matching algorithm [59]
can calculate the optimal matches in the bipartite graph (Alg. 1
Line 31). For example, in Fig. 8(a), a 4×3 bipartite matching
problem is solved to obtain the minimum sum of weights,
‖ Pc3@M I

u − Pc2@MF
v ‖ + ‖ Pc2@M I

u − Pc1@MF
v ‖

+ ‖ Pc4@M I
u − Pc3@MF

v ‖, which is used to create three
corresponding child nodes (Alg. 1 Line 32-33). These three
child nodes are recursively fed into the Pairing function to
match more modules (Alg. 1 Line 34).

The final u-v rooted CSG is shown in the dashed box in
Fig. 8(b), where the chains B, D and P are divided into two
parts to identify u-v rooted CSG. The module and vacancy
matched in each node 〈M I

u ,M
F
v 〉 do not need to change the

connection relationship. Next, we package all the matched
modules (vacancies) into a virtual root module (vacancy)
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which is to be connected by the remaining branches (Alg.
1 Line 14). The purpose of packaging is to transform the
configuration into a rooted tree with a much smaller number
of modules or vacancies. Thus, the CSG with a starting node
matching the virtual root module and the virtual root vacancy
will be solved repeatedly based on new rooted trees until all
modules are matched.

It can be verified that the maximum number of bifurcation
modules in a configuration is dn2 e. The computational com-
plexity caused by matching different u and v is O(dn2 e×d

n
2 e).

The computational complexity of calculating u-v rooted CSG
is O(n), where the constant computational complexity of
bipartite matching [59] is eliminated because the number of
passive connection points to be matched is at most 11 in the
face centered cubic packing [27]. Thus the total computational
complexity of the IM algorithm is O(n3).

C. Tree-based Branch and Bound Algorithm

This subsection introduces a Tree-based Branch and Bound
(TBB) algorithm that computes the global optimal solution in
exponential time, as summarized in Alg. 2. The TBB algorithm
proposes a new branching strategy and stage cost based on the
tree-like properties of the configuration composed of MISO
modules.

The architecture of the TBB algorithm is built on the loop
of branching and pruning operations. An OPEN list commonly
used in shortest path problems [60] is created to store nodes
for further inspection. Initially, the OPEN list contains nodes
generated by P

MI
root

MF
[:]

, which represents that a root module M I
root

is matched with n vacancies MF
[:] separately (Alg. 2 Line 2).

Next, the TBB algorithm initializes a variable UPPER by the
number of reconfiguration steps of the near-optimal solution,
and initializes a variable LOWER by the lower bound of the
least reconfiguration steps [24] (Alg. 2 Line 3). While OPEN is
not empty and UPPER > LOWER, branching operations and
bound-based pruning operations will continue (Alg. 2 Line 4).
The branching operation takes a node x popped from OPEN
as the parent node, and calls the BRANCHING function to
generate child nodes (Alg. 2 Line 5-6). Each child node y
has a cost, y.cost, which is the sum of the cost of x and the
stage cost cxy calculated by the STAGE COST function (Alg.
2 Line 7). If y.cost ≥ UPPER, the node y and its descendants
are pruned (Alg. 2 Line 9). The node y has two more variables,
y.matches which contains the matches of the current node, and
y.all which contains all matches of the current node and its
ancestors, as shown in Fig. 11(c). If y.cost < UPPER and the
length of y.all < n, the node y is judged as promising and
appended to the OPEN list for further inspection (Alg. 2 Line
11-12). If y.cost < UPPER and the length of y.all = n, a
further-optimized solution is obtained and UPPER is lowered
to y.cost (Alg. 2 Line 14-15). The loop of branching and
pruning operations continuously reduces the value of UPPER
and the length of OPEN until a global optimal solution is
obtained (Alg. 2 Line 19-20).

The BRANCHING function consists three operations to
ensure that all possible child nodes are generated. First, for
each match (M I

u ,M
F
v ) in x.matches, if the number of child

v c1 c2c1 c2
c1 c3

c2

c1 c3
c2

u
c1c1

p q

1 1[( @ , @ )]p

I F

qM McMc M

1 2[( @ , @ )]p

I F

qM McMc M

.cost .cost xyy x c= +
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3P(a)

(c) one of the child nodes

Fig. 10. The branching strategy of the TBB algorithm defines two types of
operations, (a) permutation and (b) multiplication, to generate (c) child nodes.

modules of M I
u is less than the number of child vacancies of

MF
v , denoted as a < b, all ordered arrangements of a distinct

elements selected from the set of child vacancies of MF
v will

be element-wise matched with an ordered arrangement of child
modules of M I

u . The opposite of a > b is similar. This type of
operations is denoted as permutation P

Mc[:]@MI
u

Mc[:]@MF
v

(Alg. 2 Line
23-25). For example, in Fig. 10(a), the two child modules of
M I

u are element-wise matched with six (A2
3 = 6) different

arrangements of two of the three child vacancies of MF
v . For

another match (M I
p ,M

F
q ) in x.matches in Fig. 10, P

Mc[:]@MI
p

Mc[:]@MF
q

generates two (A1
2 = 2) child nodes. Second, we define a

type of multiplication, denoted as P
Mc[:]@MI

u

Mc[:]@MF
v
~ P

Mc[:]@MI
p

Mc[:]@MF
q

,
that fuses each child node in one set with each child node
in the other set (Alg. 2 Line 26). For example, the 12 green
or orange lines in Fig. 10(b) indicate that each of the A2

3

child nodes is fused with each of the A1
2 = 2 child nodes,

respectively. Among them, the last orange line indicates the
fusion of [(Mc1@M I

u ,Mc3@MF
v ), (Mc2@M I

u ,Mc2@MF
v )]

and [(Mc1@M I
p ,Mc2@MF

q )], which generates y.matches in
Fig. 10(c). This multiplication operation is associative. For
example, if x.matches contains three matches, child nodes can
be generated by (P1~P2)~P3) as shown in Fig. 10. Third,
if the number of child nodes generated after the above two
operations is zero but the length of x.all < n, a root module in
the unmatched sub-configurations M I

root 6∈x.all will be matched
with all the unmatched vacancies MF

[:]−x.all respectively (Alg.
2 Line 27-29).

The stage cost defined by the STAGE COST function
is stage-accumulative and fast-computable. The input of
the STAGE COST function is the node y generated by



IEEE TRANSACTIONS ON ROBOTICS 10

Algorithm 2 Tree-based Branch and Bound (TBB) algorithm
1: Input: XI , XF matrices and the near-optimal solution D

2: Initialize the OPEN list by P
MI

root
MF

[:]

3: Initialize UPPER by the cost of D and LOWER by [24]
4: while OPEN is not empty and UPPER > LOWER do
5: Pop a node x from OPEN
6: for Each child y of x from BRANCHING(x) do
7: Set y.cost= x.cost + STAGE COST(y)
8: if y.cost≥UPPER then
9: Prune the y node and its descendants

10: else
11: if len(y.all)< n then
12: Append a node y to OPEN
13: else
14: Obtain a further-optimized D̂
15: Set UPPER to be y.cost
16: end if
17: end if
18: end for
19: end while
20: Obtain a global optimal D∗

21: Output: an optimal D∗

22: function BRANCHING(x)
23: for each match (M I

u ,M
F
v ) in x.matches do

24: Generate child nodes by P
Mc[:]@MI

u

Mc[:]@MF
v

25: end for
26: Multiplications
27: if len(child nodes)= 0 and len(x.all)< n then
28: Generate child nodes by P

MI
root 6∈x.all

MF
[:]−x.all

29: end if
30: return child nodes
31: end function
32: function STAGE COST(y)
33: cxy = 0
34: for each match (M I

u ,M
F
v ) in y.matches do

35: cxy += Difference of unmatched out-degree
36: cxy += Difference of unmatched in-degree
37: end for
38: return: cxy
39: end function

the BRANCHING function. For each match (M I
u ,M

F
v ) in

y.matches, cxy adds the difference of unmatched out-degree
between M I

u and MF
v (Alg. 2 Line 33-35). The unmatched

out-degree refers to the number of unmatched child modules
of M I

u or unmatched child vacancies of MF
v distinguished by

y.all. In-degree is handled similarly (Alg. 2 Line 36).

Figure 11 introduces an example to illustrate the process by
which TBB computes the optimal solution. The near-optimal
solution calculated by the IM algorithm for the reconfiguration
instance shown in Fig. 11(a) consists of 4 steps, namely
M I

8 ; M I
1 ,M

I
8 ⇒ M I

0 and M I
9 ; M I

2 ,M
I
9 ⇒ M I

3 . An
optimal solution calculated by TBB consists of 2 steps, namely
M I

2 ; M I
1 ,M

I
0 ⇒ M I

3 . Initially, the root module M I
0 is

assigned to 12 vacancies respectively to generate 12 nodes,
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Fig. 11. The TBB algorithm is applied to (a) a reconfiguration instance and
solves the optimal solution through (b) a process of cyclic branching and
pruning operations.

namely P
MI

root
MF

[0, 1,··· ,11]
. Among them, y1.matches= [(0, 2)] con-

tains one of the matches in the optimal solution. Starting at y1,

P
Mc[:]@MI

0

Mc[:]@MF
2
= P

MI
[1,4]

MF
[3,6]

generates 2 child nodes y5 and y4. Since
y5.cost=y1.cost+cxy = 5 >UPPER, y5 and its descendants are
pruned. Since y4.matches contains two matches, a multiplica-

tion operation (P
Mc[:]@MI

1

Mc[:]@MF
3

= P
MI

[5,8]

MF
[7,9]

) ~ (P
Mc[:]@MI

4

Mc[:]@MF
6

= [])

is involved to generate child nodes. When TBB reaches
y8 whose matches only contains leaf modules or vacancies,
P

MI
root 6∈x.all

MF
[:]−x.all

= P
MI

2

MF
[0,1,4,5,8,10]

is used instead to generate child
nodes. These branching and pruning operations continue to
reach an optimal solution, such as the one at the node y13.
In general, TBB may first obtain further-optimized solutions
whose cost can be used as a new upper bound, as depicted in
the lower right corner of Fig. 11. If we check all nodes in the
OPEN list, an optimal solution can be guaranteed. Finally, we
prove the completeness and computational complexity of the
TBB algorithm as follows.

Theorem 4. The TBB algorithm is guaranteed to reach an
optimal solution with a computational complexity O(n) =
n(d!)

n
d , where d is the maximum in-degree of the module.
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Proof. Since the number of different solutions with a cost less
than any UPPER is limited, the TBB algorithm can terminate.
Suppose an optimal solution with minimum cost is obtained
in node yt. We will show that the branching strategy of the
TBB algorithm can generate all matches in yt.all without being
pruned.

Initially, the TBB algorithm uses PMI
root

MF
[:]

to generate n nodes,
one of which must satisfy y1.matches ∈ yt.all. An example is
y1.matches=[(M I

0 ,M
F
2 )] shown in Fig. 11(b). Starting from

y1, if the BRANCHING function can generate all possible
child nodes, due to the tree-like properties of the configuration
composed of MISO modules, there must be a child node of y1
that satisfies y2.matches ∈ yt.matches. Similarly, there must
be a child node of y2 that satisfies y3.matches ∈ yt.matches.
And so on, t consecutive nodes (y1, y2, · · · , yt) can reach an
optimal solution.

The next proposition is that the BRANCHING function
can generate all possible child nodes. First, the number of
child nodes generated by P

Mc[:]@MI
u

Mc[:]@MF
v

in the BRANCHING
function is exactly the number of ways we can rearrange
the child vacancies into a new order that matches element-
wise with child modules. Second, the multiplication de-
fined in the BRANCHING function P

Mc[:]@MI
u

Mc[:]@MF
v
~P

Mc[:]@MI
p

Mc[:]@MF
q

makes a complete bipartite graph of child nodes of two
sets. Third, when the number of child nodes output by the
above two operations is zero but not all modules have been
matched, P

MI
root 6∈x.all

MF
[:]−x.all

generates all child nodes to initiate the
matching process of the remaining modules and vacancies.
Therefore, the BRANCHING function can generate t nodes
(y1, y2, · · · , yt), all of which have a cost less than UPPER.

Since TBB is a sequential algorithm, we can only calculate
the worst-case computational complexity with full enumer-
ation. We consider two complete trees with maximum in-
degree d. Initially, the TBB algorithm creates n nodes whose
y.matches contains 1 element, denoted as Layer 0. Starting
from each node in Layer 0, the BRANCHING function gen-
erates d! nodes whose y.matches contains d elements, denoted
as Layer 1. By analogy, starting from each node in Layer
L − 1, the BRANCHING function generates (d!)d

L−1

nodes
whose y.matches contains dL elements, denoted as Layer L.
The number of matched modules and the number of generated
nodes in all layers can be calculated by Equation (4) and Equa-
tion (5) respectively. After substituting L = logd(1−(1−d)n)
from Equation (4) into Equation (5), the number of generated
nodes represented by n is reduced as O(n) = n(d!)

n
d .

n = 1 + d+ · · ·+ dL =
1− dL

1− d
(4)

n× (d!)× · · · × (d!)d
L−1

= n(d!)
1−dL−1

1−d (5)

V. EXPERIMENTS

This section introduces the controlled experiments of var-
ious algorithms and the feasibility experiments of the auto-
optimizing method.

Algorithm 3 The Pairing function in Modified Greedy-CM
1: function PAIRING(〈M I

u ,M
F
v 〉)

2: if M I
u or MF

v is a leaf module then
3: return
4: end if
5: for each child module Mci@M I

u do
6: if a child vacancy is connected to ci@MF

v then
7: Add a child node, 〈Mci@M I

u ,Mci@MF
v 〉

8: end if
9: end for

10: for each child node do
11: PAIRING(child node)
12: end for
13: end function

A. Experiment Setting

We conduct all experiments in a server with 48 cores
clocked at 2.6GHz and 256G of memory. In the experiments,
the algorithms used for comparison include local-procrustes
[61], global-procrustes [61], Greedy-CM [36] and MDCOP
[36].

The local-procrustes algorithm uses a permutation matrix
to adjust the adjacency matrix of the final configuration so
that the adjusted adjacency matrix is as similar as possible
to the adjacency matrix of the initial configuration, as shown
in Equation (6). In Equation (6), P represents a permutation
matrix, which has only one 1 in each row or column with the
remaining entries as 0’s. Meng [61] implemented an iterative
optimization algorithm for solving the local minimum of Equa-
tion (6), denoted as local-procrustes. The global optimal so-
lution can be obtained by traversing all permutation matrices,
denoted as the global-procrustes algorithm. The calculation
complexity of the global-procrustes algorithm is O(n!), which
is only acceptable for problems with n < 13.

D∗ = min
P∈{0,1}n×n,PTP=I

‖ PTXFP −XI ‖F (6)

Greedy-CM and MDCOP are algorithms proposed in [36]
to compute near-optimal and optimal solutions of connection
planning problems for configurations composed of SuperBots,
whose four connection points are different from each other.
The idea of Greedy-CM is to match the modules connected
to M I

u and the vacancies connected to MF
v according to

whether they are connected on the same type of connection
point. Since the original Greedy-CM did not use Theorem
3 to simplify the calculation, for fairness, we borrow the
outer structure of the IM algorithm but use the core idea of
Greedy-CM to calculate the u-v rooted CSG, as written in
Alg. 3. In Alg. 3, the passive connection points of each MISO
module are randomly marked as c1, c2, · · · , c11 to simulate
different connection types. This variant algorithm is denoted
as Modified Greedy-CM. MDCOP models the reconfiguration
planning problem as a Distributed Constraint Optimization
Problem (DCOP). MDCOP reduces the domain size of DCOP
by limiting the set of candidate mates to only include modules
with at least one edge of the same type. When MDCOP is
applied to MISO modules without the different types of edges,
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Fig. 12. Experimental results of inputting the first group of matrices to algorithms. (a)(b) The IM algorithm consumes a little more time in exchange for
much fewer reconfiguration steps than Modified Greedy-CM. (c)(d)(e) The solutions computed by the IM algorithm are statistically near-optimal. Optimal
solutions with scales up to n ≤ 12, n ≤ 26 and n ≤ 35 were computed in 24 hours by global-procrustes, MDCOP and TBB, respectively, as shown by the
dotted lines in (d) and the labeled points in (e).

the constraint graph in DCOP is fully connected and the set of
candidate mates contains all modules. This greatly degrades
the performance of MDCOP [36] when n > 26.

We input four groups of random adjacency matrices XI

and XF to the connection planning algorithms to reveal the
influencing factors. The first group of matrices is used to
reveal the influence of the total number of modules n on
the reconfiguration steps. For each n = 3, · · · , 1000, we
generate two adjacency matrices with dimensions n satisfying
the conditions that each row has at most one 1, and each
column has at most eleven 1’s [27]. The remaining three
groups of matrices are used to reveal the influence of the
number of bifurcation modules when the total number of
modules remains unchanged (n = 1000). We denote b as the
exact number of bifurcation modules in the configuration, b̂ as
the upper bound of b and ‖ bI−bF ‖ as the difference between
b of the initial configuration and b of the final configuration.
The second group of matrices are 496 pairs of XI and XF

with generation conditions, n = 1000 and b = [3, 499]. The
third group of matrices are 997 pairs of XI and XF with
generation conditions, n = 1000 and b̂ = [3, 1000]. The fourth
group of matrices are 496 pairs of XI and XF with generation
conditions, n = 1000 and ‖ bI − bF ‖= [3, 499]. b cannot be
greater than dn2 e, but b̂ can. b̂ only sets the upper bound of b.
bI and bF are randomly generated separately. Therefore, the
third group of matrices can be used to analyze the effects of
bounded bI and bF , and the fourth group of matrices directly
controls ‖ bI − bF ‖ to identify any trends.

B. Experiment Results

Figures 12 and 13 show the results of inputting the first
group of matrices and the remaining three groups of matrices
to various connection planning algorithms.

1) Factor 1: Number of Modules: Figure 12(a) shows that
the IM algorithm outperforms local-procrustes and Modified
Greedy-CM on the number of reconfiguration steps. There are
two reasons for this result. Firstly, local-procrustes does not
make use of the properties of Theorem 3. Their results are
bound to be worse than graph-based algorithms. In fact, the
loss landscape of the connection planning problem is very
bumpy in dimension n. For a certain initial value, the result
calculated by the local-procrustes will inevitably be limited
to a local minimum, where the gradient disappears. Secondly,
when the passive connection points can be interchanged, the
lower bound of the least reconfiguration steps will be smaller
according to Theorem 1, which means that the number of
modules that can be matched by the Pairing function will
be bigger than that of the idea of Greedy-CM. Thus the IM
algorithm performs better when applied to a configuration
composed of modules with interchangeable connection points.
Figure 12(b) shows that the computation time of the IM
algorithm is much less than local-procrustes but slightly more
than Modified Greedy-CM. The reason why the IM algorithm
consumes a little more time than Modified Greedy-CM is that
the Pairing function used in the IM algorithm calls a bipartite
matching algorithm [59] with a constant computational com-
plexity. Experimentally, the above Pairing function is slower
than the Pairing function of Modified Greedy-CM shown in
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Fig. 13. Experimental results of inputting the remaining three groups of matrices to algorithms and the feasibility experiment of the auto-optimizing method.
(a)(b)(c) Three groups of experiments reveal the effect of changing the number of bifurcation modules on the performance of the IM algorithm. (d)(e) The
combination of configuration pointer, IM and TBB realize read capability and automatic optimization capability.

Alg. 3. The IM algorithm consumes a little more time in
exchange for much fewer reconfiguration steps than Modified
Greedy-CM.

Figure 12(c) reduces the scale to n < 230 and adds the
results of Greedy-CM and TBB. The direct application of
Greedy-CM to the configurations composed of MISO modules
produces a large variance of results. This is because the config-
uration considered by Greedy-CM is a Connected Component
(CC) that maintains connectivity, whereas the configuration we
consider contains multiple CCs of diverse sizes. Greedy-CM
may select two CCs with different sizes to start matching.
Theorem 3 makes the results of Modified Greedy-CM less
biased. The results of the TBB algorithm are divided into the
optimal solutions for n ∈ [3, 35] and the further-optimized
solutions for n ∈ [36, 138]. Since the TBB algorithm struggles
to complete its computation within 24 hours for n > 35, we
use further-optimized solutions to show the trend for n > 35.
Figure 12(d) reduces the scale further to n < 35 and adds the
results of MDCOP and global-procrustes. MDCOP and global-
procrustes can only handle scales of n = 26 and n = 12
respectively in 24 hours of computation time, as shown in
Fig. 12(e), for reasons explained in Subsection V-A. As can
be seen from Fig. 12(d), the cost of the optimal solution given
by the TBB algorithm is the same as that of MDCOP or global-
procrustes, although the specific reconfiguration steps may
be different. Figure 12(c)(d)(e) also show that the solutions
computed by the IM algorithm are statistically near-optimal.
However, it is speculated that the gap between the solution of
the IM algorithm and the optimal solution will increase as n
increases. We suggest that ultra-large MSRR with n ≥ 1000

may not pursue the optimal solution.
2) Factor 2: Number of Bifurcation Modules: Figure 13(a)

shows the results based on the second group of matrices
with fixed n = 1000 and different b. As b increases, the
number of reconfiguration steps first increases, then decreases,
and reaches the peak at around b = 165. The upward trend
is because the increase of b makes the configuration more
complex. The downward trend is because the configuration
contains more modules with an out-degree of 2, when b
gradually approaches the limit dn2 e. These modules and the
leaf modules connected to them can be mostly matched at the
same time.

Figure 13(b) shows the results based on the third group of
matrices. As b̂ increases, the number of reconfiguration steps
increases due to the upward trend in Fig. 13(a). But the rising
slope in Fig. 13(b) gradually drops due to the downward trend
in Fig. 13(a). It can also be seen from Fig. 13(b) that when
b̂ in the configuration is small, the number of reconfiguration
steps calculated by the IM algorithm is much smaller than the
average number. In Subsection VI-A, we introduce an example
of this phenomenon. In that example, the total number of
modules is n = 500, and the number of bifurcation modules is
4. The number of reconfiguration steps is 23, which is much
smaller than the average number 250 shown in Fig. 12(a).

Figure 13(c) shows the results based on the fourth group
of matrices. The advantage of the IM algorithm is more pro-
nounced when ‖ bI−bF ‖ is small. If two configurations have
similar numbers of bifurcation modules, the two configurations
are more likely to be similar, and thus more steps can be
reduced. As ‖ bI − bF ‖ increases, the irreducible difference
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between the two configurations gradually increases.
3) Experiments for Method Feasibility: Two experiments

are conducted to verify the feasibility of the auto-optimizing
connection planning method introduced in Subsection IV-A.

First, the near-optimal D matrices are read from the library
to test the effectiveness of configuration pointers. Figure 13(d)
shows the time for each SR instance to be encoded as two
configuration pointers and the time to read the D matrix. In
Fig. 13(d), curves of the encoding time and reading time with
respect to the number of modules are slightly skewed. Theo-
retically, the complexity of reading based on the configuration
pointer should be O(n log10 n). Thus we draw a dashed line of
n log n with a scaling factor 4500 in Fig. 13(d) to corroborate
the trend of the data. The gap between the reading time and
the calculation time of the IM algorithm also increases with
the increase of n. The rationality of this gap can be verified
by comparing their computational complexity. Compared with
other graph signatures or configuration recognition methods,
the computational complexity of the configuration pointer is
preferred. Asadpour et al. [46] propose the graph signature to
do the isomorphism detection between different configurations
with a complexity of O(n2+n×sn), and Asadpour et al. [47]
improve the algorithm to get a complexity of O(n2×s), where
s is the symmetry factor of the module. The configuration
pointer can also be used in the configuration recognition task.
Liu and Yim [50] propose a distributed configuration recog-
nition algorithm with a complexity O(n2). The computational
complexity of the configuration pointer is O(n log10 n), which
is relatively satisfactory. The advantage of the configuration
pointer for the configuration recognition task is that there is
no need to perform isomorphism detection with all known
configurations. The mismatch of any digit in the configuration
pointer can skip many known configurations.

Second, the TBB algorithm is invoked to further optimize
D matrices read from the library. The results in Fig. 13(e)
are obtained by inputting 45 pairs of XI and XF with the
same dimension n = 31 to the method flowchart in Subsection
IV-A. The generation conditions of these 45 pairs of matrices
are b̂ = [3, 30], b = [3, 13] and ‖ bI − bF ‖= [3, 8]. As shown
in Fig. 13(e), the optimal solutions are better than the near-
optimal solutions with a margin of 4% − 9%. The margin is
obtained by counting the average reduction of reconfiguration
steps relative to 2n. Since near-optimal solutions are close to
optimal solutions in reconfiguration steps, it is reasonable that
the margin for further optimization is only 4%−9%. This slight
improvement is significant for MSRR in the rescue scenarios
such as fire and earthquake. The reduction of reconfiguration
steps can significantly save the time spent on the actual motion
of the SR process.

VI. APPLICATIONS

This section provides examples to supplement the discussion
about non-zero elements in the D∗ matrix and the reduction
of reconfiguration steps.

A. Non-zero elements in the D∗ matrix
This subsection explains the actions represented by non-zero

elements in the D∗ matrix and how each reconfiguration step
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Fig. 14. An example to illustrate the role of non-zero elements in the D∗

matrix. (a) All detachment actions corresponding to duv = −1 decompose
the initial configuration into several sub-graphs. (b) All attachment actions
corresponding to duv = 1 reconnect sub-graphs as the final configuration.

TABLE III
THE DIFFERENCE MATRIX CORRESPONDING TO FIG. 14

Row Attachment or detachment (column)
0 0, · · · , 1(206), · · · , 0

179 0, · · · ,−1(26), · · · , 1(178), · · · , 0
275 0, · · · ,−1(26), · · · , 1(274), · · · , 0
311 0, · · · , 1(53), · · · ,−1(310), · · · , 0
349 0, · · · ,−1(96), · · · , 1(348), · · · , 0
362 0, · · · , 1(53), · · · ,−1(361), · · · , 0
413 0, · · · , 1(153), · · · ,−1(412), · · · , 0
419 0, · · · ,−1(254), · · · , 1(418), · · · , 0
440 0, · · · ,−1(254), · · · , 1(439), · · · , 0
460 0, · · · ,−1(254), · · · , 1(459), · · · , 0
461 0, · · · , 1(238), · · · ,−1(460), · · · , 0
480 0, · · · ,−1(254), · · · , 1(479), · · · , 0

can be completed. Different hardware implementations have
different motion planning methods. The following only takes
FreeBOT as an example.

Each FreeBOT has power supply, wireless communication
and positioning capabilities, eliminating the need to maintain
overall connectivity during self-reconfiguration. Therefore, the
first motion planning method is to perform all detachments at
once and then complete attachments by serpentine motion on
the ground. This distributed method is suitable for large-scale
self-reconfiguration with an assumption that each chain is sup-
ported by media such as ground and water to avoid collapse.
Take the reconfiguration process from the configuration in Fig.
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Fig. 15. The reconfiguration steps transforming a snake-shaped robot to a
three-legged robot. The red and green circles on the module in the left images
represent the module pose. A video animating these steps in zero gravity can
be found in the multimedia extensions.

3 to the configuration in Fig. 4 as an example. The D matrix
calculated by the IM algorithm is summarized in Table III. As
explained in Subsection V-B2, the IM algorithm can calculate
the D matrix with large dimensions in polynomial time, and
D is very sparse if there are few bifurcation modules in the
configuration. In this example, the total number of modules is
n = 500, and the exact number of bifurcation modules in the
final configuration is b = 4. The corresponding detachment
and attachment actions are drawn in Fig. 14. Figure 14(a)
shows the effect of all detachments defined by the non-zero
elements duv = −1 in the D matrix. These detachments
decompose the entire graph into many sub-graphs. The non-
zero elements duv = 1 in the D matrix means that the sub-
graph with the module M I

u as the root module needs to be
moved and attached to M I

v . Figure 14(b) shows the effect
of all attachments. In Fig. 14(b), we adjust the positions of
decomposed sub-graphs and use dotted lines to indicate the
required attachments. It can be seen from Fig. 14(b) that the
attachments defined in the D matrix can indeed form the final
configuration shown in Fig. 4.

The second motion planning method is commanding chains
composed of multiple modules to execute motions. This paral-
lel method is suitable for situations where overall connectivity
needs to be maintained and is an alternative to the first
method when some chains may fall off such as in a bridge
configuration. For example, Fig. 15 demonstrates the process
of reconfiguration from a snake-shaped robot to a three-legged
robot. The chain composed of M10−20 is curled up to touch
M20 and M19 with M10 following the kinematics of the
robotic arm. Then the detachment M20 ; M19 and the
attachment M20 ⇒ M10 are completed by the quick rotation
of the inner trolley of FreeBOT. The quick rotation of the
inner trolley can be replaced by the parallel movement of other
hardware modules such as cross-ball [34].

B. Reduction of Reconfiguration Steps

This subsection shows how the IM algorithm reduces re-
configuration steps by interchanging connection points and
the superiority of the IM algorithm in large-scale self-
reconfiguration.

Figure 16 illustrates how the solution of the IM algorithm
reduces the reconfiguration steps compared to the solution of
the Modified Greedy-CM algorithm. The Connection Num-
ber List (CNL) of M I

10 in Fig. 16(b) is [Nc1@M I
10 =

6, Nc2@M I
10 = 5, Nc3@M I

10 = 6]. Suppose the CNL of the
bifurcation module in the final configuration is [Nc1@MF

10 =
5, Nc2@MF

10 = 6, Nc3@MF
10 = 6]. The steps common to the

two solutions of IM and Modified Greedy-CM are shown in
Fig. 16(a). The root module M I

0 is connected to M I
6 through

a robotic arm composed of M I
[0,1,··· ,6]. Then the detachment

M I
3 ; M I

2 breaks a circuit into two branches. Figure 16(b)
shows the extra steps in the solution of Modified Greedy-CM.
Modified Greedy-CM does not consider the interchangeability
of connection points. Because of Nc1@M I

10 − Nc1@MF
10 =

6 − 5 = 1 and Nc2@M I
10 − Nc2@MF

10 = 5 − 6 = −1, the
sub-tree connected to c1@M I

10 needs to give up a module M I
16

to the sub-tree connected to c2@M I
10. In Fig. 16(b), the chain

consisting of modules on the path between M I
25 and M I

15 is
curled up to touch M I

25 and M I
15 with M I

16. Then the inner
trolley of M I

16 changes the connection quickly. These two
steps can be reduced by interchanging c1@M I

10 and c2@M I
10,

which results in Nc1@M I
10 − Nc2@MF

10 = 6 − 6 = 0 and
Nc2@M I

10 − Nc1@MF
10 = 5 − 5 = 0. In the same way, the

IM algorithm can reduce many other redundant steps caused
by the different orders of CNs in CNL.

Figure 17 shows a more complex example of large-scale
self-reconfiguration. In this example, the total number of
modules is n = 568, and the exact number of bifurcation
modules in the final configuration is b = 28. MSRR can be
packaged into a compact configuration [62] that is easy to
store and transport, such as the cube composed of six chains
in Fig. 17(a). When performing tasks such as manipulation
and exploration, the cube configuration can be reconfigured
to a humanoid configuration. The 2D unfolded diagram in
Fig. 17(b) shows the positions of detachments in the cube
configuration. In Fig. 17(b), the positions of detachments are
represented by crosses, and different colors are used to distin-
guish the results of the IM algorithm and the Modified Greedy-
CM algorithm. The golden crosses represent the common
detachments of the two algorithms. Figure 17(c) shows the
positions of attachments in the humanoid configuration. In
Fig. 17(c), the crosses represent the positions of attachments,
and the branches around bifurcation modules are separated by
dotted lines to make room for crosses of different colors. The
distribution of crosses in Fig. 17(b)(c) shows that connection
planning algorithms can keep most modules in the original
connection relationship, and shows that the IM algorithm
reduces some reconfiguration steps compared to the Modified
Greedy-CM algorithm. In this example, the number of recon-
figuration steps calculated by the IM algorithm is 91, and the
number of reconfiguration steps calculated by the Modified
Greedy-CM algorithm is 99. For instance, four green crosses
outside the bifurcation modules in Fig. 17(c) are required by
the Modified Greedy-CM algorithm but reduced by the IM
algorithm. The underlying logic to reduce reconfiguration steps
conforms to the example shown in Fig. 16. The superiority
of the IM algorithm can be strengthened as the number of
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Fig. 16. The reduced reconfiguration steps. (a) The steps common to the two algorithms. (b) The steps defined by the Modified Greedy-CM algorithm but
reduced by the IM algorithm. A video animating these steps in zero gravity can be found in the multimedia extensions.
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(c)

Fig. 17. Large-scale self-reconfiguration from the cube configuration to the humanoid configuration. (a) The two configurations, named cube and humanoid,
respectively. (b) 2D unfolded diagram of the cube configuration. (c) 2D unfolded diagram of the humanoid configuration. The numbers in the legend indicate
the number of detachments or attachments. The positions of attachments are mainly around the bifurcation modules.

bifurcation modules increases, as shown in the experimental
data in Fig. 13.

VII. CONCLUSIONS AND DISCUSSION

This article proposes an auto-optimizing connection plan-
ning method that combines a polynomial-time algorithm and
an exponential-time algorithm through configuration pointers.
The polynomial-time algorithm is used to calculate the near-
optimal solutions of SR instances. The exponential-time algo-
rithm is called to further optimize the solutions of frequently
used SR instances in the library when some CPUs are idle.
This method combines the rapidity of the polynomial-time
algorithm and the optimality of the exponential-time algorithm
for the first time. Second, our polynomial-time algorithm, IM,
calculates near-optimal solutions better than local-procrustes
and Modified Greedy-CM, which are state-of-the-art in the
numerical optimization approach and the graph matching
approach separately. This superiority is verified in experiments
and based on theoretical proofs. Theorem 1 in this article
shows that the interchangeability of the module’s connection
points can reduce the lower bound of the least reconfiguration
steps. Third, our exponential-time algorithm, TBB, proposes
a new branching strategy and stage cost, which provides a

reference for the subsequent development of optimal solvers
in the field of ORP. TBB can use the cost of the near-optimal
solution as an upper bound, and output further-optimized so-
lutions anytime to update the library until an optimal solution
is guaranteed. These characteristics of our TBB algorithm are
exactly in line with the requirements of the auto-optimizing
method.

Previous studies have proposed some useful concepts or
algorithms for reference. For example, Hou and Shen [36] pro-
pose MDCOP and Greedy-CM. Khodr et al. [63] propose an
isomorphic invariant signature for Roombot to avoid repeated
searches in the configuration space. Daudelin et al. [64] use the
concept of the library to save some frequently used configura-
tions and their behavioral characteristics. The auto-optimizing
connection planning method proposed in this article integrates
these works and carries out innovations. The IM algorithm
surpasses other polynomial-time algorithms in terms of the
optimality of solutions theoretically and experimentally. The
configuration pointer has the smallest computational complex-
ity among the existing configuration recognition algorithms.
The TBB algorithm pioneered the idea of using branching
and pruning operations to gradually approach the optimal
solution of connection planning. The significant perspective of
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our auto-optimizing method is to promote the combination of
polynomial-time algorithms and exponential-time algorithms
facing NP-complete problems. For example, both SMORES
and Roombot have their own configuration recognition algo-
rithms and polynomial-time algorithms, which can be used
to implement their own auto-optimizing connection planning
method.

However, some limitations are worth noting. The TBB algo-
rithm further optimizes near-optimal solutions to the optimum
with a computational complexity of O(n) = n(d!)

n
d . This

computational complexity is evaluated by the full enumeration
without regard to decreasing upper bounds. The effective
branching factor does not exceed one-sixth of the maximum
in-degree d. However, the TBB algorithm still takes more than
24 hours to guarantee the optimal solution when n > 35.
The computation time is still fairly high preventing the use
in an online system when n > 35. There is still room
for improvement in the computational complexity of these
exponential-time algorithms. Another limitation of this article
is that the main theorems and experiments are based on
the settings of the MISO module. Other hardware modules
that do not completely match the settings of the MISO
module need to customize their own configuration recogni-
tion algorithm, polynomial-time algorithm, or exponential-
time algorithm. Moreover, some chain-type MSRR, which
cannot satisfy the unfoldable [56] and singularity-free [57]
assumptions in Subsection III-B, needs to select or adjust the
reconfiguration steps output by connection planning according
to the hardware motion constraints.

Motion planning is our future work. In motion planning,
considerations include motion constraints, drive characteris-
tics, dynamics, gravity stability, collision detection, etc. We
will study motion planning for free-form MSRR such as
FreeBOT. ’Free-form’ means that the attachment actions do
not require precise alignment. The advantage of free-form
MSRR is that motion planning can complete all detachment
or attachment actions defined in the D∗ matrix. Therefore,
connection planning does not need to avoid impossible actions
caused by gimbal locks or unaligned positions. This allows
connection planning to pursue optimality without additional
worries. The optimal connection planning and free motion
planning together will make self-reconfiguration fast and
smooth.

APPENDIX

In this appendix, we prove Theorem 2 by introducing an
enumeration method of configuration spaces, which takes into
account the interchangeability of the passive connection points
of the MISO module. Since multiple Connected Components
(CCs) can be connected to a virtual root module to become
a rooted tree composed of n+ 1 modules. Thus we can only
consider the configuration containing one CC that has been
converted as a rooted tree.

In the following, S(n) represents the number of all non-
isomorphic configurations composed of n modules, namely
the volume of the configuration space. Figure 18 shows
the configuration spaces when n = 3, 4, 5. In Fig. 18, we

can observe that there is an inclusion relationship between
the configuration space of n and the configuration space of
n − 1. For example, the four configurations classified by
CNL= [4] in the configuration space of n = 5 are generated
by connecting the four configurations in the configuration
space of n = 4 to a new root module. In general, each
sub-tree containing Nci@Mu modules can be any one of
S(Nci@Mu) non-isomorphic configurations in the configu-
ration space of n = Nci@Mu. Therefore, if the passive
connection points cannot be interchanged, the number of
enumerated configurations corresponding to one CNL is the
product S(Nc1@Mu)S(Nc2@Mu) · · ·S(Nct@Mu), t ≤ d.
The sum of these products corresponding to all possible CNLs
is the volume of the configuration space, S(n). Calculating
all possible CNLs and enumerating non-isomorphic configu-
rations corresponding to each CNL are the two main steps of
the enumeration method of configuration spaces. In particular,
these two steps need to be customized to exclude isomorphic
configurations caused by the interchangeability of the passive
connection points of the MISO module, as explained by
Lemma 1 and 2 in the following proof.

Proof. Firstly, CNLs with only the difference in the arrange-
ment order of CNs can be represented by one typical CNL
for enumeration, denoted as a category CNL. For example, in
Fig. 18, when enumerating the configuration space of n = 4,
the CNL=[1, 2] of the root module Mu is considered, and
the CNL=[2, 1] is excluded. All category CNLs with a certain
length t can be obtained by solving the constrained linear in-
determinate equation in Equation (7). The method to solve the
linear indeterminate equation follows [65]. Table IV shows all
category CNLs solved according to different values of t when
enumerating the configuration space of n = 8 < d. For another
example, in Fig. 18, when n = 5, the set of all category CNLs
of the root module is {[4], [1, 3], [2, 2], [1, 1, 2], [1, 1, 1, 1]}.
The volume of the configuration space is S(5) = S(4) +
S(1)S(3)+S(2)S(2)+S(1)S(1)S(2)+S(1)S(1)S(1)S(1) =
9. Rule (3) in Subsection IV-A specifies that the CNs in the
CNL are sorted from largest to smallest, thereby excluding
other CNLs that only have a difference in the arrangement
order of CNs. Lemma 1 summarizes the above analysis.

t∑
i=1

Nci@Mu = n− 1, t ≤ min{11, n− 1}

s.t.

{
1 ≤ Nc1@Mu ≤ Nc2@Mu ≤ · · · ≤ Nct@Mu

Nc1@Mu, Nc2@Mu, · · · , Nct@Mu ∈ Z

(7)

Lemma 1. The encoding rule (3) of the configuration pointer
excludes isomorphic configurations caused by CNLs with a
different arrangement of CNs.

Secondly, if the category CNL contains r equal CNs, inter-
changing the corresponding r passive connection points will
generate isomorphic configurations. Take the [1, 3, 3] in Tale
IV as an example, there are r = 2 passive connection points
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S(3)=2S(2)=1

S(5)=9 CNL=[4] CNL=[1,3]

 

CNL=[2,2] CNL=[1,1,2] CNL=[1,1,1,1]

CNL=[1] CNL=[2] CNL=[1,1] S(4)=4 CNL=[3] CNL=[1,2] CNL=[1,1,1]

uuuu u u u u u

u u u u u u u

Fig. 18. The enumeration method of configuration spaces, which enumerates all possible CNLs and their corresponding non-isomorphic configurations.

TABLE IV
CATEGORY CNLS WITH A LENGTH t WHEN n = 8

t category CNLs t category CNLs
1 [7]

4
[1, 1, 1, 4]

2
[1, 6] [1, 1, 2, 3]
[2, 5] [1, 2, 2, 2]
[3, 4] 5 [1, 1, 1, 1, 3]

3

[1, 1, 5] [1, 1, 1, 2, 2]
[1, 2, 4] 6 [1, 1, 1, 1, 1, 2]
[1, 3, 3] 7 [1, 1, 1, 1, 1, 1, 1]
[2, 2, 3] / /

connected by sub-trees composed of 3 modules, and each sub-
tree can be one of S(3) = 2 different configurations in the con-
figuration space of n = 3. Let’s label these two different con-
figurations as the sub-tree 1 and the sub-tree 2 in Fig. 19. The
number of different configurations enumerated by connecting
the two sub-trees at the two passive connection points in turn is
not S(3)S(3) = 4, but should be replaced with Cr

S(3)+r−1 =

C2
2+2−1 = 3. This replacement excludes the isomorphic con-

figurations created by interchanging passive connection points.
As shown in Fig. 19, the configuration created by connecting
the sub-tree 1 and the sub-tree 2 to c2@Mu and c3@Mu

is isomorphic with the configuration created by connecting
the sub-tree 1 and the sub-tree 2 to c3@Mu and c2@Mu.
Therefore, the number of enumerated non-isomorphic config-
urations corresponding to the category CNL [1, 3, 3] should
be S(1) ∗ C2

2+2−1. In general, if Nci@Mu, · · · , Ncj@Mu

are r equal CNs, S(Nci@Mu) · · ·S(Ncj@Mu) will be re-
placed by Cr

S(Ncj@Mu)+r−1, which represents the number
of combinations of r repeatable configurations selected from
S(Ncj@Mu) configurations. Rule (2) in Subsection IV-A
specifies that the order of repeated CNs is determined by
the value of the configuration pointer of the corresponding
sub-tree. Take the configurations in Fig. 7 as an example.
Although Nc2@Mu = Nc3@Mu = 3, due to 1100 > 210,

c3

c2

c3

Isomorphic by 

interchanging c2 and c3

sub-tree 2

sub-tree 1

sub-tree 2 sub-tree 1

Fig. 19. The isomorphic configuration produced by interchanging passive
connection points.

two isomorphic configurations produced by interchanging c2
and c3 as shown in Fig. 19 will generate the same configuration
pointer. Thus we have Lemma 2.

Lemma 2. The encoding rule (2) of the configuration pointer
excludes isomorphic configurations caused by CNLs with
repeated CNs.

In summary, the three encoding rules of the configuration
pointer can make any two isomorphic configurations generate
the same configuration pointer, so non-isomorphic configura-
tions in the configuration space have different configuration
pointers.

Finally, we prove that the length growth rate of the config-
uration pointer is O(n log10 n). Suppose the configuration to
be encoded is a chain. The length of the configuration pointer
can be written as Equation (8), where CN represents the CN
value of a sub-tree containing CN ∈ [1, n] modules in the
chain. The logarithm of CN is the number of digits of the
CN value. The length of the configuration pointer is the sum
of the number of digits of each CN value. Equation (8) is
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then simplified by the limitation calculated in Equation (9) as
f(n) = n log10 n.

f(n) ≈
n∑

CN=1

log10 CN = log10(n!) (8)

lim
n→∞

log10(n!) = n log10 n (9)

REFERENCES

[1] H. Ahmadzadeh and E. Masehian, “Modular robotic systems: Methods
and algorithms for abstraction, planning, control, and synchronization,”
Artificial Intelligence, vol. 223, pp. 27–64, 2015.

[2] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [grand challenges of robotics],” IEEE Robotics & Automation
Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[3] J. W. Suh, S. B. Homans, and M. Yim, “Telecubes: Mechanical design
of a module for self-reconfigurable robotics,” in Proceedings 2002
IEEE International Conference on Robotics and Automation (Cat. No.
02CH37292), vol. 4. IEEE, 2002, pp. 4095–4101.

[4] R. Fitch, Z. J. Butler, and D. Rus, “The crystal robot: Implementation
and demonstration.” in AAAI Mobile Robot Competition, 2002, pp. 65–
71.

[5] C. Unsal and P. K. Khosla, “A multi-layered planner for self-
reconfiguration of a uniform group of i-cube modules,” in Proceedings
2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Expanding the Societal Role of Robotics in the the Next
Millennium (Cat. No. 01CH37180), vol. 1. IEEE, 2001, pp. 598–605.

[6] M. W. Jorgensen, E. H. Ostergaard, and H. H. Lund, “Modular atron:
Modules for a self-reconfigurable robot,” in 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS)(IEEE Cat.
No. 04CH37566), vol. 2. Ieee, 2004, pp. 2068–2073.

[7] B. Kirby, J. Campbell, B. Aksak, P. Pillai, J. Hoburg, T. C. Mowry,
and S. C. Goldstein, “Catoms: Moving robots without moving parts,” in
Proceedings of the national conference on artificial intelligence, vol. 20,
no. 4. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, 2005, p. 1730.

[8] P. White, K. Kopanski, and H. Lipson, “Stochastic self-reconfigurable
cellular robotics,” in IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004, vol. 3. IEEE, 2004,
pp. 2888–2893.

[9] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu, “Miche: Modular shape
formation by self-disassembly,” The International Journal of Robotics
Research, vol. 27, no. 3-4, pp. 345–372, 2008.

[10] R. F. M. Garcia, J. D. Hiller, K. Stoy, and H. Lipson, “A vacuum-
based bonding mechanism for modular robotics,” IEEE Transactions on
Robotics, vol. 27, no. 5, pp. 876–890, 2011.

[11] W.-M. Shen, B. Salemi, and P. Will, “Hormone-inspired adaptive com-
munication and distributed control for conro self-reconfigurable robots,”
IEEE transactions on Robotics and Automation, vol. 18, no. 5, pp. 700–
712, 2002.

[12] M. Yim, D. G. Duff, and K. D. Roufas, “Polybot: a modular recon-
figurable robot,” in Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065), vol. 1. IEEE, 2000, pp. 514–520.

[13] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and
S. Murata, “Distributed self-reconfiguration of m-tran iii modular robotic
system,” The International Journal of Robotics Research, vol. 27, no.
3-4, pp. 373–386, 2008.

[14] V. Zykov, A. Chan, and H. Lipson, “Molecubes: An open-source modu-
lar robotics kit,” in IROS-2007 Self-Reconfigurable Robotics Workshop.
Citeseer, 2007, pp. 3–6.

[15] B. Salemi, M. Moll, and W.-M. Shen, “Superbot: A deployable, multi-
functional, and modular self-reconfigurable robotic system,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2006, pp. 3636–3641.

[16] M. Park and M. Yim, “Distributed control and communication fault tol-
erance for the ckbot,” in 2009 ASME/IFToMM International Conference
on Reconfigurable Mechanisms and Robots. IEEE, 2009, pp. 682–688.

[17] A. Lyder, R. F. M. Garcia, and K. Stoy, “Mechanical design of odin, an
extendable heterogeneous deformable modular robot,” in 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Ieee, 2008,
pp. 883–888.

[18] J. Dietsch, R. Moeckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui,
and A. J. Ijspeert, “Exploring adaptive locomotion with yamor, a novel
autonomous modular robot with bluetooth interface,” Industrial Robot:
An International Journal, 2006.
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