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Abstract—Natural image matting aims to precisely separate
foreground objects from backgrounds using alpha mattes. Fully
automatic natural image matting without external annotations
is challenging. Well-performed matting methods usually require
accurate labor-intensive handcrafted trimap as an extra input
while the performance of automatic trimap generation method,
e.g., erosion/dilation manipulation on foreground segmentation,
fluctuates with segmentation quality. Therefore, we argue that
how to produce a high-quality trimap using coarse segmentation
is a major issue in automatic matting. In this paper, we present
a two-stage trimap-free natural image matting pipeline that
does not need trimap and background as input. Specifically,
guided by a coarse segmentation, Trimap Generation Network
(TGN) estimates a trimap where the coarse segmentation can
be produced by segmentation/salient object detection/matting
approaches, which enables more flexibility for matting to adapt
into different scenarios. Then, with an estimated trimap as
guidance, our Sampling Propagation Attention Matting Network
(SPAMattNet) estimates an alpha matte. Different from previous
propagation-based matting networks, inspired by traditional
sampling/propagation matting approaches, we propose Sampling
Propagation Attention (SPA) for matting network to incorporate
sampling and propagation procedures in deep learning based
manner for network explainability and performance improve-
ment. It explicitly investigates local spatial and global semantic
relationships to reconstruct alpha features. To better harvest sam-
pling/propagation and local/global information, a Cross-Fusion
Contextual Module (CFC) is introduced to aggregate features
from different sources. Extensive experiments are conducted to
show that our matting approach is competitive compared to other
state-of-the-art methods in both trimap-free and trimap-needed
aspects on several challenging matting benchmarks.

Index Terms—Image Matting, Trimap Generation Network,
Sampling Propagation Attention

I. INTRODUCTION

IMage matting is a popular image editing task that attempts

to extract an accurate foreground mask, i.e., alpha matte,

from the background. Matting problem can be formulated in

a general mathematical manner. An image I can be defined
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Fig. 1. A visual comparison of our trimap-free matting pipeline and other
matting methods. The guidance input is located at the bottom-left of each
image, where the guidance of BSHM is the output of its Quality Unification
Network. See more examples in Fig. 15.

as a linear combination of alpha matte α, foreground F , and

background B image as follows:

I = αF + (1− α)B, (1)

where RGB I is known, but F , B, and α are unknown.

That is to say, matting attempts to solve seven unknown

variables with only three variables provided. Therefore, most

compelling matting methods usually require a handcrafted

trimap for region constrain to reduce complexity and assist

matte estimation, which makes fully-automatic natural image

matting such an appealing task to explore.

Let us first recap recent learning-based image matting

approaches and their pros and cons. Learning-based image

matting can be divided into three primary categories, includ-

ing background-required [3]–[5], trimap-needed [6]–[19], and

only-image [2], [20]–[23] input, i.e., trimap-free.

Background Matting [3], [4] requires a background image

and soft segmentation as input but cannot resist interfer-

ence of shadows or complex light condition. For trimap-

needed matting, its accuracy is paramount, which gives the

credit to auxiliary trimap. The trimap provides deterministic

foreground, unknown, and background regions of image and

narrows down matte estimation to unknown region. However,

the manual creation of trimap is painstaking, which dimin-

ishes its application potential. Hence, trimap quality is one

significant factor that can affect matting performance. One

possible workaround is a general automatic trimap generation

method, that is, target foreground can be roughly extracted

by segmentation/salient object detection/matting approaches

and then processed by image dilation/erosion. Regarding this

way, segmentation quality has a dominant influence on the

generated trimap, similar to what trimap is to matte.

From the above-mentioned problems, it is obvious that

trimap-needed matting (resp. the trimap generation method)
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Fig. 2. The overview of our matting pipeline. With a coarse segmentation and image as input, TGN obtains an estimated trimap. With the trimap as guidance,
Sampling Propagation Attention Matting Network (SPAMattNet) produces an alpha matte. The collaborative testing of TGN and SPAMattNet is denoted as
Joint Inference. (SN is Spectral Normalization while BN is Batch Normalization.)

has a trimap (resp. foreground segmentation) quandary. To

solve these puzzles, several trimap-free matting approaches

have been proposed. Chen et al. [1] and Zhang et al. [20]

estimate trimap constraints directly from images to assist

human matting. Liu et al. [2] refine coarse masks sequentially

by coupling coarse annotated data with fined one to promote

human matting. Li et al. [23], [24] decompose matting into

semantic segmentation and details matting by using a shared

encoder and two separate decoders for collaborative learn-

ing. However, they mainly focus on single-category matting

and usually require salient solid objects. Therefore, Yu et

al. [25] use general coarse masks as guidance for matting but

could suffer from performance degradation due to inaccurate

masks. Li et al. [22] propose AIM-Net by investigating the

possibility of extending GFM [24] to images with salient

transparent/meticulous and non-salient objects with unified

semantic representation. However, the shared encoder of AIM-

Net might be unable to fully represent semantic/matting infor-

mation, resulting in artifacts of “hard fusion” between results

from semantic and matting decoders. And since their proposed

Automatic Image Matting-500 benchmark mostly contains

clean/blurred backgrounds without complicated multiply ob-

jects that conforms with real-world photography but simplifies

the problem, their approach could degrade when encountering

images with clear/complicated backgrounds.

Considering forementioned issues, as shown in Fig. 1, we

argue that producing a high-quality trimap using coarse fore-

ground segmentation is a critical cornerstone to automatic nat-

ural image matting. See detailed analyses in the supplementary

material. The coarse segmentation can be produced by other

segmentation/salient object detection/matting approaches [26],

[27], which enables more flexibility for matting to adapt into

different scenarios. Therefore, we disentangle matting into

trimap and matte estimation subtasks as a workaround. Dif-

ferent from previous attempts, we aim to properly generalize

trimap-free matting to comprehensive data. We propose a two-

stage trimap-free matting approach, which consists of Trimap

Generation Network (TGN) and Sampling Propagation Atten-

tion Matting Network (SPAMattNet). Since coarse foreground

segmentation can provide additional semantic information and

help the network capture rough locations and shapes of target

objects, TGN employs a coarse foreground segmentation as

guidance to estimate a proper trimap. Then, this estimated

trimap serves as guidance for SPAMattNet and buffer for

negative trimap quality chain reaction.

Different from previous propagation-based matting net-

works [11], [14], inspired by traditional sampling/propagation

approaches [28], we propose a novel Sampling Propagation

Attention for matting, denoted as SPAMattNet. Given an

RGB image and its trimap, SPAMattNet simulates traditional

sampling and propagation matting procedures in deep learning

manner to enhance network explainability and performance.

Specifically, SPAMattNet contains Local Sampling Propa-

gation Attention (LSPA) and Global Propagation Attention

(GPA) to investigate local spatial and global semantic infor-

mation. In particular, we design distance maps between each

unknown pixel and foreground/background pixels to reweight

the affinity map for local sampling attention to conduct local

image pixel sampling. We also introduce both local and global

correlation computing for alpha feature propagation from

foreground/background regions to unknown regions. Then, to

dynamically aggregate sampling/propagation and local/global

features, a Cross-Fusion Contextual Module (CFC) is intro-

duced for more representative feature learning. Finally, we

incorporate TGN and SPAMattNet to produce high-quality

alpha matte without trimap and background as input.

We conduct experiments on synthetic matting datasets and

show that our approach is competitive compared to other

state-of-the-art methods on the Adobe Image Matting, al-

phamatting.com, and Distinctions-646 benchmarks from both

trimap-needed and trimap-free perspectives. To demonstrate

the real-world application capability of our approach, we

conduct real data adaptation, which is evaluated by a user

study, and validate our approach by extensive experiments on
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challenging Real-World Portrait-636 [25], Privacy-Preserving

Portrait Matting [23], and Automatic Image Matting-500 [22]

benchmarks.

Our main contributions are summarized as follows:

• We propose a systematic and flexible trimap-free image

matting pipeline boosted by coarse foreground segmen-

tation that can be obtained by other segmentation/salient

object detection/matting approaches, to estimate high-

quality trimaps, leading to high-quality alpha mattes.

• We introduce a novel Sampling Propagation Attention

into matting network, denoted as SPAMattNet, which

unites sampling and propagation-based matting proce-

dures for network explainability and performance im-

provement.

• We conduct extensive experiments to show that our

approach is competitive compared to other state-of-

the-art methods on Adobe Image Matting, alphamat-

ting.com, Distinctions-646, Real-World Portraite-636,

Privacy-Preserving Portrait Matting, and Automatic Im-

age Matting-500 benchmarks.

II. RELATED WORKS

A. Natural Image Matting

Traditional image matting can be roughly classified into

sampling-based [29]–[34] and propagation-based [28], [35]–

[40] approaches, which usually require trimap as additional in-

put. Sampling-based approaches [29]–[34] initially sample col-

ors from foreground and background pixels for each unknown

region defined by trimap and then select the best foreground-

background color pair to compute alpha values according

to quantitative metrics. Propagation-based methods [36]–[40]

propagate alpha values from known pixels to unknown ones

based on similarity measurements.

Recently, deep learning based matting approaches have

shown prominent performance, which can be categorized into

trimap-needed [6]–[19], [25], [41], background-required [3]–

[5], and only-image [2], [20]–[23], [42] input, i.e., trimap-

free. For trimap-needed methods, Xu et al. [7] propose a

deep image matting solution along with a comprehensive

matting dataset. Lutz et al. [8] explore matting task with

a generative adversarial framework. Then, Hou et al. [41],

Lu et al. [9], and Tang et al. [10] achieve appealing matting

performance. Subsequently, Li et al. [11] propose a matting

network with guided contextual attention. Zhou et al. [12]

introduce an attention transfer network to extract objects from

similar/complex backgrounds. Yu et al. [14] attempt to tackle

high-resolution deep image matting. Yu et al. [25] introduce

a progressive refinement network architecture with a series

of guidance mask perturbation operations into matting task.

Park et al. [18] introduce the first transformer based matting

network that shows impressive performance. For background-

required matting, Sengupta et al. [3] propose a matting ap-

proach that obtains appealing estimation but is not robust to

images with shadow or under complex light conditions. Lin et

al. [4] introduce a real-time high-resolution background mat-

ting approach. Xu et al. [5] propose a dataset-free unsupervised

background matting approach. Besides, a few works attempt

Fig. 3. Trimap Generation Network (TGN).

to take only image as input and produce alpha mattes [1], [2],

[20]–[24], [42]. However, these trimap-free methods are not

capable of producing high-quality alpha mattes unlike trimap-

based matting approaches. Different from these trimap-free

matting approaches, with coarse segmentation as guidance, we

incorporate trimap-based matting into our two-stage trimap-

free matting pipeline to enable more flexibility and produce

high-quality alpha mattes.

B. Attention Mechanism

Attention mechanism has been widely utilized in deep

learning tasks like image synthesis [43] and semantic seg-

mentation [44], [45]. The self-attention block contributes to

each output position by referring to every input position [46].

Similarly, Wang et al. [47] propose non-local attention to

acquire long-range contextual information and promote video

classification tasks. Besides, the window-based self-attention

mechanism [48], [49] has been introduced to reduce com-

putational complexity. Recently, attention has shown its su-

periority in image matting [11], [14], [21] by making mat-

ting networks capture structural pixel-to-pixel dependencies

to simulate the propagation-based matting procedure. Li et

al. [11] simulate non-local attention by convolution and de-

convolution to enhance alpha matte estimation. Qiao et al. [21]

use channel/spatial-wise attention to filter out noise from

hierarchical appearance cues and boost alpha mattes. Yu et

al. [14] introduce three non-local attentions to propagate each

trimap region of context patches to the corresponding region

of query patches. Different from these attention-based mat-

ting networks, we introduce sampling propagation attention

that successfully bridges traditional sampling/propagation and

deep learning based matting approaches to enhance network

explainability and performance.

C. Trimap Generation

Automatic trimap generation, which is popular in tradi-

tional matting [50]–[54], usually contains two steps: binary
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Fig. 4. The details of Sampling Propagation Attention Module (SPA). “
⊕

” means element-wise sum and “
⊗

” denotes matrix multiplication.

segmentation for foreground/background separation and im-

age erosion/dilation. These methods mainly differentiate in

how to obtain segmentation. For example, Wang et al. [50]

leverage depth information to compute segmentation; Gupta

et al. [53] combine salient object detection with super-pixel

analysis for segmentation; Hsieh et al. [51] use graph cuts

for foreground extraction; Chen et al. [54] require users to

indicate foreground/background by a few clicks and apply

one-shot learning for binary mask prediction. Besides, Al-

Kabbany et al. [55] first introduce the Gestalt laws of grouping

into matting, which assists more robust trimap generation.

Cho et al. [56] integrate depth map with color distribution

based processing for foreground/background separation and

then introduce unknown region detection for trimap genera-

tion. Recently, neural networks have been utilized to generate

implicit trimap for human matting automation [1], [57].

III. APPROACH

As shown in Fig. 2, we decompose our trimap-free matting

approach into Trimap Generation Network (TGN) and Sam-

pling Propagation Attention Matting Network (SPAMattNet).

With coarse foreground segmentation as additional indicator,

TGN attempts to understand target object shapes and rela-

tions with surroundings and perform pixel-wise classification

among foreground/background/unknown regions. SPAMattNet

utilizes an RGB image and TGN trimap to estimate an alpha

matte.

A. Trimap Generation Network (TGN)

Trimap generation can be considered as a three-class se-

mantic segmentation task. As shown in Fig 3, with the

concatenation of an RGB image and a two-channel foreground

segmentation as input, TGN outputs a three-channel feature

map indicating the regional belonging possibility. We adopt

Deeplabv3 [58] encoder, which consists of a ResNet-50 back-

bone [59] and Atrous Spatial Pyramid Pooling (ASPP). The

high-level encoder feature first goes through a dropout layer

by 0.5 factor and a four-time bilinear upsampling operation.

Then, since directly adopting the high-level encoder feature for

final classification may lose detailed spatial information, we

aggregate it with low and middle-level encoder features. This

aggregation can enrich the decoding process and make network

emphasize on image appearance and less depend on segmen-

tation input. And swapping the order between upsampling and

the final convolution makes classification more fine-grained.

B. Sampling Propagation Attention Matting Network (SPA-
MattNet)

As illustrated in Fig. 2, we adopt the popular U-Net struc-

ture [11], [60] as the main matting architecture. With trimap
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as prior, different from previous propagation-based attention

augmented matting networks [11], [14], we augment U-Net

with Sampling Propagation Attention (SPA) and Cross-Fusion

Contextual Module (CFC) to fully exploit spatial/semantic

relationships of image features across local/global domains

and produce coarse alpha mattes. Then, we refine coarse alpha

mattes with Refinement Module (RM) to estimate final alpha

mattes.

1) Sampling Propagation Attention Module (SPA): In

Fig. 4, we present the details of our Sampling Propagation

Attention Module that contains two branches, i.e., Local

Sampling Propagation Attention Module (LSPA) and Global

Propagation Attention Module (GPA). We incorporate the low-

level (resp. high-level) encoder feature with LSPA (resp. GPA)

and bridge two different-level attention-aggregated features

with 2D Cross-Fusion Contextual Module (CFC) as the de-

coder input.

Local Sampling Propagation Attention Module (LSPA) The

detailed structure of Local Sampling Propagation Attention

Module is illustrated at the top of Fig. 4. The Local Sam-

pling Propagation Attention Module dynamically weights local

sampling and propagation features to produce robust low-level

features that are full of spatial information.

To be specific, we conduct LSPA locally within non-

overlapping windows that partition feature maps (outlined in

blue). Suppose that we partition feature maps into S evenly-

arranged non-overlapping windows whose spatial dimensions

are h and w. Consider an image feature map Iw and an alpha

feature map Aw, where {Iw, Aw} ∈ R
S×h·w×C and C is the

number of channels. Iw is obtained by applying two 3 × 3
2-stride convolutions (with ReLU and SN/BN) on an input

RGB image while Aw is the low-level feature map of U-Net.

We first feed Iw into a fully connected layer to generate two

feature maps qIw
∈ R

S×d×h·w×C/d and kIw
∈ R

S×d×C/d×h·w,

where d is the head number of multi-head self-attention

operation. We reshape Iw to vIw
∈ R

S×d×h·w×C/d and Aw

to vAw
∈ R

S×d×h·w×C/d.

To simulate sampling procedure, the attention mechanism

is applied on qIw
, kIw

, and vIw
to get local sampling feature

Fls, which is further refined by a 3× 3 convolution,

Fls = softmax

(
dis� qIw

· kIw√
C/d

)
· vIw

, (2)

where dis ∈ R
S×d×h·w×h·w is the distance map,

dis = DF +DB , (3)

where DF ∈ R
S×d×h·w×h·w (resp. DB ∈ R

S×d×h·w×h·w) is

a distance map between unknown pixels and foreground (resp.

background) pixels. The motivation behind DF and DB is as

follows. The affinity operation usually emphasizes neighboring

pixels since neighboring pixels usually have stronger similar-

ities. Therefore, the local sampling branch without dis tends

to collect samples near unknown pixels only. It will fail if

good samples cannot be found nearby [32]. To alleviate this

issue, we introduce dis to reweight the affinity map and make

sampling somehow global. Therefore, for each window, the

value of DF ∈ R
S×d×h·w×h·w in (·, ·, i, j) position can be

formulated as

DF(·,·,i,j) =

⎧⎪⎨⎪⎩
di,j

min(diU ,jF
) , (ix, iy) ∈ U, (jx, jy) ∈ F,

−di,j , (ix, iy) /∈ U, (jx, jy) ∈ F,

0, (jx, jy) /∈ F,

,

(4)

where di,j =
√
(ix − jx)2 + (iy − jy)2, i, j ∈ {0, ..., h · w −

1}, (ix, iy) (resp. (jx, jy)) denotes the pixel i (resp. j) position

in the last two dimensions of non-reshaped S × C × h × w
feature map that the ith (resp. jth) index represents, F represents

the foreground region, and U denotes the unknown region. The

min(diU ,jF ) is the minimum distance between the unknown

pixel i to any foreground pixel j, which guarantees that dis is

independent from the absolute distance. DB also follows the

similar calculation as DF by replacing F as background B
region.

Similarly, we generate local propagation feature Flp by

reconstructing alpha feature by image feature similarity,

Flp = softmax

(
m� qIw

· kIw√
C/d

)
· vAw

. (5)

The value of m ∈ R
S×d×h·w×h·w in (i, j) position can be

formulated as

m(i,j) =

{
clip(

√|U |/|K|) (jx, jy) ∈ U,

clip(
√|K|/|U |) (jx, jy) ∈ K,

, (6)

clip(x) = min (max (x, 0.1), 10), (7)

where i, j ∈ {0, ..., h · w − 1}, (jx, jy) denotes the pixel j
position in the last two dimensions of non-reshaped S×C×h×
w feature map that the jth index represents, and K = {F,B}
refers to foreground F and background B regions [11].

To better fuse Fls and Flp, we reshape them into R
S×h·w×C .

Then, it is fed into our 1D Cross-Fusion Contextual Module

to encourage mutual communication between Fls and Flp and

obtain more expressive feature representations Flsp.

Global Propagation Attention Module (GPA) The bottom

part of Fig. 4 shows details of our GPA. Propagation-based

matting methods usually investigate color similarity between

unknown and known areas and estimate opacity information

as weighted combination of relevant alpha values based on

similarity criteria. Since high-level features capture semantic

information, to better incorporate semantic relationship infor-

mation, we design Global Propagation Attention (GPA) to

promote alpha feature learning.

Consider an image feature map I and an alpha feature

map A, where {I, A} ∈ R
C×H×W , I is the high-level

image feature by applying a 3× 3 2-stride convolution (with

ReLU and SN/BN) on non-reshaped Iw, and A is the high-

level feature map of U-Net. Due to high computational cost

of affinity operation, we leverage linear transformations to

transform I into low-dimensional space and obtain qI and

kI . To be detailed, we reduce the channel dimension by a

1 × 1 convolution and downscale feature maps by a stride

convolution, which can preserve information, speed up train-

ing, and prevent gradient explosion/vanishing. After that, qI
(resp. kI ) is reshaped into R

H·W×C/r (resp. RC/r×H·W/r2 ),
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Fig. 5. Cross-Fusion Contextual Module.

where r is the downscale ratio. Similarly, A is transformed to

vA ∈ R
H·W/r2×C/r. And the attention operation is applied to

qI , kI , and vA,

Fgp = softmax

(
m� qI · kI√

C/r

)
· vA, (8)

where m ∈ R
H·W×H·W/r2 follows the same calculation as

m in LSPA. Then, Fgp goes through a 1× 1 convolution and

residual summation to stabilize training and produce the final

feature. We assume that our GPA can escort the encoder to

understand semantic information of unknown areas.
2) Cross-Fusion Contextual Module (CFC): The Fig. 5

shows the 2D procedure of our CFC. Recall that features from

different sources usually emphasize information in different

aspects. For example, low-level features usually contain rich

spatial details while high-level features are full of semantic in-

formation. Simply adding/concatenating different features with

upsampling/downsampling would not fully take advantage of

both. To this end, we introduce Cross-Fusion Contextual Mod-

ule that dynamically fuses two different features to generate

more expressive features.
Given two different-level features F1 and F2 that have the

same size, we concatenate F1 and F2 along the channel (resp.

last) dimension for 2D (resp. 1D) features and denote it as

F3. Then, F3 is fed to a gating operation [61] to obtain fully

aggregated features. Specifically, F3 first goes through a linear

transformation operation, i.e., a 1 × 1 convolution for 2D or

a fully connected layer for 1D, and Spectral Normalization.

Then, it is splitted evenly along the concatenated dimension

to get F̂1 and F̂2. Finally, a pixel-wise attention is applied to

obtain the fully aggregated feature Fcfc,

Fcfc = φ(F̂1)� σ(F̂2), (9)

where φ is ELU activation function and σ is sigmoid function.
3) Refinement Module (RM): Refinement techniques have

shown impressive performance and effective generalization

in many matting-related works, including salient object de-

tection [62] and semantic segmentation [63], [64], and mat-

ting works [2], [25]. Therefore, we use refinement module

to refine the predicted coarse alpha αcoarse by learning the

residual αresidual between the coarse alpha and ground truth

as αrefined = αcoarse + αresidual.
4) Loss Function: The cross-entropy loss Lce [65] is lever-

aged in TGN. For SPAMattNet, its training loss Lα covers

both coarse and refined alpha estimations,

Lα = Lcoarse + Lrefined. (10)

To obtain high-quality alpha mattes, we employ alpha predic-

tion loss Lalpha and alpha hard mining loss Lhard for coarse

and refined alpha supervisions. The alpha prediction loss [7]

is defined as the absolute difference between the ground truth

and predicted alpha,

Lalpha =
1

|M|
∑
i∈M

|α̂i − αi| , (11)

where M refers to the unknown region and α̂i and αi

indicate predicted and ground-truth alpha value at position

i respectively. Since the network learning ability on each

alpha value varies, indiscriminately treating each alpha value

might misguide the training process. To address this issue, we

introduce hard mining loss [66], [67]. The hard mining loss

calculates the absolute difference between the ground truth and

predicted alpha, sorts all pixels, and picks the top p percent of

the largest error pixels as hard samples to focus on. The hard

mining loss is formulated as

Lhard =
1

|HM|
∑

i∈HM
|α̂i − αi| , (12)

where HM means the region that contains hard samples.

IV. EXPERIMENTS

A. Datasets

We conduct experiments on three synthetic datasets, real-

world human data, and three real-world matting datasets with

annotations.

1) Synthetic Datasets:

• Adobe Image Matting Benchmark (AIM) [7]: It has 431

foreground images for training and 50 foreground images

for testing. We follow the composition rule as Xu et

al. [7] to synthesize training and test sets. The training

set contains 43,100 images whose background images are

from COCO dataset [68]. The test set, also known as the

Composition-1k test set, contains 1,000 images whose

background images are from Pascal VOC dataset [15].

• Distinctions-646 Benchmark [21]: It consists of 646

diversified foreground images [21]. Following the same

composition rule as AIM, we synthesize 59,600 images

for training and 1,000 images for testing.

• AlphaMatting.com Benchmark [69]: It contains eight im-

ages. Each image has three different trimaps, i.e., “small”,

“large” and “user”.

2) Real-world Human Data: We capture 37 handheld

videos, in which the subject is moving around and camera

is moved randomly. The training set is the combination of

our self-captured videos and 10 real-world videos from Back-

ground Matting [3], totally 22,144 real-world video frames.

The test set contains 100 images by combining 10 uniformly-

sampled frames of each testing video among 10 testing videos

(half self-captured, half Background Matting videos). We also

introduce 27 background videos, which are either self-captured

or from Background Matting, to amplify data diversity.
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3) Real-world Matting Datasets with Annotations:
• Real-world Portrait-636 Benchmark (RWP-636) [25] :

It consists of 636 diverse and high-resolution images

with matting annotations, coarse foreground segmentation

masks, and labeled detail masks covering the hair region

and other soft tissues.

• Privacy-Preserving Portrait Matting Benchmark (P3M-

10k) [23]: It contains 10,000 anonymized high-resolution

portrait images with face obfuscation and corresponding

annotated alpha mattes. There are 9,421 images for

training and 500 images for testing, denoted as P3M-

500-P. Besides, there are another 500 public celebrity

images with alpha matte annotations but without face

obfuscation, denoted as P3M-500-NP, to evaluate the per-

formance of matting models under the privacy-preserving

training (PPT) setting (training on blurred images but

testing on blurred/non-blurred images).

• Automatic Image Matting-500 Benchmark (AIM-

500) [22]: It is a high-resolution natural image matting

test set, including 424 salient opaque (SO), 43 salient

transparent/meticulous (STM), and 33 non-salient

(NS) images. To evaluate on it, the training set is

the combination of DUTS [70] and the synthetic data

by compositing foregrounds of AIM, Distinction-646,

and AM-2k [24] with the high-resolution BG-20k [24]

background dataset. We follow the same process as Li

et al. [22] to generate the synthetic data.

B. Implementation Details

1) TGN: In training, we randomly generate coarse fore-

ground segmentation input. Its generation process is as fol-

lows: (1) A random trimap is first produced by erosion/dilation

on alpha matte with a random kernel size within [1, 29]; (2)

The unknown and foreground areas of the random trimap is

considered as the foreground of the random initial segmen-
tation; (3) A random coarse segmentation is generated by

erosion/dilation on the random initial segmentation with a

random kernel size within [1, 59] and followed by a random

Gaussian Blur. Further, to obtain synthesized ground-truth
trimap, we apply erosion/dilation on alpha matte with 15×15
kernel size. Please refer to the supplementary material for

more details. Finally, image patches are randomly cropped

from input images and then resized to 512×512. We train

TGN for 129,300 iterations with 10 batch size. The learning

rate is initialized to 0.001 and adjusted in every iteration. In

testing, the coarse segmentation input is generated by erosion

on initial segmentation derived from synthesized ground-truth
trimap with 20 × 20 kernel size and followed by a Gaussian

Blur.1 In inference, we use original RGB images as network

input.

2) SPAMattNet: We follow the similar data processing and

augmentation procedure as GCA Matting [11]. SPAMattNet is

trained for 200,000 iterations with 40 batch size and Lα, where

1Salient/segmentation models may not be suitable for coarse segmentation
generation here, because (1) categories of foreground objects of synthetic
matting datasets may not match segmentation datasets; (2) background objects
may have the same category as foreground and can also be salient.

TABLE I
THE QUANTITATIVE COMPARISON OF TGN WITH ADAPTED DEEPLABV3
AND DEEPLABV2 ON ADOBE IMAGE MATTING AND DISTINCTIONS-646

BENCHMARKS.

AIM

Methods pixAcc mIoU-Bg mIoU-Unk mIoU-Fg mIoU

Deeplabv2 [71] 93.58 89.81 76.25 63.09 76.38

Deeplabv3 [58] 95.83 91.59 80.25 70.66 80.83

TGN 96.41 93.53 82.78 70.64 82.32
Distinctions-646

Methods pixAcc mIoU-Bg mIoU-Unk mIoU-Fg mIoU

Deeplabv2 [71] 92.58 94.40 72.97 53.82 73.73

Deeplabv3 [58] 95.66 95.11 79.65 65.52 80.09

TGN 95.74 96.54 80.83 66.72 81.36

TABLE II
COMPARISON OF DIFFERENT SEGMENTATION INPUTS FOR TGN ON

ADOBE IMAGE MATTING AND DISTINCTIONS-646 BENCHMARKS.

AIM

Methods pixAcc mIoU-Bg mIoU-Unk mIoU-Fg mIoU

TGN-20 96.41 93.53 82.78 70.64 82.32
TGN-30 96.34 93.26 82.57 70.46 82.10

TGN-40 96.16 92.77 81.74 70.14 81.55

TGN-50 95.90 92.25 80.58 69.49 80.77

Distinctions-646

Methods pixAcc mIoU-Bg mIoU-Unk mIoU-Fg mIoU

TGN-20 95.74 96.54 80.83 66.72 81.36
TGN-30 95.66 96.20 80.22 66.82 81.08

TGN-40 95.57 96.00 79.60 66.94 80.84

TGN-50 95.31 95.68 78.34 66.72 80.25

M is the unknown region of trimap. The Adam optimizer

with β1 = 0.5 and β2 = 0.999 is adopted with the learning

rate initialized as 4 × 10−4 plus warmup and cosine decay

techniques. p is set to 50.

3) Joint Inference (JI): Joint Inference (JI) is the collab-

orative testing of TGN and SPAMattNet with trimap fusion

techniques [1] by adopting TGN trimap as prior for SPA-

MattNet. From Fig. 2, we can see that raw alpha estimation

of SPAMattNet is far away from impressive except unknown

region. To this end, we introduce two trimap fusion methods.

One is probability-based soft fusion, another is region-based

hard fusion. For soft fusion, we use region probabilities

estimated by TGN to reconstruct the final alpha α̃ from the

predicted alpha α̂ [1] as

α̃ = (1− Û)
F̂

F̂ + B̂
+ Û α̂, (13)

Û = 1− (F̂ + B̂), (14)

α̃ = F̂ + Û α̂, (15)

where Û , F̂ , and B̂ are probabilities of each pixel belonging to

unknown/foreground/background regions severally. Soft fusion

bridges TGN and SPAMattNet by enabling differentiability.

For hard fusion, we reset trimap-predicted foreground (resp.

background) to 255 (resp. 0) on the predicted alpha.
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Image Trimap GT IndexNet Matting [9] CAMatting [41] GCA Matting [11] SPAMattNet

Fig. 6. Visual comparison on the Composition-1k test set.

Fig. 7. Our real data adaptation architecture. Given an input image I and
its coarse segmentation S, the generator G is jointly optimized by pseudo

trimap T̃ -guided G′ and the discriminator. α̃ is the pseudo alpha. T̂ , α̂ are
the estimated trimap and alpha.

4) Real Data Adaptation: As shown in Fig. 7, we provide a

real-world adaptation method that can be integrated with var-

ious trimap-based matting approaches to demonstrate trimap-

free application capability of our approach in the real world,

unlike Sengupta et al. [3] focusing on background-required

approaches. Given an input image I and its coarse segmenta-

tion S derived from the official CIHP-pretrained [72] Parsing

R-CNN [26] segmentation, the generator G, including TGN

and SPAMattNet, produces an alpha matte α̂. To optimize

the generator, we leverage a human-finetuned SPAMattNet G′

and a discriminator D to guide G. For the human-finetuned

SPAMattNet G′, given I and a pseudo trimap T̃ , it produces

a pseudo alpha matte α̃. The discriminator D attempts to

distinguish if the input image is a newly composed image

using α̂ or a real-world image. Specifically, the generator G
minimizes

min
θReal

EX,B̄∼pX,B̄

[
(D(α̂I + (1− α̂)B̄)− 1)2

]
+λ
[
Lce(T̃ , T̂ ) + Lα(α̃, α̂)

]
,

(16)

where X = [I, S], θReal is the G parameters initialized by

AIM-pretrained TGN and SPAMattNet, B̄ is a randomly-

selected background image, and λ is 0.5 and reduced by
1
2 every 10,000 iterations during training. Note that Lα is

calculated in the whole image. The discriminator D minimizes

min
θDisc

EX,B̄∼pX,B̄

[
(D(α̂I + (1− α̂)B̄))2

]
+EI∈pdata

[
(D(I)− 1)2

]
,

(17)

TABLE III
TRIMAP-NEEDED EVALUATION ON THE COMPOSITION-1K TEST SET. -

INDICATES NOT GIVEN IN THE ORIGINAL PAPER.

Methods SAD ↓ MSE↓ Grad↓ Conn↓
AlphaGAN [8] 52.40 0.0300 38.00 53.00

Deep Image Matting [7] 50.40 0.0140 30.00 50.80

IndexNet Matting [73] 45.80 0.0130 25.90 43.70

AdaMatting [74] 41.70 0.0100 16.80 -

SampleNet Matting [10] 40.35 0.0099 - -

Context-Aware Matting [41] 35.80 0.0082 17.30 33.20

GCA Matting [11] 35.28 0.0091 16.92 32.53

ATNet [12] 40.50 0.0130 21.50 39.40

HDMatt [14] 33.50 0.0073 14.50 29.90

MGMatting [25] 31.50 0.0068 13.50 27.30

SPAMattNet 27.80 0.0055 11.57 23.63

TABLE IV
THE ABLATION STUDY OF TRIMAP-NEEDED EVALUATION ON THE

COMPOSITION-1K TEST SET. RM MEANS REFINEMENT MODULE.

GPA LSPA CFC RM Lhard SAD ↓ MSE↓ Grad↓ Conn↓
� � 33.17 0.0076 14.90 30.23

� � � � 29.81 0.0066 12.43 26.17

� � � 29.07 0.0059 11.73 25.19

� � � � 30.13 0.0062 12.79 26.68

� � � � 28.43 0.0060 11.29 24.34

� � � � 28.42 0.0059 11.72 24.64

� � � � � 27.80 0.0055 11.57 23.63

where θDisc is the D parameters. The soft fusion aggregates

TGN and SPAMattNet of G into an end-to-end trimap-free

matting framework. The end-to-end training and the interac-

tion between G and D can help G jump out of the local

minimum of G′. During training, the learning rate is initialized

to 10−4 for TGN and 4× 10−5 for SPAMattNet with 6 batch

size, 100,000 iterations. Please refer to the supplementary

material for more details.

5) Real-world Portrait-636 Benchmark (RWP-636): To val-

idate the real-world generalization ability of our SPAMattNet,

we directly evaluate SPAMattNet that is trained on synthetic

matting datasets on RWP-636. Specifically, SPAMattNet, un-

like MGMatting [25], is trained on AIM training set (including
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Image w/ guidance GT Late Fusion [20] MGMatting [25] MODNet [42] JIS JIH

Fig. 8. Visual comparison on the Composition-1k test set in trimap-free setting. The guidance from left to right is Mask used by TGN/MGMatting and TGN
Trimap.

transparent objects) without data augmentation strategies that

bridges the gap between synthetic and real-world data. We

generate pseudo trimaps as Yu et al. [25] do. Then, we resize

images/trimaps to 512 × 512 for inference and then resize

estimated alpha mattes back.

6) Privacy-Preserving Portrait Matting Benchmark (P3M-
10k): For P3M-10k, we leverage a simple training strategy

to validate our pipeline, which can be further improved.

Specifically, we finetune the Supervisely Person Dataset [75]-

pretrained U2Net [27] on the P3M-10k training set for 100

epoches with MSE loss, an initialized learning rate of 0.001,

and 32 batch size, to obtain coarse foreground masks. We

train TGN with coarse foreground masks estimated by the

finetuned U2Net as additional input with 16 batch size for

88,322 iterations. We apply erosion/dilation on alpha mattes

with 30× 30 kernel size to generate ground-truth trimaps for

TGN training. Then, we train SPAMattNet using TGN trimap

as prior by calculating losses in both trimap and whole image

regions with 16 batch size for 300,000 iterations. We use the

same random cropping strategy as Li et al. [23].

7) Automatic Image Matting-500 Benchmark (AIM-
500): For AIM-500, we follow a similar training

procedure/configuration as Section IV-B6 except as noted.

We finetune the DUTS-pretrained [70] U2Net [27] on the

combined training set to obtain coarse foreground masks

and train TGN with estimated coarse foreground masks

as additional input for 120,550 iterations. Then, we train

SPAMattNet for 120,550 iterations. We use the same random

cropping strategy as Li et al. [22].

C. Evaluation

1) Trimap Evaluation: We use pixel classification

accuracy (pixAcc) and mean IoU (mIoU) metrics of

background(Bg)/unknown(Unk)/foreground(Fg)/three-region-

involved to evaluate the performance of trimap estimation.

2) Alpha Matte Evaluation: We follow common evaluation

metrics, including Sum of Absolute Differences (SAD), Mean

TABLE V
TRIMAP-FREE EVALUATION ON COMPOSITION-1K AND

DISTINCTIONS-646 TEST SETS. JIS AND JIH MEAN JOINT INFERENCE (JI)
WITH SOFT AND HARD FUSION RESPECTIVELY.

Composition-1k test set

Methods SAD↓ MSE↓ Grad↓ Conn↓
Late Fusion [20] 58.34 0.0110 41.63 59.74

HAttMatting [21] 44.01 0.0070 29.26 46.41

MGMatting [25] 41.39 0.0040 19.38 36.37

MODNet [42] 290.08 0.1048 137.22 290.41

JIS 40.51 0.0046 17.44 35.88

JIH 37.95 0.0045 16.82 34.76
Distinctions-646 test set

Methods SAD↓ MSE↓ Grad↓ Conn↓
Late Fusion [20] 94.23 0.0271 159.78 62.15

HAttMatting [21] 48.98 0.0090 41.57 49.93

MGMatting [25] 46.53 0.0076 35.68 43.72

MODNet [42] 234.92 0.0970 221.35 232.90

JIS 42.09 0.0082 37.16 39.77

JIH 38.79 0.0082 36.89 38.64

Squared Error (MSE), Mean Absolute Difference (MAD), Gra-

dient error (Grad), and Connectivity error (Conn), to evaluate

alpha mattes.

D. Results

1) TGN: As shown in Table I, we evaluate TGN and

other popular adapted semantic segmentation methods, i.e.,

Deeplabv3 [58] and Deeplabv2 [71], on Adobe Image Matting

and Distinctions-646 benchmarks. The results show that trimap

segmentation accuracy and mIoU metrics of TGN are superior

to other methods. Considering quantitative results in Table I

and visual results presented in Fig. 8 and 9, our trimap

estimation is competent to mentor SPAMattNet.

Ablation Study We conduct an ablation study to investigate

the influence of quality of coarse segmentation on TGN. We
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Image w/ guidance GT Late Fusion [20] MGMatting [25] MODNet [42] JIS JIH

Fig. 9. Visual comparison on Distinctions-646 benchmark in trimap-free setting.

TABLE VI
THE ABLATION STUDY OF TRIMAP-FREE EVALUATION ON

COMPOSITION-1K AND DISTINCTIONS-646 TEST SETS.

Composition-1k test set

Methods SAD↓ MSE↓ Grad↓ Conn↓
JIS w/o RM 43.91 0.0047 17.98 37.67

JIH w/o RM 38.36 0.0045 16.96 35.12

JIS 40.51 0.0046 17.44 35.88

JIH 37.95 0.0045 16.82 34.76
Distinctions-646 test set

Methods SAD↓ MSE↓ Grad↓ Conn↓
JIS w/o RM 45.61 0.0082 35.89 41.24

JIH w/o RM 39.68 0.0084 37.35 39.18

JIS 42.09 0.0082 37.16 39.77

JIH 38.79 0.0082 36.89 38.64

evaluate TGN with initial segmentation eroded with 20× 20,

30 × 30, 40 × 40, and 50 × 50 kernel sizes and followed

by a Gaussian Blur (denoted as “network-X”, e.g., TGN-20,

JIS-20, JIH-20, etc.). We assume that it can simulate flawed

applied circumstances. The results are shown in Table II. The

accuracy is all above 90% and the mean IoU of unknown

region is fluctuating around 0.80, which implies that TGN is

anti-jamming towards imperfect foreground segmentation and

capable of offering correct trimap estimation.

2) SPAMattNet: We evaluate SPAMattNet in trimap-needed

setting on Adobe Image Matting and alphamatting.com bench-

marks.

Adobe Image Matting Benchmark (AIM) In Table III,

we compare our approach with AlphaGAN [8], Deep Image

Matting (DIM) [7], IndexNet Matting [9], AdaMatting [74],

SampleNet Matting (SNMatting) [10], Context-Aware Matting

(CAMatting) [41], GCA Matting [11], ATNet [12], HD-

Matt [14], and MGMatting [25]. With trimap provided, SPA-

MattNet exhibits dominating performance on all four metrics

compared with other methods. In Fig. 6, we represent quali-

tative comparison between our approaches and other state-of-

the-art methods. Our approach is capable of obtaining more

fine-grained details of transparent objects than others do.

AlphaMatting.com Benchmark In Table VII, our SPAMat-

tNet is comparable with other state-of-the-art methods on the

alphamatting.com benchmark at the time of submission. The

Fig. 10 represents the visual comparison between our approach

and other methods on alphamatting.com benchmark.

Attention Visualization In Fig. 11, given an image query

patch, we visualize affinity maps of GPA and LSPA as well as

their reconstructed alpha features. The brighter the color is, the

larger affinity value the pixel holds and more significant the

pixel is. It is obvious that GPA can not only accurately select

color-relevant pixels but also capture long-distance pixel-to-

pixel relationships. From two visualized alpha features, we

can see that LSPA concentrates on local detailed texture

information while GPA emphasizes on more global high-level

semantic information.

Ablation Study In Table IV, we present the ablation study for

SPAMattNet. We can see that SPAMattNet achieves the best

performance in SAD, MSE, and Conn metrics, compared to

SPAMattNet without attention/CFC/RM/Lhard, which demon-

strates the effectiveness of each part of our system. Note that,

with LSPA being removed, CFC will also be removed because

2D CFC is to fuse features from LSPA and GPA. It is noted

that CFC can produce better feature representation for learning

than simply adding/concatenating. The results show that our

SPA module is a strong performance augmenter and the vanilla

U-Net architecture without SPA becomes moderate for matting

task.

Stronger Decoder and Loss Functions To further demon-

strate the effectiveness of SPA module, we replace SPA-

MattNet decoder by MGMatting decoder with its corre-

sponding l1 regression loss, composition loss [7], Laplacian

loss [41], learning rate, and batch size, but without ASPP

and RM (denoted as SPAMattNet�). In Table IX, we compare

the performance, number of parameters, and FLOPs of our

SPAMattNet� to MGMatting. Input image size is 512×512 to
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Image Trimap (S) AdaMatting [74] SNMatting [10] GCA Matting [11] HDMatt [14] TransMatting [76] Ours

Fig. 10. Visual results on alphamatting.com benchmark.

TABLE VII
SAD RESULTS ON ALPHAMATTING.COM BENCHMARK, WHERE S, L, U REPRESENT THE TRIMAP TYPE OF SMALL, LARGE AND USER.

SAD↓ Overall Troll Doll Donkey Elephant Plant Pineapple Plastic bag Net

rank S L U S L U S L U S L U S L U S L U S L U S L U

AdaMatting [74] 15 10.2 11.1 10.8 4.9 5.4 6.6 3.6 3.4 3.4 0.9 0.9 1.8 4.7 6.8 9.3 2.2 2.6 3.3 19.2 19.8 18.7 17.8 19.1 18.6
SampleNet Matting [10] 15.8 9.1 9.7 9.8 4.3 4.8 5.1 3.4 3.7 3.2 0.9 1.1 2.0 5.1 6.8 9.7 2.5 4.0 3.7 18.6 19.3 19.1 20.0 21.6 23.2

GCA Matting [11] 17.3 8.8 9.5 11.1 4.9 4.8 5.8 3.4 3.7 3.2 1.1 1.2 1.3 5.7 6.9 7.6 2.8 3.1 4.5 18.3 19.2 18.5 20.8 21.7 24.7

HDMatt [14] 12.7 9.5 10.0 10.7 4.7 4.8 5.8 2.9 3.0 2.6 1.1 1.2 1.3 5.2 5.9 6.7 2.4 2.6 3.1 17.3 17.3 17.0 21.5 22.4 23.2

TransMatting [76] 14.3 7.5 8.6 7.8 4.9 5.0 5.5 3.4 3.5 3.2 1.8 1.8 2.2 5.7 6.3 8.4 2.6 2.7 3.0 17.6 18.0 18.9 18.3 18.3 21.5

Ours 10.1 9.0 10.6 9.6 4.5 4.4 5.4 2.6 2.7 2.8 0.9 0.9 1.8 5.2 6.1 9.6 2.0 2.3 3.4 15.1 15.2 15.2 19.6 19.7 24.5

TABLE VIII
COMPARISON OF DIFFERENT SEGMENTATION INPUTS FOR JI ON COMPOSITION-1K AND DISTINCTIONS-646 TEST SETS.

Composition-1k test set Distinctions-646 test set

Methods SAD↓ MSE↓ Grad↓ Conn↓ Methods SAD↓ MSE↓ Grad↓ Conn↓
JIS-20 40.51 0.0046 17.44 35.88 JIS-20 42.09 0.0082 37.16 39.77

JIS-30 40.75 0.0046 17.51 36.06 JIS-30 42.08 0.0081 37.15 39.73

JIS-40 41.15 0.0047 17.71 36.39 JIS-40 42.63 0.0081 38.20 40.16

JIS-50 42.07 0.0050 18.22 37.27 JIS-50 44.21 0.0086 39.75 41.66

JIH-20 37.95 0.0045 16.82 34.76 JIH-20 38.79 0.0082 36.89 38.64

JIH-30 38.09 0.0046 16.86 34.91 JIH-30 38.61 0.0081 36.46 38.49
JIH-40 38.28 0.0047 16.97 35.09 JIH-40 38.89 0.0081 37.26 38.75

JIH-50 39.01 0.0049 17.46 35.81 JIH-50 40.25 0.0086 39.09 40.13

TABLE IX
STRONGER DECODER AND LOSS FUNCTIONS. � DENOTES REPLACING THE

DECODER OF SPAMATTNET WITH MGMATTING DECODER BUT WITHOUT

ASPP AND RM.

Methods SAD↓ MSE↓ Grad↓ Conn↓ Params FLOPs

MGMatting [25] 31.50 0.0068 13.50 27.30 29.7M 45.7G

SPAMattNet� 28.58 0.0053 10.60 24.80 26.0M 49.8G

calculate FLOPs. SAD, MSE, Grad, and Conn are calculated

on the Composition-1k test set in trimap-needed setting. Note

that, except SPA, SPAMattNet� and MGMatting share the

same U-Net backbone and SPAMattNet� does not use ASPP

unlike MGMatting. Our SPAMattNet�, with a bit increase

of FLOPs, has fewer parameters than MGMatting but shows

better performance. Therefore, Table IX suggests that our SPA

module is affordable and effectively works on convolution-

based backbones.

3) Joint Inference (JI): We evaluate JI in trimap-free set-

ting on AIM and Distinctions-646 benchmarks with coarse

segmentation as additional input. For the generation of coarse

segmentation, please refer to Section IV-B1. JIS and JIH mean

JI with soft and hard fusion respectively.

Adobe Image Matting Benchmark (AIM) In Table V, we

compare our JI with MGMatting [25] and trimap-free Late

Fusion [20], HAttMatting [21], and MODNet [42] on AIM

benchmark. For MGMatting and JI, we use the same coarse

segmentation as additional input. The results reveal much more

improvement of JI on SAD, Grad, and Conn metrics. As

shown in Fig. 8, our approaches are robust to images with
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Fig. 11. The attention visualization. Given query patch marked by red box, from left to right, image, trimap, affinity map of GPA, alpha feature of GPA,
affinity map of LSPA propagation branch, affinity map of LSPA sampling branch, and alpha feature of LSPA.

Fig. 12. Visual comparison on real-world human data between CAM and
Ours. From left to right, image w/ guidance, CAM, and Ours. The guidance
from top to bottom is Mask used by TGN and TGN Trimap.

complicated backgrounds compared to other state-of-the-art

methods.

Distinctions-646 Benchmark Similar to AIM benchmark, in

Table V, we compares our approach with MGMatting [25] and

trimap-free Late Fusion [20], HAttMatting [21], and MOD-

Net [42]. Our JI approach exceeds Late Fusion, HAttMatting,

and MODNet in all four metrics by a solid margin, especially

in SAD and Conn metrics, and outperforms MGMatting in

SAD, Grad, and Conn metrics. Note that MSE calculated

in the whole image sometimes cannot reflect true matting

performance. As shown in Fig. 9, our approach can handle

both solid and transparent objects well. Further, let us consider

a scenario where there is an image whose potential target

foreground objects are non-salient or occluded with other

equally-conspicuous objects in variegated backgrounds. Under

this situation, with an RGB image as input, common trimap-

free matting approaches [20], [21], [25] would struggle which

object should be extracted or be adversely affected by inaccu-

rate prior input. However, our JI strategy smartly decomposes

matting into two stages and circumvents these limitations.

Ablation Study As shown in Table VI, we investigate the

functionality of our Refinement Module in JIS and JIH on

Composition-1k and Distinctions-646 test sets. The results

show that RM can effectively improve SAD and Conn metrics.

Besides, to research how robust our trimap-free JI pipeline to

different segmentation inputs, we generate segmentation input

by erosion on initial segmentation with 20 × 20, 30 × 30,

40× 40, and 50× 50 kernel sizes and followed by a Gaussian

Blur. The corresponding evaluation results are illustrated in

TABLE X
RESULTS ON REAL-WORLD PORTRAIT-636 BENCHMARK BY TRAINING

ON AIM TRAINING SET IN TRIMAP-FREE SETTING.

Methods
Whole Image Details

SAD↓ MSE↓ SAD↓ MSE↓
Deep Image Matting [7] 28.5 0.0117 19.1 0.0746
GCA Matting [11] 29.2 0.0127 19.7 0.0823
IndexNet Matting [9] 28.5 0.0115 18.8 0.0727
Context-Aware Matting [41] 27.4 0.0107 18.2 0.0662
Late Fusion [20] 78.6 0.0398 24.2 0.0883
MGMatting [25] 47.9 0.0174 20.0 0.0716

MGMatting� [25] 26.8 0.0093 17.4 0.0551

SPAMattNet 27.0 0.0107 17.6 0.0654
SPAMattNet� 26.9 0.0105 17.3 0.0632

Table VIII. It is noted that the deviation of each metric is

quite slight. Most metrics in their worst performance still set

the state-of-the-art record, which reveals that our network can

still remain robust when coarse segmentation is in an ill-posed

condition.

Real Data Adaptation For comparison, we composite matting

results to black background and compare our approach with

Context-Aware Matting. For Context-Aware Matting, we use

I and its corresponding T̃ as input. Then, we conduct user

study for evaluation. Each user was presented with one web

page, showing 100 pairs of input image, ours, and CAM

with random order of the last two. The participants are

asked to rate the left composite relative to the right on

three scales, i.e., better, similar, and worse. We survey more

than 10 users and our method achieves 66.3% better, 29.7%

similar but only 4.0% worse than CAM. The user study

results indicate the competitive performance of our trimap-free

pipeline compared to modest trimap-needed matting on real-

world human images with diverse backgrounds. The Fig. 12

shows visual comparison. This experiment validates that our

approach can be adapted into different domains of coarse

segmentation; hence, we are confident of practical application

of our pipeline. It is noted that our TGN can, to some extent,

correct inaccurate coarse segmentation and our pipeline can

be further improved by using stronger segmentation models

or finetuning segmentation models on target domain for better

coarse segmentation generation.
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Image Pseudo Trimap Mask used by MGMatting GT Late Fusion [20] GCA Matting [11] MGMatting [25] Ours

Fig. 13. Visual comparison on real-world portrait-636 benchmark.

Image w/ guidance GT Late Fusion [20] HAttMatting [21] SHM [1] GFM [24] P3M-Net [23] Ours

Fig. 14. Visual comparison on P3M-500-P and P3M-500-NP. The guidance from left/top to right/bottom is Mask used by TGN and TGN Trimap. Please
zoom in for details.

TABLE XI
RESULTS ON P3M-500-P AND P3M-500-NP DATASETS IN TRIMAP-FREE SETTING.

Methods
P3M-500-P P3M-500-NP

SAD↓ MSE↓ MAD↓ SAD-T↓ MSE-T↓ MAD-T↓ SAD↓ MSE↓ MAD↓ SAD-T↓ MSE-T↓ MAD-T↓
Late Fusion [20] 42.95 0.0191 0.0250 12.43 0.0421 0.0824 32.59 0.0131 0.0188 14.53 0.0420 0.0825
HAttMatting [21] 25.99 0.0054 0.0152 11.03 0.0377 0.0752 30.53 0.0072 0.0176 13.48 0.0403 0.0803
SHM [1] 21.56 0.0100 0.0125 9.14 0.0255 0.0545 20.77 0.0093 0.0122 9.14 0.0255 0.0545
GFM [24] 13.20 0.0050 0.0080 8.84 0.0269 0.0616 15.50 0.0056 0.0091 10.16 0.0268 0.0620
P3M-Net [23] 8.73 0.0026 0.0051 6.89 0.0193 0.0478 11.23 0.0035 0.0065 7.65 0.0173 0.0466

Ours 8.42 0.0029 0.0049 6.09 0.0183 0.0414 10.15 0.0035 0.0059 6.75 0.0172 0.0407
Ours� 8.43 0.0028 0.0049 6.20 0.0183 0.0424 10.03 0.0033 0.0058 6.86 0.0166 0.0409

TABLE XII
RESULTS ON AIM-500 BENCHMARK IN TRIMAP-FREE SETTING. RESULTS

WITH ∗ ARE FROM [22].

Methods SAD↓ SAD-T↓ SAD-SO↓ SAD-STM↓ SAD-NS↓ SAD-Avg↓
Late Fusion∗ [20] 191.74 78.13 177.98 220.22 331.34 243.18
HAttMatting∗ [21] 479.17 114.23 509.75 338.11 270.07 372.64
SHM∗ [1] 170.44 69.41 154.56 204.67 329.9 229.71
SHM [1] 155.60 50.34 146.97 183.15 230.63 186.92
BSHM [2] 75.47 39.21 62.99 145.07 145.09 117.72
MGMatting [25] 60.67 30.26 49.82 101.44 146.94 99.40
GFM∗ [24] 52.66 37.43 35.45 123.15 181.90 113.50
AIM-Net∗ [22] 43.92 30.74 31.80 94.02 134.31 86.71

Ours 41.04 28.18 28.80 85.53 140.28 84.87
Ours� 40.97 28.04 28.98 84.68 137.98 83.88

Real-World Portrait-636 Benchmark (RWP-636) We com-

pare our method2 with trimap-needed Deep Image Matting [7],

GCA Matting [11], IndexNet Matting [9], and Context-Aware

Matting [41], trimap-free Late Fusion [20], and MGMat-

2Our method with � means using SPAMattNet�. Please refer to Section
IV-D2 for � meaning.

ting [25]. We use pseudo trimaps as extra inputs for trimap-

needed methods and our method, and foreground masks for

MGMatting. We present results in Table X under two settings,

Whole Image and Details. The results of compared methods

are obtained through official pretrained models/inference de-

mos. Most of them are trained on AIM training set (including

transparent objects). However, Late Fusion is trained on AIM

training set and an additional portrait dataset; MGMatting� is

trained on the subset of AIM training set without transparent

objects by applying re-JEPGing, gaussian blur, and gaussian

noises to bridge the gap between synthetic and real-world im-

ages. It is noted that our method has a superior generalization

ability in comparison with other methods and is on par with

and sometimes even a bit better than MGMatting� in SAD of

Details. We also show visual results in Fig. 13.

Privacy-Preserving Portrait Matting Benchmark (P3M-
10k) In Table XI, we compare our method2 with Late Fu-

sion [20], HAttMatting [21], SHM [1], GFM [24], and P3M-

Net [23] on P3M-500-P and P3M-500-NP under the PPT
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Image GT SHM [1] BSHM [2] MGMatting [25] Late Fusion [20] AIM-Net [22] Ours

Fig. 15. Visual comparison on AIM-500 benchmark. From top to bottom, SO, STM, NS, and NS types. The guidance input (if has) is located at the
bottom-right of each image, where the guidance of Ours from left/top to right/bottom is Mask used by TGN and TGN Trimap. Please zoom in for more
details.

Image w/ guidance GT Ours

Fig. 16. A failure case of our method on NS type of AIM-500 benchmark.

setting. The results show that our method is competitive with

other state-of-the-art trimap-free matting methods. Although

our MSE on P3M-500-P is a bit deficient compared to P3M-

Net, which is not a perfect metric for trimap-free matting,

but all other metrics of ours are better than P3M-Net (SAD

from 8.73 to 8.42/8.43 and SAD-T from 6.89 to 6.09/6.20).

Our results on P3M-500-NP shows that our method has better

generalization ability than compared methods (SAD from

11.23 to 10.15/10.03 and SAD-T from 7.65 to 6.75/6.86

compared to P3M-Net). Further, despite following the same

sequential nature as SHM, our method performs much better

than SHM. As shown in Fig. 14, our method can produce much

sharper and clearer matting results in transition region. Inter-

estingly, from Ours vs. Ours�, SPAMattNet� that shows much

better improvement on synthetic data does not demonstrate

equivalent improvement when training on real-world images.

This phenomenon is also validated by trimap-based P3M-10k

benchmark [23].

Automatic Image Matting Benchmark (AIM-500) In Ta-

ble XII, we conduct quantitative comparison with SHM [1],

Late Fusion [20], BSHM [2], HAttMatting [21], MGMat-

ting [25], GFM [24], and AIM-Net [22]. We reimplement

closed-source SHM and BSHM according to papers. The

results show that our method2 has superior performance in

SAD of whole image/transition region and average SAD of

three types on AIM-500 benchmark. As shown in Fig. 15,

we present visual comparison where visual results of com-

pared methods are obtained through official pretrained mod-

els/inference demos/our reimplementations. Our method can

not only produce better “trimap” guidance than SHM/BSHM

but also correct flaws of coarse masks to better capture

target object shape unlike MGMatting, which leads to superior

matting results compared to other methods. The reason why

our SAD-NS is a bit inferior than AIM-Net is that there are

several failure cases of our method whose distribution is the

minority of the combined training set. We show one failure

case in Fig. 16.

V. LIMITATIONS AND CONCLUSION

Our main limitations can be summarized as follows: (1)

a multi-stage systematic trimap-free matting approach usu-

ally hinders the real-time matting application; (2) with the

progress of attention mechanism and transformer in mat-

ting task, it would be beneficial to further tackle atten-

tion efficiency issue in matting; (3) since our SPA module

involves traditional sampling-based matting computation of

foreground/background pixel pairs, we look forward to a more

efficient deep learning representation of this in future.
In summary, we propose a novel two-stage trimap-free

image matting framework. With an RGB image and its coarse

foreground segmentation as input, our framework can estimate

high-quality trimaps, leading to high-quality alpha mattes.

Benefiting from semantic information provided by coarse fore-

ground segmentation, our approach employs Trimap Genera-

tion Network (TGN) to roughly locate target objects and define

transition regions. Then, our Sampling Propagation Attention

Matting Network (SPAMattNet) focuses on transition regions

under TGN trimap guidance. And our matting framework can

be easily integrated with other semantic segmentation/salient

object detection/matting methods to boost trimap-free matting

in the real world. Comprehensive experiments indicate that

our approach is comparable with or better than other state-of-

the-art methods in either trimap-needed or trimap-free settings

on several popular matting benchmarks, including Adobe Im-

age Matting, alphamatting.com, Distinctions-646, Real-World

Portrait-636, P3M-10k, and AIM-500 benchmarks.
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