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Abstract—Depth completion aims at predicting dense pixel-wise depth from an extremely sparse map captured from a depth sensor,
e.g., LiDARs. It plays an essential role in various applications such as autonomous driving, 3D reconstruction, augmented reality, and
robot navigation. Recent successes on the task have been demonstrated and dominated by deep learning based solutions. In this
article, for the first time, we provide a comprehensive literature review that helps readers better grasp the research trends and clearly
understand the current advances. We investigate the related studies from the design aspects of network architectures, loss functions,
benchmark datasets, and learning strategies with a proposal of a novel taxonomy that categorizes existing methods. Besides, we
present a quantitative comparison of model performance on three widely used benchmarks, including indoor and outdoor datasets.
Finally, we discuss the challenges of prior works and provide readers with some insights for future research directions.

Index Terms—Depth Completion, deep learning, depth estimation, multi-modality fusion, spatial propagation network.
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1 INTRODUCTION

ACQUIRING correct pixel-wise scene depth plays a
substantial role in various tasks such as scene under-

standing [54], autonomous driving [99], robotic navigation
[75], [104], simultaneous localization and mapping [35],
intelligent farming [23], and augmented reality [19]. Thus, it
has been a long-term goal studied in past decades. One cost-
effective way of obtaining scene depth is to directly estimate
it from a single image with monocular depth estimation al-
gorithms [27], [32], [42], [61]. However, visual methods often
yield a low inference accuracy and poor generalizability and
thus are vulnerable to real-world deployment.

On the other hand, depth sensors provide accurate and
robust distance measurements with true scene scales. There-
fore, they are more applicable for applications that require a
security guarantee and high performance [26], [76], [99], e.g.,
self-driving cars. In fact, measuring depths with LiDARs is
probably still the most deployable way to obtain reliable
depth in industrial applications. However, neither LiDAR
nor commonly used RGBD cameras, like Microsoft Kinect,
can provide a dense pixel-wise depth map. As shown in Fig.
1, the depth map captured by Kinect has small holes and the
map captured by LiDAR is significantly more sparse. It is,
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Fig. 1. Comparison between captured depth maps by different sensors.
The raw sparse depth maps are shown in the middle. The left one is
captured by a Kinect in an indoor scenario, and the right one is captured
by a LiDAR in an outdoor street. Clearly, the map captured by LiDAR is
significantly more sparse. The bottom row shows the completed depth
map from the raw sparse map.

therefore, necessary to fill the void pixels in practice.
Since there is a clear difference among depth maps

captured by different sensors, the completion problem and
solution are usually sensor-dependent. For example, it is
frequently called depth enhancement [48], [74], [96], depth
inpainting [66], [80] and depth denoising [28], [96] in many
works, where the goal is to infer missing depth values from
dense raw depth maps and eliminate outliers (typically, the
density is over 80% as discussed in [76]). In this article,
we particularly focus on the completion task for extremely
sparse data, e.g., for depth maps captured by LiDARs where
the sparsity is usually over 95%. This problem is studied
and handled separately in related literature and is much
more challenging due to the low density of the sparse input.
For simplicity, we refer to depth completion from extremely
data as depth completion in the rest of the article.

In recent years, deep learning based methods have
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Fig. 2. A timeline for deep learning based depth completion methods. We show some selected works to visualize the evolution process. Unguided
methods: SI-CNN [107], ADNN [14], HMS-Net [48], Ncon-CNN [110], IR L2 [73], pNCNN [21]. RGB guided methods: 1) Early fusion models: S2D
[77], SS-S2D [76], 3coeff [51], S2DNet [36], Qu et al. [88], Long et al. [70]. 2) Late fusion models: Spade-RGBD [54], DDP [127], DfineNet [132],
GuideNet [102], VOICED [118], MSG-CHN [63], KBNet [119], RigNet [125], ScaffFusion [116]. 3) Explicit 3D representation models: PwP [121],
DeepLidar [87], 2D-3D fuseNet [9], ABCD [55], ACMNet [137], Du et al. [20]. 4) SPN-based models: CSPN [13], NLSPN [85], CSPN++ [12], PENet
[44], DySPN [65]. 5) Residual depth models: FCFR-Net [68], KernelNet [67], DenseLiDAR [34], Zhu et al. [140].

shown compelling performance on the task and have led
the development trend. It is shown in prior works that a
network with several convolutional layers [107], or a simple
auto-encoder [111] can complete missing depths. Moreover,
depth completion can be further improved by leveraging
RGB information. A typical method of this type [54], [97] is
to use dual encoders for extracting features from a sparse
depth map and its corresponding RGB image, respectively,
and later fuse them with a decoder.

To push the envelope of depth completion, recent ap-
proaches tend to use complicated network structures and
complex learning strategies. In addition to multi-branches
used for feature extraction from multi-modality data, e.g.,
image and sparse depths, researchers have begun to in-
tegrate surface normal [87], affinity matrix [13], residual
depth map [34], etc., into their frameworks. Besides, to
cope with the lack of supervised pixels, some works intro-
duced exploiting multi-view geometric constraints [76] and
adversarial regularization [58]. These efforts have greatly
facilitated the progress in the depth completion task.

Despite the tremendous progress made by learning
based approaches, to the best of our knowledge, a compre-
hensive survey is lacking. This article aims to depict the
development of learning based depth completion through
hierarchically analyzing and categorizing existing methods
and provide readers with a straightforward understanding
of deep depth completion with some valuable instructions.
Typically, we hope to answer the following questions:

1) What are the common characteristics of previous meth-
ods for achieving highly accurate depth completion?

2) What are the pros and cons of RGB guided approaches
compared to unguided methods?

3) Since most previous works employed both visual and
LiDAR data, what are the most effective strategies for
multi-modal data fusion?

4) What are the current challenges?
With the above questions being considered, we survey

the related works from January 2017 to May 2022 (at the

time of writing). Fig. 2 visualizes the timeline of the selected
methods based on the proposed taxonomy, where the bot-
tom and the top show the unguided and five types of RGB
guided methods, respectively. It is seen that although early
studies tackle depth completion in an unguided fashion, we
observed that studies published after 2020 have been grad-
ually dominated by RGB guided methods. In this article, we
investigate the previous studies from the aspects of network
structure, loss function, learning strategy, and benchmark
datasets. We especially stress methods with the proposal
of novel algorithms or significant performance boosts and
properly provide visual descriptions of their technical con-
tributions to promote the clarification. Furthermore, we
provide quantitative comparisons of existing methods with
essential characteristics on the most popular benchmark
datasets. Through the in-depth analysis of previous studies,
we wish the reader can gain a clear understanding of deep
depth completion.

In summary, our key contributions are as follows:

• To the best of our knowledge, this is the first survey
for depth completion. We give an in-depth and com-
prehensive review, including both unguided and RGB
guided methods.

• We propose a novel taxonomy to categorize previous
methods and visualize their main characteristics, in-
cluding network structures, loss functions, and learning
strategies.

• The article covers the most advanced and recent
progress of deep learning based depth completion with
performance comparison on benchmark datasets. It
provides readers with state-of-the-art methods.

• We provide several open issues and promising future
research directions.

The remainder of this article is organized as follows:
Section 2 gives the formulation of deep learning based depth
completion and provides the proposed taxonomy. Section 3
reviews unguided methods, and Section 4 elaborates RGB



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

TABLE 1
A brief overview of the proposed taxonomy.

Main categories Sub-categories Major characteristics

Unguided methods
(Sec. 3)

Sparsity-aware CNNs (SACNN, Sec. 3.1) Using the binary validity mask to indicate missing
elements during convolution.

Normalized CNNs (NCNN, Sec. 3.2) 1). Built on normalized convolution 2). Replacing the
validity mask with continuous confidence mask.

Training with Auxiliary Images (TwAI, Sec. 3.3)
Integrating image reconstruction into latent or output
space to encourage learning semantic cues. Image
guided training and unguided inference are employed.

RGB guided methods
(Sec. 4)

Early fusion models (EFM, Sec. 4.1)
• Encoder-decoder networks (EDN, Sec. 4.1.1)
• Coarse to refinement prediction (C2RP,

Sec. 4.1.2)

Directly aggregating the image and sparse depth map
input or fusing the multi-modality features at the first
convolutional layer.

Late fusion models (LFM, Sec. 4.2)
• Dual-encoder networks (DEN, Sec. 4.2.1)
• Double encoder-decoder networks (DEDN,

Sec. 4.2.2)
• Global and Local Depth Prediction (GLDP,

Sec. 4.2.3)

The framework usually consists of dual encoders or
two sub-networks; the one is used for extracting RGB
features and the other is used for extracting depth
features. Fusion is conducted at the intermediate
layers, e.g., fusing extracted features from encoders.

Explicit 3D representation models (E3DR, Sec. 4.3)
• 3D-aware convolution (3DAC, Sec. 4.3.1)
• Intermediate surface normal representation

(ISNR, Sec. 4.3.2)
• Learning from point clouds (LfPC, Sec. 4.3.3)

Explicitly learning 3D representations, such as
applying 3D convolutions, embedding surface
normals, and learning from 3D point clouds.

Residual depth models (RDM, Sec. 4.4) Learning a coarse depth map and a residual depth
map. Their combination generates the final depth map.

SPN-based models (SPM, Sec. 4.5)
1). Based on the spatial propagation network. 2). First
learning the affinity matrix, and then applying affinity
based depth refinement.

guided methods. Section 5 introduces the loss functions
employed in previous approaches. Section 6 lists the bench-
mark datasets and introduces the evaluation metrics for
the depth completion task. Section 7 compares the previ-
ous methods from comprehensively different perspectives.
Section 8 summarizes the open challenges and provides
valuable directions for future research. Section 9 gives the
conclusion.

2 DEEP LEARNING BASED DEPTH COMPLETION

In this section, we first give a common formulation of
the depth completion task. Then, we outline the proposed
taxonomy. Noting that some methods share common char-
acteristics, we group them by jointly considering network
structures and main technical contributions.

2.1 Problem Formulation
In depth completion, a deep neural network N with param-
eters W predicts a dense depth map Ŷ ∈ Ŷ of a given sparse
depth map Y ′ ∈ Y′ by

Ŷ = N (Y ′;W) . (1)
Unguided depth completion: In (1), depth completion

is performed using only the sparse input without guid-
ance from different modality data. Therefore, it is called
unguided depth completion. These methods are reviewed
in detail in Section 3.

RGB guided depth completion: In many works, both
the sparse depth map and its corresponding RGB image are
utilized for inputs. In this case, the task is formulated by

Ŷ = N (Y ′, I;W) (2)

where I denotes the RGB image whose pixels are aligned
with Y ′. Then, task employed by (2) is referred to as RGB
guided depth completion which is elucidated in Section 4.

The parameters W of the network N are optimized to
train the network by solving

Ŵ = argmin
W

L
(
Ŷ,Y;W

)
(3)

where Y denotes the set of ground truth depth maps, and L

is a loss function which is usually defined to penalize pixel-
wise discrepancy between the prediction and the ground
truth on the valid pixels through back-propagation while
training N . Depending on the specific learning strategies,
some other losses, such as unsupervised photometric loss,
adversarial loss, and regularization terms on depth maps,
are properly applied. An in-depth discussion of learning
objectives and loss functions is given in Section 5.

2.2 Taxonomy
In this article, we propose a detailed taxonomy by jointly
considering network structures and main technical contri-
butions. An existing method is firstly categorized into either
an unguided method or an RGB guided approach. Then,
it is further classified into a more specific sub-category.
Table 1 gives an overview of the proposed taxonomy with
descriptions of the major factors for identifying categories.

As seen, unguided methods have three sub-categories,
including methods 1) employing sparsity-aware CNNs, 2)
employing normalized CNNs, and 3) training with Auxil-
iary Images. Guided methods include five sub-categories.
Some of them also have more concrete classes. For the
first and second categories, i.e., early fusion and late fusion
models, the fusion strategy is the main factor considered in
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our taxonomy. For the late three categories, i.e, explicit 3D
representation models, residual depth models, and spatial
propagation network (SPN) based models, the fusion strat-
egy is not the major factor in identifying their types since
they hold distinct characteristics and both early fusion and
late fusion are used in previous methods.

3 UNGUIDED DEPTH COMPLETION

Given a sparse depth map, unguided methods aim at di-
rectly completing it with a deep neural network model.
Previous methods can be generally categorized into three
groups: methods using 1) sparsity-aware CNN, 2) normal-
ized CNN, and 3) training with auxiliary images.

3.1 Sparsity-Aware CNNs

The key idea of sparsity-aware methods is that they identify
valid and missing elements with a binary mask during
convolution operation and thus enable standard CNNs to
perform better for sparse depth inputs.

Uhrig et al. [107] proposed the first deep learning based
unguided method. They first verified that normal convo-
lutions are not able to handle sparse input as they typically
cause mosaic effects and proposed a new sparse convolution
operation. Then, they introduced a 6-layers CNN assem-
bled with the proposed sparse convolution. The sparse
convolution uses a binary validity mask to distinguish be-
tween valid and missing values and performs convolution
among only valid data. The value of the validity mask is
determined by its local neighbors via max-pooling. This
first deep learning based method outperforms non-learning
methods and shows the potential of deep learning on the
task. Moreover, it inspired lots of subsequent studies.

However, the sparse convolution is not suitable to be di-
rectly applied to classical encoder-decoder networks, which
can fully leverage the multi-scale features. Huang et al.
[48] introduced three sparsity invariant (SI) operations, in-
cluding SI upsampling, SI average, and SI concatenation,
and built an encoder-decoder based HSMNet. They also
demonstrated an application using RGB inputs by adding
a small branch to HSMNet.

Chodosh et al. [14] formulated the depth completion
as a multi-layer convolutional compressed sensing problem
and proposed an end-to-end multi-layer dictionary learning
algorithm. It is achieved by applying compressed sensing
to the deep component analysis (DeepCA) objective [81]
and optimizing by ADMM (alternation direction method
of multipliers). The over-complete dictionaries are learned
with a few convolutional layers via back-propagation.

3.2 Normalized CNNs

The sparsity-aware methods require validity masks to iden-
tify missing values for performing convolutions. As argued
in [22], [54], [110], validity masks can degrade the model
performance due to the saturation of the mask at early
layers in CNNs. To tackle this issue, inspired by normalized
convolution [59], Eldesokey et al. [22] introduced the nor-
malized convolutional neural network (NCNN) that gen-
erates continuous uncertainty maps for depth completion.
The essential difference is that features obtained using the

NCNN are weighed with continuous uncertainty maps in-
stead of binary validity masks, leading to better completion
performance. In addition, convolution filters are constrained
to be non-negative by the SoftPlus function [31] for faster
convergence.

Although NCNN still takes a sparse mask as an initial
input, it yields a continuous confidence map to indicate
useful information across the intermediate layers. In reality,
disturbed measurements exist due to the LiDAR projection
errors. The initial sparse confidence input cannot exclude
such noisy inputs. To solve this problem, Eldesokey et
al. [21] further developed a self-supervised approach to
estimate a continuous input confidence map for suppressing
the disturbed measurements with a network. NCNN is also
applied to RGB guided depth completion in [45], [110].

3.3 Training with Auxiliary Images

A few works smartly and implicitly utilize RGB information
for unguided depth completion by introducing an auxiliary
task of depth for reconstruction. For example, to overcome
the lack of semantic cues, Lu et al. [73] employed an auxil-
iary learning branch in their framework. Instead of directly
using an image as input, they only take a sparse depth map
as input and simultaneously predict a reconstructed image
and a dense depth map. The RGB images are only used
in the training stage as a learning objective to encourage
acquiring more complementary image features. A similar
method is also seen in [130] where RGB and normal are
used for auxiliary training. In [111], an auto-encoder is
employed to generate RGB data in latent space, and then the
auto-encoder predicts the final depth from it. This method
is unsupervised and does not use denser depth maps as
ground truths, showing inferior performance compared to
[73]. Although these methods are RGB guided in training,
they aim at performing unguided depth completion in infer-
ence. Therefore, we categorize them into unguided methods.

4 RGB GUIDED DEPTH COMPLETION

Unguided methods usually underperform RGB guided
methods and suffer from blurring effects and distortion of
object boundaries. As studied in [46], depth maps of natural
scenes can be decomposed into smooth surfaces and sharp
discontinuities between them; the latter forms step edges in
depth maps. This structure is a key property of depth maps.
However, when depth maps are extremely sparse, prior
information such as neighboring objects and sharp edges
are significantly missing; therefore, it is even intractable to
recover complete depth maps using CNNs.

Therefore, utilizing RGB information as an additional in-
put is straightforward and reasonable. RGB images provide
information about scene structures, including textures, lines
and edges, to complement the missing cues of sparse depth
maps, and encourage depth continuities inside smooth re-
gions and discontinuities at boundaries. Moreover, they
include some monocular cues, e.g., vanishing points [43],
for promoting depth estimation. These benefits complement
sparse depth maps.

Compared to unguided methods, RGB guided ap-
proaches typically have three advantages: i) they generally
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outperform unguided methods in accuracy, ii) they are more
robust to different sparsity levels, and iii) they gain more
perceptually correct depth maps.

To date, different types of methods have been proposed,
and they can be categorized into mainly five types: 1)
early fusion models, 2) late fusion models, 3) explicit 3D
representation models, 4) residual depth models, and 5)
spatial propagation network (SPN) based models.

4.1 Early Fusion Models

Early fusion methods directly concatenate a sparse depth
map and an RGB image before passing them through a deep
model [17], [77], [87], or aggregate multi-modal features at
the first convolutional layer of a model [51], [70], [121].
Previous methods of early fusion can be divided into two
types: methods employing 1) encoder-decoder network and
2) two-stage coarse to refinement prediction.

4.1.1 Encoder-decoder Networks

This type of method utilizes a traditional encoder-decoder
network (EDN) to solve the pixel-to-pixel regression prob-
lem. An early work is shown in [77] where Ma et al. pro-
posed to accomplish depth completion from both a sparse
depth map and its corresponding RGB image. Toward this
end, they directly concatenated the RGB image and the
sparse depth map and then fed them to an encoder-decoder
network built on a ResNet-50 network [38]. This work also
verified that RGB guided depth completion is more accurate
and robust than unguided approach for different sparsity
levels.

To better enforce the prediction to be consistent with the
measurements, Qu et al. [88] replaced the last convolutional
layer with a least squares fitting module. In this model, the
extracted features obtained from the penultimate layer are
treated as a set of bases, and the weights of these bases
are obtained through a least squares fit on the depths at
valid pixels. As discussed in the paper [88], the method is
unable to handle extremely sparse input due to the lack of
supervision with enough depth points.

Motivated by spatially-adaptive denormalization
(SPADE) [86], Dmitry et al. [95] proposed to learn spatially-
dependent scale and bias for normalized features. They
introduced a novel decoder assembled with SPADE blocks
with a modulation branch. The modulation branch takes the
valid mask as input and predicts multi-scale modulation
signals. These modulation signals are sent to the multiple
SPADE blocks in the decoder at each spatial scale to update
features. The method’s effectiveness has been validated
on both indoor depth enhancement and outdoor depth
completion.

Instead of the direct concatenation, several approaches
[51], [76], [132] used two separate convolutional units to
extract features from RGB and depth input at the first
layer of the encoder-decoder network, respectively. Then,
the multi-modal features were concatenated and sent to the
rest of the layers to obtain a complete depth map.

Early fusion methods built on EDN are straightforward.
Compared to the late fusion strategy, they are good at model
simplicity, yet underperform in accuracy.

4.1.2 Coarse to Refinement Prediction
Some methods employ a two-stage coarse to refinement pre-
diction (C2RP) to achieve more accurate depth estimation.
This kind of methods firstly estimates a coarse depth map
in the first coarse prediction stage, then applies the second
refinement prediction from the coarse depth map and the
RGB image. For instance, Dimitrievski et al. [17] integrated
a learnable morphological operator (two contraharmonic
mean filter layers [78]) into a U-net [90] based framework.
After the morphological operation, the predicted coarse
depth map and the RGB image are passed through a U-
net to get a refined output. Similarly, Hambarde et al. [36]
proposed S2DNet which consists of two pyramid networks:
S2DCNet and S2DFNet. The S2DCNet performs the first
coarse prediction, and the S2DFNet performs the second
refinement.

Unlike the above methods, several methods proposed
to generate multiple maps in the coarse prediction stage.
For instance, Chen et al. [10] generated a dense map with
the nearest neighbor interpolation and a prior distance
map between depth points based on a Euclidean distance
transform of the validity mask. The dense map acts as a
coarsely predicted map as explored in [17], and the distance
map serves a similar role as the validity mask that informs
the model about the valid depth points, but in a different
manner from SACNN. As shown in [10], the inclusion of
the distance map improves training stability.

Recently, Hedge et al. [39] proposed the DeepDNet. The
assumption is that CNNs are considered to learn better fea-
tures with uniform data rather than randomly distributed
data. Therefore, they first convert the original sparse in-
put into a grid sparse depth map with quad tree based
preprocessing. Then, two coarse maps are generated by
applying the nearest neighbor interpolation and Bi-cubic
interpolation from the grid sparse map, respectively. Such
random to uniform transformation gained a slightly better
performance than [10] for synthesized depth maps on the
NYU-v2 dataset. However, its effectiveness for more realistic
scenarios, e.g., KITTI, remains unclear.

In [70], depth completion is decomposed into a first-
stage relative depth estimation and a second-stage scale
recovery problem. The final depth map is the multiplication
of the relative depth map and its scale map. As argued in
[70], such design reformulates the completion task in scale
space, and thus is more robust for tackling the sparsity.

Notably, the performance of the C2RP highly relies on
the quality of pre-estimated depth maps in the first stage
of coarse prediction. Besides, the idea of rectifying from a
coarse prediction is also frequently leveraged in subsequent
studies, such as those built on SPNs and residual depth
learning frameworks.

4.2 Late Fusion Models

Late fusion models usually employ two sub-networks to
extract features from (i) RGB images using an RGB encoder
network, and (ii) sparse depth inputs using a depth encoder
network. The fusion is conducted at intermediate layers of
the two sub-networks. Most of the previous methods exploit
the late fusion strategy with various network structures.
Specifically, they are categorized into three types: methods
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employing 1) dual-encoder network, 2) double encoder-
decoder network, and 3) global and local depth prediction.

4.2.1 Dual-encoder Networks
Methods built on a dual-encoder network (DEN) commonly
use an RGB encoder and a depth encoder for extracting
multi-modal features. Then, these features are aggregated
and fed into a decoder. DENs take a divide-and-conquer
strategy that learns domain-specific features from RGB im-
ages and sparse depth maps with two separate encoders,
respectively, then fuse them to form a correlational feature
representation with a decoder.

In [54], Jaritz et al. introduced a two-branch encoder
network based on a modified NASNet [141], where the in-
termediate features extracted from all encoders are directly
concatenated and then outputted to a decoder. Notably,
Jaritz et al. verified that the validity mask is not necessary
for performance improvement for large networks. Instead of
direct channel-wise concatenation, features extracted from
the RGB encoder and the depth encoder are fused in
element-wise summation in [92], [97].

Lately, more complicated fusion strategies have been
explored. Fu et al. [25] improved the straightforward con-
catenation of RGB and depth features with an inductive
fusion adapted from the conditional neural process [30].
Zhong et al. [138] suggested using the correlation between
RGB and depth information. For this purpose, they pro-
posed the CFCNet which extracts the most semantically
correlated features from multi-modal inputs by applying
deep canonical correlation analysis [126] between the sparse
depth points and their corresponding pixels in RGB images.

The above approaches only fuse the outputted features
from the RGB branch and depth branch at a single spatial
scale. To establish a hierarchical joint representation, Zhang
et al. [134] proposed a multi-scale adaptation fusion network
(MAFN). The main contribution of MAFN is the adaptation
fusion module (AFM) that incorporates features extracted
from RGB and depth modalities and passes them to a neigh-
bor attention module to enhance their local neighboring
relational information. AFM is applied between the RGB
and depth branches at multiple scales, as seen in Fig. 3.

Fig. 3. The diagram of the MAFN. The framework is a DEN where
features extracted from the RGB encoder and the depth encoder are
fused with the adaption fusion (AFM) module at multi-scales. From [134].

Li et al. [63] introduced a cascaded hourglass network
that consists of a branch (image encoder) used to extract
features from images and three hourglass branches used
to extract features from depth at different scales (1/4, 1/2,
1). The feature maps obtained from the image encoder at
different scales are merged with the corresponding depth
features by skip connection. The ground truth is down-
sampled to different scales to make use of the multi-scale
supervision. Such design enables a significant drop in model
complexity and improves inference efficiency.

To better tackle the sparsity, many works seek to ex-
ploit additional constraints to guide the learning process. A
common solution is to apply epipolar constraints between
temporally adjacent frames [15], [24], [99], [116], [117], [118],
[119], or stereo pairs [97], [127]. Another constraint is ad-
versarial loss which comes from adversarial training with
the use of a generative adversarial network (GAN) [33]. Al-
though these constraints provide unsupervised guidance to
the models, they require additional inputs or other guidance
networks during their training.

4.2.2 Double encoder-decoder Networks

As discussed above, DEN-based methods usually consist
of an RGB encoder, a depth encoder, and a decoder. The
fusion is conducted between the two encoders. A double
encoder-decoder network (DEDN) is an improvement of the
dual-encoder network and further boosts completion per-
formance. A vanilla DEDN contains two encoder-decoder
networks. In like manner, one takes an image input, and the
other takes sparse depth input. The image network is also
called the guided network. For methods built on DEDN,
the fusion is usually conducted between the decoder of the
image branch and the encoder of the depth branch at multi-
scales.

As a representative method depicted in Fig. 4, GuideNet
[102] aims to learn a more effective fusion of RGB and
depth features. Inspired by guided image filtering [37] and
bilateral filtering [105], GuideNet introduced the guided
convolution which automatically generates spatially-variant
kernels from the image features and applies them to assign
weights to the depth features. The guided convolution is
applied to multi-scale image features. To reduce the com-
putational complexity, motivated by MobileNet-V2 [93], the
guided convolution is factorized into a channel-wise and a
cross-channel convolution.

Fig. 4. The diagram of the GuideNet. The framework is a DEDN where
the guided convolution learns fusion kernels from RGB features and
applies them to depth features. From [102].

Inspired by [102] and [107], Schuster et al. [94] proposed
sparse spatial guided propagation (SSGP) which combines
image guided spatial propagation and sparsity convolution.
SSGP is applicable to not only depth completion but also
other interpolation problems such as optical flow and scene
flow. More recently, Yan et al. [125] proposed RigNet with
a novel repetitive design to handle blurry object bound-
aries and better recover scene structures. In RigNet, the
branch used for extracting image features is implemented
using a repetitive hourglass network (RHN), i.e., multiple
encoder-decoder networks, to produce perceptually clear
image features. The branch of RigNet used for extracting
depth features is also a hourglass network stacked with a
repetitive guidance module (RG). RG plays a similar role
as the guided convolution [102] and is built on dynamic
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convolution [8]. Since RG implements dynamic convolution
repetitively, the convolution factorization proposed in [102]
becomes less efficient. Thus, they designed an efficient guid-
ance algorithm in which the kernel size in the channel-wise
convolution drops from 3×3 to 1×1 by using global aver-
age pooling. RigNet achieves an extraordinary performance
and currently ranks second on the KITTI depth completion
dataset [107].

4.2.3 Global and Local Depth Prediction
In several prior works, RGB and LiDAR data are referred
to as global information, and the LiDAR data is referred to
as local information. The global and local depth prediction
(GLDP) methods employ a global network to infer depth
from global information (global information is equivalent to
early fusion of RGB images and sparse depths) and a local
network to estimate depth from local information. The final
dense depth map is obtained by merging the outputs of the
global and local networks.

To exploit both the global and local features, a global
depth and local depth map, as well as related confidence
maps, were predicted in [108]. The confidence map pre-
dicted at each branch was used as a cross-guidance to
refine the depth map predicted by the other branch. A
similar method was also introduced in [62] where Lee et
al. made two improvements. First, in order to extend the
receptive field, they designed a residual atrous spatial pyra-
mid (RASP) block to replace the traditional residual block.
Second, unlike [108] where the confidence map was directly
used to refine a depth map via element-wise multiplication,
they introduced a new guidance module that applies both
channel-wise and pixel-wise attention operations. The same
framework was likewise used to address depth completion
from the extremely sparse depths in order to explore depth
completion from single-line depth maps in [72].

Technically, GLDP takes advantage of both early fusion
and late fusion by using a global depth prediction network
and a local depth estimation network. GLDP attains compa-
rable performance to DEDN with few parameters.

4.3 Explicit 3D Representation Models
Most previous studies of RGB guided depth completion
learn 3D geometric relationships in an implicit yet ineffec-
tive manner. Typically, the difficulty comes from the incapa-
bility of normal 2D convolution to capture the 3D geometric
clues from the sparse input where the observed depth
values are irregularly distributed. Hence, another type of
previous approaches promotes explicit 3D representations
(E3DR). Previous methods of this type can be classified
into the methods employing 1) 3D-aware convolution, 2)
intermediate surface normal representation, and 3) methods
of learning geometric representations from point clouds.

4.3.1 3D-aware Convolution
The insight behind 3D-aware convolution is that, since a
depth point is correlated to its spatial neighbors, and there
are many missing points irregularly distributed in the sparse
input, instead of the standard convolutions, applying 3D-
aware convolutions to the nearest neighbors of a depth point
helps eliminate perturbations of missing values.

In 2D-3D FuseNet [9], features extracted from an RGB
branch and a depth branch are fused by several 2D-3D
fusion blocks that jointly learn 2D and 3D representations.
The 2D-3D fusion block uses a multi-scale branch to extract
appearance features in 2D grid space with normal convolu-
tion operations, and a branch to learn 3D geometric repre-
sentations by applying two continuous convolutions [112]
on K-nearest neighbors of a center point in 3D space. The
idea of learning from spatially close K-nearest neighbors is
then commonly employed in subsequent studies.

For instance, in the ACMNet [137], the nearest neighbors
are identified similarly by comparing the spatial differ-
ences. Unlike [9], the non-grid convolution is implemented
by graph propagation. As seen in Fig. 5, ACMNet has a
DEDN structure where the encoder is composed of co-
attention guided graph propagation modules (CGPMs), and
the decoder is a stack of symmetric gated fusion mod-
ules (SGFMs). CGPM adaptively applies attention based
graph propagation in both the image and depth encoders
for multi-modality feature extraction, and SGFMs apply
symmetric cross guidance between two decoders for multi-
modality feature fusion.

Fig. 5. The diagram of the ACMNet where the encoder uses several co-
attention guided graph propagation modules (CGPMs) for multi-modality
feature extraction and the decoder uses several symmetric gated fusion
modules (SGFMs) for multi-modality feature fusion. From [137].

Xiong et al. [120] considered a graph model for depth
completion and introduced a graph neural network (GNN)
based depth completion algorithm. Note that the 3D graph
of nearest neighbors is only constructed for a valid point
in [9], [137], while it is constructed for each point from
a dense depth pre-enhanced from a baseline model with
a DEDN architecture in [120]. The method also studied
and compared different sampling strategies for synthesizing
sparse depth maps on the benchmark NYU-v2 dataset. The
results show that quasi-random sampling [83] significantly
outperforms random sampling1. These findings can help
perform experiments of different sampling strategies on the
indoor datasets for the depth completion task.

4.3.2 Intermediate Surface Normal Representation
A few works utilized surface normal as an intermediate
3D representation of depth map and introduced methods
employing surface normal guided completion. As studied
in [47], [133], surface normal is a reasonably intermediate
representation and can promote indoor depth enhancement.
However, as pointed out by Qiu et al. [87] that reconstruct-
ing depth from normal in outdoor scenes is more sensitive
to noise and occlusion; how to utilize surface normal in this

1. Previous methods of depth completion commonly validate their
effectiveness on the NYU-v2 by synthesizing sparse depth maps via
randomly sampling a few depth points.
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case is still an open question. To address this issue, they
proposed DeepLIDAR, a two-branch network consisting of
a color pathway and a surface normal pathway depicted in
Fig. 6. Both branches produce a dense depth map. The final
depth map is obtained via the attention-based weighing of
the outputs of the two pathways. In the surface normal
branch, surface normal is utilized as the intermediate repre-
sentation of the produced depth map.

Fig. 6. The pipeline of the DeepLIDAR where surface normal is used as
an intermediate representation of a depth map. From [87].

The use of surface normal is straightforward for the
method proposed in [87]. As argued in [121], the relation
between depth and surface normal can be established via
the tangent plane equation in the camera coordinate system.
By this intuition, Xu et al. [121] proposed the plane-origin
distance that forces the consistency between depth and sur-
face normal to regularize depth completion. Different from
[87], the method also estimates a confidence map modeling
as Laplace distribution to mitigate the effect of noise and
applies a refinement network. Benefiting from the depth and
normal consistency, they achieved comparable performance
against [87] while using only about 20% of parameters.

4.3.3 Learning from Point Clouds

Recently, a few studies directly learned geometric represen-
tations from point cloud, since it is a reliably strong prior
of 3D structures. For example, Du et al. [20] proposed to
first learn a geometric-aware embedding from point clouds
with edge convolution [113]. Then, a DEN was utilized to
perform depth completion from RGB images and geometric
embeddings. Jeon et al. [55] also used a point cloud as input.
By incorporating the attention mechanism into bilateral
convolution [101], they designed an attention bilateral con-
volutional layer (ABCL) based encoder for feature extraction
from 3D point clouds. Their framework also implements a
DEN where a point cloud encoder is used to extract 3D
features, and an image encoder is used to extract 2D features
from an RGB image and a sparse depth input.

As shown in [20], [55], integrating point cloud into depth
completion significantly boosts the model generalization
accuracy in different environments. Compared to [55], the
method of [20] achieves competing results with yet a simple
and more lightweight framework.

4.4 Residual Depth Models

Residual depth models (RDMs) stress that the inferred
depth maps should be precise in overall structure and faith-
ful in local detail. Hence, the one-stage prediction procedure
can be decoupled into the estimation of a dense map and a
residual map. RDMs predict a depth map and a residual
map, and their linear combination obtains the final depth.
Through the prediction of the residual map, the model can
refine the blur depth prediction and yield finer results on
object boundaries.

These methods usually apply a two-stage coarse-to-
refinement likewise prediction procedure. A simple appli-
cation is shown in [64] where a sparse depth map is firstly
completed to a dense map, and a residual map is then
predicted. Finally, the element-wise summation of them
generates the final depth map. Gu et al. [34] proposed
DenseLiDAR, a similar method as shown in Fig. 7. In
DenseLiDAR, a pseudo depth map with morphological
operations is firstly predicted. Then, the pseudo depth map,
the RGB image, and the sparse depth input are sent to a
CNN to predict a residual map. Finally, the pseudo depth
map is rectified with the residual map to yield the final
depth map.

Fig. 7. The pipeline of the DenseLiDAR where depth completion is
decomposed as learning of a coarse depth map and a residual depth
map. From [34].

For other approaches, the improvement is derived from
boosting the estimation of either the coarse depth map or
the residual depth map. For instance, motivated by kernel
regression, a differentiable kernel regression network was
proposed to replace the hand-crafted interpolation for per-
forming the coarse depth prediction from the sparse input
in [67], [82]. In addition, FCFR-Net [68] implemented an
energy-based operation for multi-modal feature fusion to
boost the residual map learning.

Aiming at handling the uneven distribution and deal-
ing with the outlier issue, Zhu et al. [140] introduced a
novel uncertainty based framework which consists of two
networks: a multi-scale depth completion block and an
uncertainty attention residual learning network. Like other
residual based methods, the former network yields a coarse
prediction, and the later network performs refinement. The
uncertainty based framework prevents over-fitting from
outliers by relaxing constraints of the highly uncertain re-
gions in the first completion stage and guides the network
to generate the residual map in the refinement stage. Zhang
et al. [135] combined the late fusion with residual learning
and proposed a DEN-based multi-cue guidance network.
Unlike other methods, the final depth is the combination of
the sparse input and the estimated residual map.

4.5 SPN-based Models
An affinity matrix, also called a similarity matrix, expresses
how close or similar data points are to each other. It is
used to refine and gain a fine-grained prediction in vision
tasks. In spatial propagation networks (SPN) [69], learning
an affinity matrix is formulated as learning a group of
transformation matrices. Following [69], [85], the affinity
refinement process of SPN is defined by

xt
m,n = wc

m,nx
t−1
m,n +

∑
i,j∈Nm,n

wi,j
m,nx

t−1
i,j (4)

where (m,n) and (i, j) denote the coordinates of reference
and neighbor pixels, respectively, and Nm,n is a set of neigh-
bor pixels of the reference pixel at (m,n). t denotes the itera-
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tion step of refinement. wc
m,n and wi,j

m,n are the affinity of the
reference pixel and the affinity between the pixels at (m,n)
and (i, j), respectively, where wc

m,n = 1−
∑

i,j∈Nm,n
wi,j

m,n.
Since a depth point is correlated to its neighbors, the

SPN is reasonably applicable to depth regression problems,
and a family of previous studies developed their algo-
rithms based on SPNs. Cheng et al. proposed the pioneer-
ing convolutional spatial propagation network (CSPN) [13],
[109] which is the first SPN-based model used for depth
completion. Compared to the original SPN [69], CSPN has
two major improvements. First, in SPN, a point is linked
to three local neighbors from the nearest row or column,
while in CSPN, a 3 × 3 local window is used to connect
local neighbors. Second, CSPN efficiently propagates a local
area in all directions via a convolution operation instead
of propagating in different directions and integrating with
max-pooling as SPN. The final value of a depth point is
determined by its local neighbors via the diffusion process
with the affinity matrix. Specifically, the network proposed
in [77] is modified with skip connections and an additional
output branch to generate the affinity matrix. Given a coarse
predicted depth map and the affinity matrix, a CSPN is
plugged into the network [77] for refinement, as shown in
Fig. 8. The hyper-parameters including kernel size (size of
local neighbors) and the number of iterations, need to be
tuned by hyper-parameter search.

Fig. 8. The framework of CSPN based depth completion. The CSPN
module is plugged into the network to rectify a coarsely predicted depth
map. From [109].

To solve the difficulty of determining kernel sizes and
iteration numbers, Cheng et al. further proposed CSPN++
[12] that enables an context aware CSPN (CA-CSPN) and
an resource aware CSPN (RA-CSPN). For the implemen-
tation of CA-CSPN, various configurations of kernel sizes
and numbers of iterations are first defined, and two extra
hyper-parameters are introduced to weigh different kernel
sizes and iterations adaptively. Thus, CA-CSPN consumes
a large number of computational resources. To tackle this
issue, RA-CSPN selects the best kernel size and number of
iterations for each pixel by minimizing the computational
resource usage. To this end, a computational cost function is
aggregated to the optimization target to balance the trade-
off between accuracy and training time.

While CSPN and CSPN++ mainly focus on the refine-
ment from an existing encoder-decoder method [77], PENet
[44] takes advantage of both SPN and late fusion models.
PENet uses the DEDN structure where one network predicts
from RGB images and sparse depths, and the other network
predicts from sparse depths and a pre-densified depth map.
A CSPN++ is then applied to the fused depth map of these
predictions.

The above methods use fixed local neighbors for spatial
propagation during affinity learning. However, this will

involve the unnecessary use of irrelevant local neighbors.
To address this problem, Park et al. proposed a non-local
SPN [85] where non-local neighbors with affinities and a
depth confidence map are learned, and the propagation is
implemented through the deformable convolutions [139]
on the K non-local neighbors. Besides, they also designed
the confidence-incorporated affinity normalization module
to encourage more affinity combinations and reduce the
negative effect of unreliable depth values.

In [122], a deformable spatial propagation network
(DSPN) is proposed to adaptively generate different recep-
tive fields and affinity matrices for each pixel. Likewise, [65]
introduced attention based dynamic SPN (DySPN) that can
learn an adaptive affinity matrix by decoupling neighboring
pixels based on their distances. Such attention mechanism
recursively generates different attention maps to refine the
affinity matrix and bring us the new state-of-the-art method
for depth completion. DySPN currently ranks first on the
KITTI depth completion benchmark [107].

Both methods of 3D-aware convolution and SPN-based
models apply spatial constraints and can achieve superior
performance. The former leverages spatial constraints dur-
ing convolution while the latter forces spatial correlations
via affinity-based post-refinement. In general, methods of
3D-aware convolution are more efficient than SPN-based
models which is more time-consuming.

5 LEARNING OBJECTIVES FOR TRAINING MOD-
ELS

Since depth completion and monocular depth estimation
have the same target outputs, i.e., predicting dense depth
maps, they share the same learning objectives, such as
depth loss, surface normal loss, and photometric loss. In this
section, we describe the learning objectives used in previous
studies. A brief overview is given in Table 2 in which we
will review the commonly used objectives in detail in the
following sections.

5.1 Depth Consistency
Given a sparse input Y ′, the predicted dense map Ŷ where
Ŷ = N(Y ′;W), and the semi-dense ground truth depth map
Y , many works [54], [70], [97], [106], [127] used the l1 loss
(mean absolute error) between the predicted depth map and
the ground truth depth map on valid pixels by

l1 =
1

n

n∑
i=1

∥Ŷi − Yi∥1 (5)

where ∥ · ∥1 denotes the ℓ1 norm, Ŷi ∈ Ŷ and Yi ∈ Y denote
the predicted depth and the ground truth depth at ith pixel,
and n is the total number of valid depth points from Y.
Also, most existing methods [20], [77], [134] used the l2 loss,
also known as root mean squared error (RMSE) by

l2 =
1

n

n∑
i=1

∥Ŷi − Yi∥2, (6)

where ∥·∥2 denotes the ℓ2 norm. Note that in many methods
[62], [76], [77], [77], [87], the l2 loss is referred to as MSE.
Therefore, in this article, we do not technically distinguish
between the RMSE and MSE when they are used as loss
functions.
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The l1 loss treats each valid pixel equally, while the
l2 loss is more sensitive to outliers and usually penalizes
distant depth points more heavily. To take advantage of
both losses, some methods attempt to combine them from
different aspects. For example, several approaches [36], [65]
linearly combined them as a loss function. Van Gansbeke
et al. [108] proposed focal-MSE where the mean absolute
error was taken as a focal term for weighing the l2 loss of
depth. Also, some works [88], [110] used the Huber loss [49]
combining l1 and l2 to reduce the influence of large errors.
It is defined by

lhuber =

{
1
n

∑n
i=1

1
2 (Ŷi − Yi)

2, |Ŷi − Yi| ≤ δ
1
n

∑n
i=1 δ

(
|Ŷi − Yi| − 1

2δ
)
, |Ŷi − Yi| > δ

(7)

where | · | denotes the absolute value operator and δ is
usually set to 1. Besides, a few studies [71], [110] employ the
Berhu loss [84] which is a reversion of Huber loss defined
by

lberhu =

{
1
n

∑n
i=1 |Ŷi − Yi|, |Ŷi − Yi| ≤ δ

1
n

∑n
i=1

(Ŷi−Yi)
2+δ2

2δ , |Ŷi − Yi| > δ
(8)

Fig. 9 visualizes the comparisons of MAE, MSE, Huber,
and the Berhu loss functions for δ = 1. As shown, the Huber
norm acts as l2 when the error is less than δ and acts as l1
otherwise. On the other hand, the Berhu norm acts inversely
to the Huber norm, i.e., acts as l1 when the error is less than
δ and acts as l2 otherwise.
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Fig. 9. The comparison of MAE, MSE, Huber and Berhu norm.

Another attempt for handling the above issue of regres-
sion is to formulate depth prediction as a classification prob-
lem as an early work [7] on monocular depth estimation. In
this case, the depth range is discretized into a set of bins and
a cross entropy loss is used. For depth completion, [51], [67]
exploit this setting.

Besides the above discussed loss functions, to tackle the
outliers and inherent noises of the sparse input, uncertainty
aware learning objectives are also exploited. Uncertainty
estimation [57] has been originally proposed to improve
the robustness and accuracy of deep models. Inspired by
[57], a couple of methods [21], [140] introduce the uncer-
tainty driven depth loss function where the completion is
posed as maximizing the posterior probability. Assuming
the likelihood term p(Ŷi|σi, Yi) is modeled by a Gaussian
distribution, following [21], [140], then

p(Ŷi|σi, Yi) ≈
1√
2πσi

exp

(
− (Ŷi − Yi)

2

2σ2i

)
(9)

Ŷi and σi can be obtained via maximum likelihood estima-

tion by
Ŷi, σi = argmax

Ŷi,σi

log p(Ŷi|σi, Yi)

= argmax
Ŷi,σi

−1

2
log(2π)− log(σi)−

(Ŷi − Yi)
2

2σ2i

= argmax
Ŷi,si

−1

2
log(2π)− 1

2
log(si)−

(Ŷi − Yi)
2

2si

(10)

where si ≜ σ2i denotes the uncertainty of prediction at the
ith pixel. Given equation (10), the uncertainty driven depth
loss for depth completion is defined by

lud =
1

n

n∑
i=1

(
(Ŷi − Yi)

2

si
+ log(si)

)
(11)

In practice, an exponential function is usually applied to
avoid division by zero during the training and the following
uncertainty aware learning objective is used instead:

lud =
1

n

n∑
i=1

(exp−si(Ŷi − Yi)
2 + si). (12)

In both works [21], [140], the uncertainty map s is estimated
with an additional branch within the depth completion
framework.

5.2 Structural Loss Functions

A common problem of previous works is that the predicted
depth maps suffer from blur effects and distorted bound-
aries. To overcome this problem, researchers proposed to
apply regularization to scene structures by introducing loss
functions of depth gradient, surface normal, and perceptual
quality. Specifically, the gradient loss lgrad, is implemented
by minimizing the mean absolute error [34], [67]. For surface
normal difference denoted by lnormal, the negative cosine
difference is commonly utilized [87], [121]. The effect of
gradient and surface normal loss has been well studied in
[42]. As shown in Fig. 10, the gradient loss contributes to
penalizing errors emerging at the boundary of an object,
while the surface normal loss can alleviate minor structural
errors. Lastly, the structural similarity index measure (SSIM)
loss [114], denoted by lssim, is penalized to ensure the per-
ceptual quality [34], [131]. Since dense ground truth depth
maps are required, previous methods using the structural
loss need to generate pseudo dense ground truth maps if
they are not available from training data.

ldepth lgrad lnormal

✗✓ ✗

✗ ✓

✓ ✓✗

✓

Fig. 10. Robustness of depth, gradient, and surface normal loss to depth
differences. For simplicity, the solid and dotted lines denote two one-
dimensional depth maps, respectively. It is observed that depth loss is
insensitive to the shift and the occlusion of edges, while gradient and
surface normal loss can handle these structural differences. From [42].

5.3 Smoothness Regularization

Smoothness regularization is utilized to suppress noises
and ensure local smoothness for depth prediction. There
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TABLE 2
A list of loss functions used for depth completion in previous works.

Loss function Type Notation Explanation

Depth Consistency Supervised

l1 l1 loss of depth on valid pixels, Eq.(5)
l2 l2 loss of depth on valid pixels, Eq.(6).

lhuber Huber loss of depth on valid pixels, Eq.(7).
lberhu Berhu loss of depth on valid pixels, Eq.(8).
lce Cross entropy of depth on valid pixels by formulating depth regression as a classification task.
lud Uncertainty driven loss of depth on valid pixels, Eq.(12).

Structural loss Supervised
lgrad Gradient loss between the predicted depth map and the pseudo ground truth depth map.

lnormal Negative cosine difference of surface normal.
lssim SSIM loss between the predicted depth map and the pseudo ground truth depth map.

Smoothness
regularization Unsupervised

ltv [14] Total variation of the predicted depth map.

lsmooth
l1 norm on second-order derivative of predicted depth map, Eq.(13) or edge-aware smoothness
loss, Eq.(14).

Geometric constraint Unsupervised
lphoto Photometric loss derived from temporally adjacent images or stereo images, Eq.(17).

lstereo
l2 loss of depth between the predicted depth map and the pseudo ground truth depth map
generated from stereo images.

Adversarial loss Unsupervised ladv Adversarial loss between the predicted and the pseudo ground truth depth map, Eq.(18).

Others Supervised

ltp [116] l1 loss between the prior (initial) depth map and the final estimated depth map.
lcpn [127] l2 loss between an estimated depth map and its reconstruction from the conditional prior network.
lcosine [70] Cosine similarity between the predicted depth map and the pseudo ground truth depth map.
lconf [121] Loss for learning the confidence map.
limg
p [73] lp Loss for image reconstruction.
lur [140] Uncertainty aware loss for learning the residual depth map.

are typically two frequently used learning objectives for
imposing depth smoothness. The first objective used in [76],
[97], [123], [132] is to minimize the ℓ1 norm on second-order
derivative of predicted depth map by

lsmooth =
1

n

n∑
i=1

(
|∂2

x Ŷi|+ |∂2
y Ŷi|

)
(13)

where ∂x and ∂y denotes the gradients along the horizontal
and vertical direction of the dense depth map. The second is
the edge-aware smoothness loss used in [15], [92], [99], [116],
[118], [119] that allows depth discontinuity at boundaries by

lsmooth =
1

n

n∑
i=1

(∣∣∣∂xŶi

∣∣∣ e−|∂xIi| +
∣∣∣∂yŶi

∣∣∣ e−|∂yIi|
)

(14)

Besides, the total variation is also used in [14] for noise
suppression.

5.4 Multi-view Geometric Constraints
One of the most challenging issues for depth completion
is the lack of dense and high quality ground truth. To cope
with this problem, researchers also attempt to seek solutions
from the perspective of utilizing loss functions. Among
them, temporal photometric loss obtained from consecutive
images provides an unsupervised supervision signal 2 to
guide depth completion.

Ma et al. [76] are the first that introduce photometric loss
for depth completion. Based on the epipolar geometry, the
predicted depth map of an image is warped to the nearby
frame. Then, the differences at corresponding pixels are
penalized. Formally, given an image It and its temporally
adjacent image Is, where s ∈ {t − 1, t + 1}. Let pi denote a
pixel at the pixel coordinate, the warping of pi from It to Is
is computed by[

p̂⊤i
1

]
= ϕ

(
K(RŶ (pi)K

−1

[
p⊤i
1

]
+ t)

)
(15)

where K denotes the camera intrinsic matrix, ϕ(a, b, c) =
(a/c, b/c, 1) is an operation for scale alignment. R, t are the

2. This signal is also called self-supervised signal in some studies [53],
[76], [99]

rotation and translation respectively from the target frame t
to the adjacent frame s. Ŷ (pi) is the predicted depth of the
pixel pi of the image It. The warped image is obtained by

Îs(pi) = Is(⟨p̂i⟩) (16)
where ⟨⟩ denotes bilinear sampling operator. Then, the
common photometric loss is defined by

lphoto =
1

m

m∑
i=1

∥It(pi)− Îs(pi)∥1 (17)

where m denotes the number of warped pixels.
Researchers attempted to improve the above photomet-

ric loss from different perspectives in subsequent studies.
The photometric loss is susceptible to moving objects. To
alleviate this problem, Chen et al. [11] integrated a MaskNet
into the self-supervised framework. The MaskNet predicts
the masks of moving objects such that the influence of
moving objects can be reduced. Also, to ensure perceptual
consistency, Wong et al. [118], [119] integrated the SSIM
difference [114] between warped and original images into
the photometric loss.

Different approaches to calculating the photometric loss
have also been explored. In [53], optical flow is used to
estimate the relative pose between two consecutive frames,
and a pose estimation net is used for this purpose in [132].
In [99], relative poses are calculated in feature spaces at
multiple scales. Specifically, consecutive frames are sent to
the FeatNet for multi-scale feature extraction. The relative
pose is calculated with the Gauss-Newton algorithm [5] at
each scale.

Wong et al. have put much effort into improving un-
supervised depth completion. As pointed out in [117], the
conventional use of the photometric loss treats each pixel
equally. Unfortunately, this incurs significant meaningless
errors at occluded regions. To address this issue, they pro-
posed an adaptive weighting function [117] that acts as a
flipped sigmoid function. The weights for the photometric
loss are approximately equal to 1 at each pixel at the be-
ginning, and will get smaller if the residual at certain pixel
increases during the training procedure. In [118], the sparse
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depth is firstly densified by scaffolding operation [3], [6],
and then passed to an EDN for refinement. In ScaffFusion
[116], the parameter-free scaffolding operation used in [118]
is replaced with a spatial pyramid pooling block as well as
an encoder-decoder network. Then, ScaffFusion predicts a
depth scale and a residual depth map for refinement. To
increase generalizability on different cameras, KBNet [119]
takes the calibration matrix as an additional input such that
it can adjust to different cameras during inference.

A few previous works studied depth completion under
the stereo setting except for the temporal photometric loss.
When a stereo pair is available, as seen in [127], the multi-
view photometric consistency can be derived in a different
fashion. Besides, in order to handle the lack of supervision,
stereo images are used to generate ground truth depths for
missing pixels in [97]. However, despite these advantages,
the stereo setting inevitably lowers the generalizability of
these methods [97], [127] in practice.

5.5 Adversarial Loss

Several approaches also adopt adversarial loss to promote
depth completion [1], [58], [106], [131]. In these works, a
generator is used to infer a depth map from the RGB and
sparse depth map, and a discriminator is used to distinguish
between the reconstructed depth map and ground truth by
ladv = min

G
max
D

E[logD(Y )] + E[log(1−D(G(I, Y ′)))]

(18)
where Y is dense ground truth which is usually obtained
by other completion algorithms, G and D are the generator
and discriminator, respectively.

6 DATASETS AND EVALUATION METRICS

In this section, we introduce the benchmark datasets com-
monly used in previous works in detail. We also compre-
hensively survey the related datasets for reference.

6.1 Real-world Datasets

KITTI depth completion dataset [107]: The KITTI dataset
is a widely used large-scale outdoor dataset that contains
over 93,000 semi-dense depth maps with the corresponding
raw sparse LiDAR scans and RGB images. The training,
validation, and test set have 86,000, 7,000 and 1,000 samples,
respectively. The full resolution of images and depth maps
can reach 1216 × 352, which is larger than most existing
RGBD datasets. The raw LiDAR scans are captured by a
Velodyne HDL-64E. To have a semi-dense ground truth
depth map, Uhrig et al. [107] purified the raw data with
the semi-global matching (SGM) and densified the sparse
depth map by accumulating 11 laser scans.

It should be noted that the ground truths can be used
differently in implementing previous methods. The density
of the original sparse depth maps is only about 5% (as
observed in Fig. 11 (b)), and the semi-dense ground truths
provided by the KITTI benchmark can reach about 30%
(as visualized in Fig. 11 (c)). Most previous works take the
denser ground truths to implement their methods, whereas
several unsupervised approaches [116], [117], [118], [119],
[127] assume that only original sparse depth maps are

(a) (b) (c)
Fig. 11. Sample images from the KITTI depth completion dataset [107].
(a) RGB images. (b) Raw sparse depth maps. (c) Ground truth depth
maps.

available. In this case, the depth consistency is only applied
to those 5% valid pixels.

NYU-v2 [98]: The NYU-v2 dataset consists of 464 indoor
scenes with 408,000 RGBD images captured by Microsoft
Kinect with an original resolution of 640 × 480. Previous
studies of depth completion implement their methods by
randomly selecting 200 (Fig. 12 (b)) or 500 depth points
(Fig. 12 (c)) as sparse inputs. The total valid pixels are less
than 1% in both cases.

(a) (b) (c) (d)
Fig. 12. A sample image from the NYU-v2 dataset [98]. (a) An RGB
image. (b) A spare depth map (200 points). (c) A sparse depth map
(500 points). (d) The corresponding ground truth depth map.

VOID [118]: The VOID dataset contains 56 sequences
collected with the Intel RealSense D435i camera from both
indoor and outdoor scenes, in which 48 sequences (about
47,000 frames) are designed for training, and the rest of 8
sequences are used for testing. The resolution of each frame
is 640×480. Each sequence has three different density levels
with 1500, 500, and 150 points. This dataset was employed
to evaluate the methods in [92], [116], [117], [118], [119].

DenseLivox [130]: The DenseLivox dataset is collected
with a cheaper Livox LiDAR with much denser depth maps
(the density is 88.3%) than KITTI. DenseLivox also provides
some extra data like bound-occlusion and normal. This
dataset was employed to evaluate the method in [130].

6.2 Synthetic Datasets

SYNTHIA [91]: The SYNTHIA is captured in a virtual
city that includes street blocks, highways, suburban areas,
and other common objects and has four different appear-
ances corresponding to four seasons in reality. Different
lighting conditions are applied to improve the diversity of
virtual RGB images. The dataset has two complementary
sets with the image resolution of 960 × 20, SYNTHIA-Rand
and SYNTHIA-Seqs. The former (13,400 frames) is obtained
randomly within the city, and the latter (200,000 frames) is
captured from a virtual vehicle across different seasons. This
dataset was employed to evaluate the methods in [54], [88].

Aerial depth [104]: The Aerial depth is a virtual outdoor
dataset specially designed for simulating data captured in
UVA working conditions. The dataset contains 83797 RGB
and depth images from 18 virtual 3D models, and 67435 of
them are selected for training and the rest for validation.
This dataset was employed to evaluate the method in [104].

Virtual KITTI [29]: This dataset is a virtual ver-
sion of the KITTI dataset. Five videos of the KITTI
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TABLE 3
Summary of essential characteristics of existing unguided methods on the KITTI dataset. For denoting the loss function, we omit the coefficient of

each loss term for simplicity. S and U denotes supervised learning and unsupervised learning of models, respectively.

Method Publication Year Type Loss Function Learning RMSE
(mm)

Params
(M) Platform Code

SI-CNN [107] 3DV 2017 SACNN l2 S 1601.33 0.025 TensorFlow ✓
DCCS [14] ACCV 2018 SACNN l2 + ltv S 1325.37 0.0017 TensorFlow ✓

HMS-Net [48] TIP 2019 SACNN l2 S 937.48 - - -
NConv-CNN [22] BMVC 2018 NCNN lberhu S 1268.22 0.00048 PyTorch ✓

pNCNN [21] CVPR 2020 NCNN lud S 960.05 0.67 PyTorch ✓
DCAE [111] WACVW 2022 TwAI l1 + limg

1 S&U 1464.69 2.29 PyTorch -
IR L1 [73] CVPR 2020 TwAI l1 + limg

2 S 915.86 11.63 PyTorch -
IR L2 [73] CVPR 2020 TwAI l2 + limg

2 S 901.43 11.63 PyTorch -

(0001/0002/0006/0018/0020) are cloned through the unity
engine. The dataset consists of 35 virtual videos (about
17000 frames). Each cloned virtual video is further modified
to obtain 7 variations. The modification includes changing
features of the objects, the camera’s position and orientation,
and the lighting condition. This dataset was employed to
evaluate the methods in [55], [88], [97], [116].

SceneNet RGB-D [79]: This dataset contains 5 Million
RGBD indoor images from over 15,000 synthetic trajectories
with 320 × 240 image resolution. Each trajectory has 300
rendered frames. Due to ray-tracing, the generated images
can reach the real-photo level quality. This dataset was
employed to evaluate the method in [116].

6.3 Evaluation Metrics

Depth completion and monocular depth estimation gener-
ally share the same evaluation metrics. We list the most
commonly used measures as follows:

• RMSE: Root mean squared error defined in Eq.(6).
• MAE: Mean absolute error defined in Eq.(5).
• iRMSE: RMSE of the inverse depth, defined by√

1
n

∑n
i=1

(
1
Yi

− 1
Ŷi

)2
.

• iMAE: MAE of the inverse depth, defined by
1
n

∑n
i=1

∣∣∣ 1
Yi

− 1
Ŷi

∣∣∣.
The above four measures are metrics commonly used to
evaluate models in the KITTI benchmark. Among them,
KITTI ranks algorithms in competitions in the order of
RMSE. Thus, many previous methods have aimed to choose
RMSE (l2) as a loss function to train models. Besides, several
metrics are also frequently used in many methods for depth
evaluation, such as

• REL: Mean relative error defined by 1
n

∑n
i=1

|Yi−Ŷi|
Ŷi

.

• δ: Thresholded accuracy defined by max(Yi

Ŷi
, Ŷi

Yi
) = δ <

τ where τ is a given threshold.
REL and δ are commonly used for evaluation of models on
indoor datasets, e.g., NYU-v2.

Evaluation of depth maps is an open issue. The above
metrics cannot precisely measure the quality of recon-
structed compositional patterns such as objects. Therefore,
researchers also attempted to propose new evaluation met-
rics. In [42], object boundaries extracted from the depth map
are measured. Koch et al. [60] introduced the planarity error
and location accuracy of depth boundaries. Jiang et al. [56]
proposed two metrics for quantifying the flatness of planes
and the straightness of lines for depth maps. However,

owing to the lack of dense ground truth, such metrics are
still difficult to be applied to depth completion.

7 EXPERIMENTAL ANALYSES

In this section, we compare and review previous methods
from comprehensive aspects. Specifically, we select some
representative works from each category and elucidate
their major characteristics, including network structure, loss
function, learning strategy, model performance, etc. Table 3
and Table 4 show a comparison of existing unguided and
RGB guided methods on the KITTI dataset, respectively,
where the RMSE values are taken from either the public
KITTI benchmark or the original papers. Table 5 shows a
comparison of RGB guided methods on the NYU-v2 dataset.

Besides, Table 6 shows a comparison of several methods
on the VOID dataset. Note that we use S, U, and S&U
to denote supervised methods, purely unsupervised meth-
ods without applying depth consistency, and unsupervised
methods with depth consistency on only valid depth points
from sparse depth inputs in Table 3, 4, 5, and 6. We use the
RMSE metric for performance comparison. In the following
sections, our findings are summarized.

7.1 Main Characteristics of Existing Methods
1) A relatively smaller number of prior works employ the

route of performing completion from the sparse depth
input. In comparison, more recent works are RGB-
guided, among which the majority route is to perform
late fusion of RGB and depth images instead of early
fusion.

2) PyTorch is the most popular deep learning library for
implementing depth completion methods. The over-
whelming majority of previous studies implement their
methods with PyTorch.

3) KITTI is the most popularly used evaluation bench-
mark. Almost all leading methods provide results on
this dataset. Moreover, NYU-v2 is the second most pop-
ular dataset. Since depth maps of NYU-v2 are captured
by Kinect, previous works implement their methods by
randomly and uniformly sampling 200 or 500 pixels as
valid depth points. Besides, VOID is also a frequently
used benchmark for recent unsupervised methods.

4) More complicated neural network modules have been
recently developed to advance the performance of
depth completion models. For example, many methods
propose to embed surface normal, affinity matrices, and
residual maps into their network models.
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TABLE 4
Summary of essential characteristics of selected existing RGB guided methods on the KITTI dataset. For denoting loss functions, we omit the

coefficient of each loss term for simplicity. S and U denotes supervised learning and unsupervised learning of models, respectively. Accordingly,
the top and bottom parts of the table show the supervised and unsupervised methods implemented for depth completion, respectively.

Method Publication Year Type Loss Function Learning RMSE
(mm)

Params
(M) Platform Code

3coef [51] CVPR 2019 EFM/EDN lce S 965.87 - TensorFlow ✓
EncDec-Net[EF] [110] TPAMI 2019 EFM/EDN l1 S 965.45 0.484 Pytorch ✓

Qu et al. [88] WACV 2020 EFM/EDN lhuber S 998.80 - Pytorch -
Morph-Net [17] ACIVS 2018 EFM/C2RP l2 S 1045.45 - Matlab ✓

S2DNet [36] TCI 2020 EFM/C2RP l1 + l2 S 830.57 - PyTorch -
Long et al. [70] JVCIR 2021 EFM/C2RP l1 + lcosine S 776.13 - - -

Spade-RGBD [54] 3DV 2018 LFM/DEN iMAE S 917.64 5.3 - -
MS-Net[LF] [110] TPAMI 2019 LFM/DEN l1 S 859.22 0.356 PyTorch ✓

MSG-CHN [63] WACV 2020 LFM/DEN l2 S 762.19 1.2 PyTorch ✓
MAFN [134] IJCNN 2020 LFM/DEN l2 S 803.50 - - -

Ryu et al. [92] RAL 2021 LFM/DEN l2 + lsmooth S 809.09 1.9 - -
DVMN [89] ITSC 2021 LFM/DEN l2 + lsmooth S 776.31 - - -

GuideNet [102] TIP 2020 LFM/DEDN l2 S 736.24 62.62 PyTorch ✓
SSGP [94] WACV 2021 LFM/DEDN l2 S 838.22 4.61 - -

RigNet [125] Arxiv 2021 LFM/DEDN l2 S 712.66 - PyTorch -
Van et al. [108] MVA 2019 LFM/GLDP focal-MSE S 772.87 2.545 PyTorch ✓

CrossGuidance [62] Access 2020 LFM/GLDP l2 S 807.42 5.4 PyTorch -
2D-3D FuseNet [9] ICCV 2019 E3DR/3DAC l1 + l2 S 752.88 1.898 - -

ACMNet [137] TIP 2021 E3DR/3DAC l2 S 732.99 4.9 PyTorch ✓
DeepLiDAR [87] CVPR 2019 E3DR/ISNR l2 + lnormal S 758.38 144 PyTorch ✓

PwP [121] ICCV 2019 E3DR/ISNR l2 + lnormal + lconf S 777.05 28.99 PyTorch -
ABCD [55] RAL 2021 E3DR/LfPC l2 S 764.61 32.93 PyTorch -

Du et al. [20] Arxiv 2022 E3DR/LfPC l2 S 773.90 4.189 PyTorch ✓
FCFR-Net [68] AAAI 2021 RDM l2 S 735.81 - - -

DenseLiDAR [34] RAL 2021 RDM l2 + lgrad + lssim S 755.41 - - -
Zhu et al. [140] AAAI 2022 RDM lud + lur S 751.59 - PyTorch -

CSPN [13] ECCV 2018 SPM l2 S 1019.64 17.41 PyTorch ✓
CSPN++ [12] AAAI 2020 SPM l2 S 743.69 26 - -
NLSPN [85] ECCV 2020 SPM l1 + l2 S 741.68 25.84 PyTorch ✓

PENet [44] ICRA 2021 SPM l2 S 730.08 - PyTorch ✓
DySPN [65] AAAI 2022 SPM l1 + l2 S 709.12 - PyTorch -

SS-S2D (d) [76] ICRA 2019 EFM/EDN lphoto + lsmooth U 1299.85 26.1 PyTorch ✓
DFineNet [132] Arxiv 2019 EFM/EDN l2 + lphoto + lsmooth S&U 943.89 - PyTorch ✓

DDP [127] CVPR 2019 LFM/DEN l1+lcpn+lphoto+lssim S&U 1263.19 18.8 TensorFlow -
DFuseNet [97] ITSC 2019 LFM/DEN l2 + lstereo + lsmooth S&U 1206.66 - PyTorch ✓
VOICED [118] RAL 2020 LFM/DEN l1 + lphoto + lsmooth S&U 1169.97 9.7 TensorFlow -

AdaFrame [117] RAL 2021 LFM/DEN l1 + lphoto + lsmooth S&U 1125.67 6.4 PyTorch ✓
ScaffFusion-S&U [116] RAL 2021 LFM/DEN l1+lphoto+lsmooth+ltp S&U 847.22 7.8 TensorFlow ✓

ScaffFusion-U [116] RAL 2021 LFM/DEN lphoto + lsmooth + ltp U 1121.89 7.8 TensorFlow ✓
KBNet [119] ICCV 2021 LFM/DEN l1 + lphoto + lsmooth S&U 1069.47 6.9 PyTorch ✓

Song et al. [99] TITS 2021 LFM/DEN l1 + lphoto + lsmooth S&U 1216.26 9.7 PyTorch ✓

5) The learning objectives identified for depth completion
tasks are intuitive and relatively straightforward to
optimize. For example, many methods penalize just
l1 or l2 loss of depth maps, and still achieve good
performance.

7.2 Unguided and Guided Methods

There are two benefits of unguided methods. First, un-
guided methods are more robust to environments with light
or weather changes since they only take sparse depth maps
as inputs. Moreover, for the same reason, they are more com-
putationally efficient. However, unguided methods show
inferior performance due to the lack of semantic cues and
the irregular distribution of captured depth points. As seen
in Table 3, the best unguided method [73] yields RMSE of
901.43 millimeters on the KITTI dataset. Note that [73] also
uses RGB images to guide model training. The best result
obtained using an RGB-free method in both the training

and inference stage is demonstrated in [48] with RMSE of
937.48. On the other hand, as seen in Table 4, the best
RGB guided method, i.e., DySPN, demonstrates a signifi-
cantly better result with RMSE of 709.12. Moreover, many
RGB guided methods can easily beat the best unguided
approach. Specifically, except for 3coef [51], EncDec-Net[EF]
[110], Morph-Net [17] and CSPN [13], all other RGB guided
methods with supervised learning outperform HMS-Net,
showing the advance of leveraging RGB information. An-
other difference is that unguided methods cannot utilize
additional unsupervised losses derived from images, e.g.,
photometric loss.

7.3 Comparison of RGB Guided Methods

For RGB guided methods, from Table 4, we can observe the
following results:

• Early fusion models generally underperform other
types of methods.
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TABLE 5
Summary of essential characteristics of existing RGB guided methods on the NYU-v2 dataset.

Method Publication Year Type Loss Function Learning RMSE
(mm)

Params
(M) Platform Code

3coef [51] CVPR 2019 EFM/EDN lce S 131 - TensorFlow ✓
Long et al. [70] JVCIR 2021 EFM/EDN l1 + lcosine S 100 - - -
DFuseNet [97] ITSC 2019 LFM/EDN l2 + lstereo + lsmooth S&U 219 - PyTorch ✓

MS-Net[LF] [110] TPAMI 2019 LFM/DEN lhuber S 129 0.356 PyTorch ✓
KBNet [119] ICCV 2021 LFM/DEN l1 + lphoto + lsmooth S&U 105 6.9 PyTorch ✓

SelfDeco [15] ICRA 2021 LFM/DEN l1 + lphoto + lsmooth S&U 178 PyTorch -
GuideNet [102] TIP 2020 LFM/DEDN l2 S 101 62.62 PyTorch ✓

RigNet [125] Arxiv 2021 LFM/DEDN l2 S 90 - PyTorch -
PwP [121] ICCV 2019 E3DR/ISNR l2 + lnormal S 112 28.99 PyTorch -

DeepLiDAR [87] CVPR 2019 E3DR/ISNR l2 + lnormal S 115 144 PyTorch ✓
ACMNet [137] TIP 2021 E3DR/3DAC l2 S 105 1.35 PyTorch ✓
FCFR-Net [68] AAAI 2020 RDM l2 S 106 - - -
KernelNet [67] TIP 2021 RDM l1 + lce + lgrad S 111 - PyTorch ✓

CSPN [13] ECCV 2018 SPM l2 S 117 17.41 PyTorch ✓
CSPN++ [12] AAAI 2020 SPM l2 S 115 26 - -
NLSPN [85] ECCV 2020 SPM l1 S 92 25.84 PyTorch ✓
DySPN [65] AAAI 2022 SPM l1 + l2 S 90 - PyTorch -

• For later fusion approaches, although a considerable
number of methods are built on DEN, approaches [102],
[125] based on DEDN demonstrate more significant
performance improvement.

• Explicit 3D representation methods, SPN-based meth-
ods, and residual depth methods show more ad-
vanced performance and generally outperform other
approaches.

More specifically, the Top-10 performing methods on the
KITTI dataset are (i) four SPN-based models; DySPN [65],
PENet [44], NLSPN [85], and CSPN++ [12], (ii) two residual
depth models; FCFR-Net [68] and [140], (iii) two late fusion
methods built on DEDN; RigNet [125] and GuideNet [102],
and (iv) two explicit 3D representation models; ACMNet
[137] and 2D-3D FuseNet [9]. Based on that, we can say
that the naive fusion strategy such as aggregating inputs
at an early stage or concatenating features extracted by
a dual-encoder network in late stage is not sufficient for
achieving satisfactory performance. The common feature
of the Top-10 performing methods is that they propose
to either explicitly model geometric relationship of depth
points by applying 3D-aware convolution as ACMNet and
2D-3D FuseNet, refinement with residual depth map as
residual depth models and affinity matrix as SPN-based
methods; or learn more effective guided kernel to weigh
depth features with a complicated network design as RigNet
and GuideNet.

Consistent results are also observed in analyses on the
NYU-v2 dataset. As shown in Table 5, the best results are
demonstrated by DySPN and RigNet. Besides, GuideNet,
ACMNet, FCFR-net, and NLSPN also show improved per-
formance compared to other methods.

Intuitively, the performance of depth completion has
the potential to be further improved by aggregating core
technical components of the above methods. For instance,
by taking advantage of 3D representation networks and
spatial propagation networks, we can not only learn the
3D relationship within the model in a feature space but
also apply post-refinement with an affinity matrix in output
space. In addition, we can also incorporate a DEDN with
guided kernel learning into residual depth learning models.

Such combinations are straightforward, nevertheless, can be
considered in practical applications to pursue high accuracy.

7.4 Results of unsupervised Approaches

The bottom of Table 4 shows methods with unsupervised
photometric loss. Results of purely unsupervised methods
(without using depth consistency loss) are calculated by
aligning the scale of the predicted depth map to the scale of
ground truth. First, for methods without leveraging depth
consistency, such as SS-S2D (d) [76] and ScaffFusion-U [116],
we can see that purely unsupervised methods demonstrate
unsatisfactory performance. Second, we also observe that
their performances are still inferior to supervised meth-
ods even leveraging both depth consistency loss and ad-
ditional photometric loss. As also discussed in Sec. 6.1,
this is because these methods [15], [99], [116], [119], [127]
use sparser depth maps as ground truths with a density
of 5% than supervised methods with a density of 30%.
Among these methods, ScaffFusion [116], DFineNet [132],
and KBNet [119] demonstrate better performance than other
approaches. Similar results are also observed in Table 5
where supervised approaches outperformed unsupervised
methods. This is not surprising since supervised methods
could use pixel-wise ground truth depth maps for training
on the NYU-v2 dataset.

Table 6 provides results for several approaches evaluated
on the VOID dataset. As observed, the performance has
been continuously improved from the early VOICED [118]
to the recent KBNet [119]. Most works of Wong et al. apply
pre-densification to sparse depth inputs, such as employing
a learning based spatial pyramid pooling (SPP) block in
[116]. As argued in [119], the max-pool layers in the SPP
block tend to lose details in close range. Therefore, in KBNet,
both max-pooling and min-pooling are implemented to
ensure that the network can extract more comprehensive
depth features. We believe this plays an important role in
improving the KBNet’s accuracy.

Overall, KBNet [119] and ScaffFusion [116] achieved the
first and the second highest accuracy among unsupervised
approaches on the VOID dataset. However, they still un-
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TABLE 6
Summary of essential characteristics of existing RGB guided methods on the VOID dataset. ∗ and ∗∗ denote results taken from [119] and

paperswithcode 3, respectively.

Method Publication Year Type Loss Function Learning RMSE
(mm)

Params
(M) Platform Code

SS-S2D∗ [76] ICRA 2019 EFM/EDN l1 + lphoto + lsmooth S&U 243.84 27.8 - -
DDP∗ [127] CVPR 2019 LFM/DEN l1+lcpn+lphoto+lssim S&U 222.36 18.8 - -

NLSPN∗∗ [85] ECCV 2020 SPN l1 + l2 S 79.12 25.84 - -
VOICED [118] RAL 2020 LFM/DEN l1 + lphoto + lsmooth S&U 146.40 9.7 TensorFlow -
Ryu et al. [92] RAL 2021 LFM/DEN l2 + lsmooth S 181.42 - - -

AdaFrame [117] RAL 2021 LFM/DEN l1 + lphoto + lsmooth S&U 135.93 6.4 PyTorch ✓
ScaffFusion [116] RAL 2021 LFM/DEN l1+lphoto+lsmooth+ltp S&U 119.14 7.8 TensorFlow ✓

KBNet [119] ICCV 2021 LFM/DEN l1 + lphoto + lsmooth S&U 95.86 6.9 PyTorch ✓

derperform the supervised NLSPN. It reveals that the pho-
tometric loss used by current unsupervised approaches is
still not fully reliable and accurate as they are vulnerable to
outliers, e.g., dynamic objects, sky, and transparent objects,
that are ubiquitous in real-world scenarios.

8 OPEN CHALLENGES AND FUTURE DIRECTIONS

8.1 Depth Mixing Problem
The depth mixing problem, also called the depth smearing
problem, is attributed to the difficulty of correctly identify-
ing pixels near object boundaries, and usually causes blurry
edges and artifacts. In order to alleviate this problem, 3coef.
[51] formulates depth completion as a one-hot encoding
problem by dividing a depth map into a set of bins with
fixed depth ranges. Imran et al. [52] isolate the foreground
and background depths in occlusion-boundary regions and
models them, respectively. NLSPN [85] makes the network
learn non-local relative neighbors such that the pixels can be
separated during an iterative propagation. A more simple
way of achieving this separation process is to leverage the
K-nearest algorithm [9], [124], [137]. Besides, a boundary
consistency network was added after depth completion
to encourage predicting more sharp and clear boundaries
[47], [103]. However, this problem is still difficult for depth
estimation tasks and needs to be continuously investigated.

8.2 Flawed Ground Truth
Another problem is the existence of defects in ground
truth depths. First, unlike semantic segmentation, none
of the existing real-world datasets can provide pixel-wise
ground truth because of the limitation of depth sensors.
Although many existing methods are trained in a super-
vised way, most pixels cannot be sufficiently supervised.
Second, the semi-dense annotations are not entirely reliable
due to outliers caused by occlusions, dynamic objects, etc.
To overcome the sparsity problem, some researchers [76],
[99] turn to self-supervised frameworks to alleviate the lack
of ground truth depths. To cope with the second problem,
Zhu et al. [140] handle outliers by incorporating uncertainty
estimation into the depth completion network. Besides, a
few works [1], [131] leverage synthetic datasets for model
training. However, the domain gap between real-world and
synthetic data prevents a wide application of these methods.
Despite the above efforts made by previous studies, it is
still an open issue how to exclude the effects of unreliable
depths, and there are still lots of room for improvement.

3. https://paperswithcode.com/sota/depth-completion-on-void

8.3 Lightweight Networks

Most previous methods have complex network structures
with a large number of parameters. Moreover, many of
them take two-stage coarse-to-refinement prediction. Thus,
these methods are time-consuming and require high usage
of hardware resources. However, for applications such as
autonomous driving and robotic navigation, computation
resources are limited and real-time inference is required.
Although a few prior studies [2], [103], [110], [124] have par-
tially considered the real-time inference problem, they suffer
from inferior performance. Besides, the network design
is essentially empirical. Following advances in monocular
depth estimation, we can further apply several techniques,
such as applying knowledge distillation [40], network com-
pression [115], and neural architecture search [50]. With-
out sacrificing too much accuracy, developing lightweight
methods with fast inference speed has enormous potential
for real-world deployment, thus, is a valuable and practical
research point in future work.

8.4 Un-/self-supervised Frameworks

As discussed before, un-/self-supervised learning frame-
works are solutions commonly employed in the absence
of dense ground truths. As discussed in Sec. 7.4, the ac-
curacy of current un-/self-supervised methods is still lower
compared to supervised methods because they apply depth
consistency to only valid depth points from sparse inputs
and cannot leverage ground truth depth points as many
as used by supervised methods. On the other hand, the
photometric loss will only be effective when the predicted
depth maps are close enough to the ground truth. However,
that is still challenging due to the fact that the photometric
loss is particularly susceptible to noises, moving objects,
texture-less regions. Thus, there is much room for further
improvement of unsupervised methods. Since this kind of
methods is not robust to dynamic objects, distant regions,
etc., the improvements can be brought by leveraging more
effective network structures for performing auxiliary tasks,
such as pose estimation and outlier removal.

8.5 Loss Functions and Evaluation Metrics

Employment of proper loss functions is also critical to
achieving satisfactory performance for depth completion.
Commonly used loss functions are usually defined by a
weighted sum of l2 or l1 loss functions with other aux-
iliary loss functions, e.g., smoothness loss and SSIM loss.
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However, as discussed in [51], both l1 and l2 loss functions
have their own drawbacks. The choice of them is usually
dataset dependent. Similarly, current metrics cannot pre-
cisely measure the quality of scene structures. Although
several new metrics have been introduced in [42], [51], [56],
[60] for evaluating depth maps, they have not gained broad
popularity. Thus, designing more effective loss functions
and convincing evaluation metrics is also a potential future
research direction.

8.6 Domain Adaptation
Current benchmark datasets face the challenge of the lack
of reliable depth points. Moreover, the data is captured
under ideal lighting conditions in limited scenarios. Thus,
models trained using this type of data have no guarantee of
generalization in different working conditions and domains.
Accordingly, it is reasonable to manipulate deep networks in
simulated environments. Thereby, we can have not only per-
pixel ground truth but also changeable lighting or weather
conditions with a great number of different scenarios. More-
over, it encourages the development of more advanced
methods that are difficult to be implemented in the real
world. The challenge is then how to transfer the model
from simulated environments to real-world scenarios. A
few works explored domain adaptation methods for depth
completion [1], [71]. However, this under-explored problem
remains unknown and is worthy of further exploration.

8.7 Transformer-based Network Structures
Recently, visual transformers (ViT) have attracted extensive
attention and continuously introduced new state-of-the-art
results for many perception tasks, including classification
[18], semantic segmentation [100], object detection [136] and
monocular depth estimation [4]. Unlike CNNs, ViT receives
a set of image patches as input and uses self-attention for
local and global feature interactions. It may bring a new
paradigm shift for depth completion where more effective
multi-modality data fusion and novel strategies for han-
dling input sparsity may exist.

8.8 Visualization and Interpretability
A few works have attempted to understand and visualize
the mechanism of CNNs for monocular depth estimation.
It is shown in [16], [41], [43] that CNNs tend to use some
monocular cues from RGB images for inferring depths. In
addition, as observed in [129] that the features generated
inside CNNs are highly disentangled and activated to dif-
ferent depth ranges. An intriguing question is what will be
different if we estimate depths when a few sparse depth
points are available in inputs. Exploring and answering the
above question is essential to the interpretation of learn-
ing based approaches, and has promising applications for
improvement of their generalization ability, e.g., facilitating
domain adaptation; and robustness of deep learning based
depth completion methods.

8.9 Robustness to Different Sensors
Existing methods are only applicable to particular sensors.
For instance, the most frequently used KITTI dataset is

captured by a 64-line LiDAR. There is no guarantee that
previous methods can be applied to lower scanline sensors,
such as 32-line, 16-line LiDARs, and 1-line LiDARs. As
demonstrated by [72], [76], [92], [128], the performance
degradation is significant from a 64-line sensor to lower
scanline sensors. Hence, maintaining the same level of accu-
racy for lower scanline sensors is challenging. This under-
explored problem is also practical in real-world applications
since higher scanline sensors are more expensive than lower
ones. Therefore, ensuring the accuracy of learning based
methods for various lower scanline sensors is also an im-
portant and valuable research topic.

9 CONCLUSION

In this article, we present a comprehensive survey of deep
learning based depth completion methods. Our review
covers traditional and state-of-the-art network structures,
loss functions, learning strategies, benchmark datasets, and
evaluation metrics. To depict the evolution process and
draw the connections between existing works, we provide
a fine-grained taxonomy that categorizes existing methods
by jointly considering network structures and main tech-
nical contributions. Moreover, we visualize the main char-
acteristics of existing methods as well as their quantitative
performance on the most popular benchmark datasets to
provide an intuitive and straightforward comparison. We
then perform in-depth analyses that summarize their per-
formances, similarities, and differences. Finally, we provide
open challenges and promising future research directions.
Through the above efforts, we hope our work can help
readers navigate this field.
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