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Asymptotically Efficient Estimator for Range-based
Robot Relative Localization

Yue Wang, Muhan Lin, Xinyi Xie, Yuan Gao, Fuqin Deng, and Tin Lun Lam†

Abstract—This study investigates the 2D relative localization
problem, which estimates the relative orientation and position
between two moving robots using inter-robot range measurements.
We propose a novel formulation and a robust weighted semidefinite
relaxation solution for the relative localization problem in the
presence of range measurement error and robot state transition
error. Theoretical analysis and simulations show that the weighted
semidefinite relaxation solution achieves CRLB performance when
the measurement noise and the odometry uncertainty follow
Gaussian distributions with moderate noise power. Demonstrations
using data from a laboratory environment validate the promising
and robust performance of the weighted semidefinite relaxation
method. The root-mean-square errors in estimating the orientation
and position are 3.97o and 0.22 meters with affordable hardware.

I. INTRODUCTION

Determining the pose of an agent is one of the fundamental
tasks of a robotic system [1], [2]. Robotic systems relying on
a global positioning system [3] are not suitable for the indoor
environment. The absolute pose of a robot with respect to
the global frame is inaccessible without external information
[4], [5], [6], which restricts a robotic system’s application
and operation range. Robot relative localization determines
the robot’s relative pose [7], which refers to the position and
orientation of a robot seen from the viewpoint of a reference
robot, using local measurements.

In recent years, the study of robot relative localization
has gotten more attention because it is crucial for target
interception/surrounding [8], robot swarming [9], and micro
aerial vehicles system [10], [11]. Camera, lidar, and RGB-
D scanner are several sensor options for robot localization
and navigation. However, many reconfigurable modular robots
are self-assemblable and small, such as FreeBot [12] and
magnetically controlled modular cubes [13]. The view of
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Fig. 1. Scenario of robot relative localization. The gray triangles and white
triangles represent the trajectories of Robot 1 and Robot 2. The squares indicate
the UWB modules. We aim to determine the orientation and the position of
Robot 2 under Robot 1’s frame at the initial moment, i.e., θ0 and p0.

the visual sensor could be limited because of flipping or
blocking. Tagging information indicates to which robots the
measurements refer (data association problem). The untagged
data can be identified using the unsupervised clustering method
[14], [15] or treated as the input of a mutual localization
problem with anonymous measurements [16], [17]. The range
measurements collected by ultra-wideband (UWB) modules
are fully registered, thus avoiding the data association problem.
Moreover, the UWB-based method is desirable because of its
low cost, low power consumption, high accuracy, and ability to
operate in a non-line-of-sight environment [18]. In addition to
the UWB module, our approach assumes that the mobile robots
are equipped with inertial measurement units (IMUs) or two-
wheel differential-type odometers to measure the translation
and rotation of the mobile robot with respect to its body
frame. The lightweight and affordability of the UWB module
and the odometer enable the deployment of a group of small,
inexpensive robots in a GPS-denied environment.

Sensor network-based rigid body localization (RBL) is
closely related to robot relative localization problems. For
RBL, anchors are placed at known global positions around a
rigid body. Range or bearing measurements between sensors
mounted on the rigid body and known anchors are exploited
to instantaneously estimate the global pose of a rigid body
[19], [20]. However, the average noise magnitude of range
measurements obtained by UWB modules is about 0.1 meters,
which is in the same order of magnitude as the size of many
modular robots. Determining the robot’s relative pose instanta-
neously using the measurements collected in a single frame has
a high chance of failure because of the sensor array aperture
limitation of small robots. Alternatively, using odometry and
range measurements from different time instances instead of
placing multiple sensors on a robot saves the implementation
cost and significantly expands the array aperture.
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Many relative localization approaches are only interested
in the relative position of the robots. Mourikis et al. [21]
investigate the maximum expected positioning uncertainty of
heterogeneous robotic teams as a function of the parameters
such as 1) the size of the robot group; 2) the accuracy of
the sensors; and 3) the topology of the RPMG, i.e., the
weighted directed graph representing the network of robot-
to-robot exteroceptive measurements. Güler et al. [22] propose
an onboard robot relative localization framework to determine
tag robots’ position and heading using the mixture Monte
Carlo localization estimator. The base robot in [22] is mounted
with three UWB modules, which may exceed the size and
power limitations of the mobile robot. [23]. Shalaby et al. [23]
design a multi-agent system containing two-tag agents. 3D
relative positions for any number of agents are attainable with
at least two two-tag agents. Agents in [23] equip with the
attitude and heading reference system (AHRS) consisting of an
accelerometer, a gyroscope, and a magnetometer to measure the
global orientation information in the North-East-Down (NED)
coordinate. On the other hand, an IMU only measures the
local orientation information with respect to its body frame.
However, the AHRS requires careful calibration [24], and the
accuracy of the magnetometer is affected by electromagnetic
interference.

If the trajectory of the target in the frame of the ref-
erence robot is available, the general Procrustes analysis
aligns the target trajectory in its own frame with the target
trajectory in the reference frame and solves the coordinate
transformation between the target frame and the reference
frame. Determining the target trajectory can be viewed as a
Euclidean distance matrix (EDM) completion problem [25].
The diagonal block and the diagonal elements of the off-
diagonal block of the EDM are known. Pocholska et al. [26]
reconstruct polynomial/bandlimited target trajectories based on
the odometry information of the reference robot and inter-robot
range measurements.

Several existing studies are designed to determine the relative
pose between two robots at the initial moment, which is
the same task as this study. Zhou et al. [27] propose an
algebraic 2D robot relative pose estimation method followed
by a weighted least square refinement. Further, Zhou et al.
[27] analyze the condition when the unique solution exists,
as well as the observability based on the Lie derivatives.
In [28], [29], Zhou et al. investigate the problem of 3D
robot relative localization using the minimal number of the
range and bearing measurements. The relative localization
problem comprises 14 minimal systems with multiple solutions.
Outlier rejection schemes such as Random Sample Consensus
(RANSAC) are applied to reject the incorrect solutions and
identify the most proper inlier set. However, the bearing sensors
are typically more expensive than the UWB module, and the
outlier rejection method is computationally intensive when
more measurements are involved. Trawny et al. [30] solve
the first-order optimality conditions of the relative pose and
then retain the stationary point with minimum cost function
value as the global optimum solution. As an extension of [27],
Li et al. [31] proposed a 2D robot relative pose estimation
approach based on convex optimization. An MLE estimator

is developed to improve the localization accuracy and handle
the odometry uncertainties. The algorithm in [31] is sub-
optimal because the range measurement noise at the initial
timestamp is ignored. Trawny et al. [32] develop an algebraic
robot relative localization method using 10 inter-robot range
measurements. The algebraic methods relying on a small
number of measurements are simple and efficient when the
noise is low. However, the noise power of range measurement
obtained by UWB modules exceeds the maximum noise power
they can handle.

Inspired by RBL methods [19], [20], this study estimates
robot relative pose using inter-robot ranges and odometry
instead of a sensor network. Ego-motion is the movement
of an observer, UWB module in our case. And odometry is
an estimation of ego-motion. Previous studies either assume
noiseless odometry [30] or ignore the accumulative property
of robot position error [31]. This study builds a recursive
model of accumulative position errors introduced by state
transition vectors. Variance and bias are two important statistical
indicators of an estimator. An asymptotically efficient estimator
refers to an unbiased estimator with the variance overlapping
with the Cramér–Rao lower bound (CRLB) [33]. Previous
studies on robot relative localization [7], [26] lack theoretical
analysis of estimators’ variance and bias, which leaves the
statistical behavior of the estimators unknown. This study
proposes an asymptotically efficient estimator with theoretical
validation. To summarize, the contribution of this study is
threefold: (i) The CRLB of the robot relative pose is derived.
(ii) A novel formulation for determining the robots’ relative
pose is presented. The odometry uncertainty is modeled
by incorporating the state transition error and integrated
with the measurement noise in a weighting matrix. (iii)
An asymptotically efficient weighted semidefinite relaxation
(WSDR) estimator is derived and theoretically validated. To the
best of the author’s knowledge, WSDR is the first theoretically
validated asymptotically efficient estimator for robot relative
localization.

We shall follow the convention of using bold lowercase
and uppercase letters to denote column vectors and matrices,
respectively. The notation ⋆(i, :) and ⋆(:, j) indicate the ith
row and jth column of ⋆. Subvector ⋆(i : j) contains the
ith to the jth elements of ⋆. The notation ⋆o is the true
value of ⋆ if it contains noise. 1 and I are the unity vector
and the identity matrix. 0 and O are the vector and matrix
with all zeros. vec(⋆) is a column vector by stacking the
columns of ⋆ together. tr(⋆) calculates the trace of matrix ⋆.
blkdiag(⋆, ∗) is the block diagonal matrix with the diagonal
block ⋆ and ∗. angle(⋆) compute the phase angle in the
interval [−π, π] for ⋆. The symbol ⊗ represents the Kronecker
product. R⋆ =

[
cos ⋆ − sin ⋆
sin ⋆ cos ⋆

]
is the 2D rotation matrix of

⋆. R′
⋆ =

[− sin ⋆ − cos ⋆
cos ⋆ − sin ⋆

]
is the derivative of R⋆. ∇∇∇⋆∗ is the

derivative of ⋆ with respect to ∗.

II. LOCALIZATION SCENARIO

This study considers a system consisting of two robots
capable of measuring their ego-motion. Each robot has a UWB
module that measures the range between the robots while
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moving. Without loss of generality, we choose Robot 1 as the
reference robot. Relative localization determines the relative
orientation and position of Robot 2 in the body frame of Robot
1 at the initial moment.

Fig. 1 shows the relative localization scenario. The gray
triangles and the white triangles represent the trajectories of
Robot 1 and Robot 2, respectively. Our goal is to estimate the
position of Robot 2 in the initial body frame of Robot 1. The
state transition vectors representing the pose transformations
between two consecutive moments are measured using IMUs
and wheel encoders. A single UWB module is equipped on
each robot. In Fig. 1, the UWB modules are mounted at the
midpoint of the bottom edge of the triangles. By measuring
the range between the UWB modules on the robots and the
state transition vectors, we can estimate the initial relative
pose. In total, we have M state transition vectors from the
odometers and M + 1 range measurements from the UWB
modules. Ai and Bi are the body frames of Robot 1 and Robot
2 at timestamp i. The pose of Robot 2 in frame Ai is

ui = [θTi ,p
T
i ]

T . (1)

θi and pi are the relative orientation and position of Robot 2
seen from the viewpoint of Robot 1 at the timestamp i. We aim
to obtain the relative pose u0 at the initial timestamp 0. The
subsequent relative pose ui, for i = 1, . . . ,M , are calculated
using the state transition model.

At timestamp i, we denote the pose of Robot 1 and Robot
2 in A0 and B0 as υυυo

i = [αo
i ,a

oT
i ]T and ωωωo

i = [βo
i ,b

oT
i ]T . αo

i

and βo
i represent the orientations of Robot 1 and Robot 2 in A0

and B0. aoi and bo
i are the robot positions in A0 and B0. The

i-th state transition vectors are denoted by υ̇υυo
i = [α̇o

i , ȧ
oT
i ]T

and ω̇ωωo
i = [β̇o

i , ḃ
oT
i ]T . The true poses of Robot 1 and Robot 2

at timestamp i are calculated in a recursive manner by

υυυo
i = υυυo

i−1 +Do
υυυi−1

υ̇υυo
i , (2a)

ωωωo
i = ωωωo

i−1 +Do
ωωωi−1

ω̇ωωo
i , (2b)

where

Do
υυυi−1

= blkdiag(1,Rαo
i−1

), (3a)

Do
ωωωi−1

= blkdiag(1,Rβo
i−1

). (3b)

At timestamp i, the pose of Robot 1 in Ai−1 equals to the state
transition vector υ̇υυo

i . The orientation and position of Robot 2
in Ai−1 are

θAi−1,i = θi−1 + β̇o
i , (4a)

pAi−1,i = Rθi−1
ḃo
i + pi−1. (4b)

The relative pose of Robot 2 in Robot 1’s frame can be updated
using the previous relative pose and the state transition vectors,

θi = −α̇o
i + θi−1 + β̇o

i , (5a)

pi = RT
α̇o

i
Rθi−1

ḃo
i +RT

α̇o
i
pi−1 −RT

α̇o
i
ȧoi (5b)

With an estimate of the initial relative pose, the state transition
model (5a) and (5b) can be applied to calculate the robot’s
relative pose at any moment. However, the relative pose error
accumulates over time because of the noisy odometry infor-
mation. Filtering-based methods are applied to incorporate the

subsequent range measurements and reduce the accumulative
relative pose error.

UWB modules are placed at s0 and t0 in the body frame of
Robot 1 and Robot 2. The positions of UWB modules mounted
on Robot 1 and Robot 2 at timestamp i in their initial body
frame A0 and B0 are given by

soi = Rαo
i
s0 + aoi , (6a)

toi = Rβo
i
t0 + bo

i , (6b)

respectively. The true range between the two UWB modules at
timestamp i is

doi = ∥Rθ0t
o
i + p0 − soi ∥. (7)

The inter-robot range vector of all timestamps is do =
[do0, . . . , d

o
M ]T . In practice, the range measurements d contains

the additive measurement noise nd = [n0, . . . , nM ]T , which
follows Gaussian distribution N (0,Qd) [18].

In addition to the UWB measurements noise, the state
transition vector υ̇υυi and ω̇ωωi contain noise, which are denoted as
∆υ̇υυi and ∆ω̇ωωi, respectively. We assume the state transition errors
between any two timestamps are independent and identically
distributed (IID). ∆υ̇υυi and ∆ω̇ωωi follow Gaussian distribution
N (0,Qυ̇υυ) and N (0,Qω̇ωω) [34]. UWB module position si and
ti contain accumulative odometry error ∆si and ∆ti. Stacking
si and ti in vector form gives s and t. Applying the first-order
Taylor expansion, the covariance matrices of s and t are

Qs =∇∇∇soυυυo∇∇∇υυυo∆υ̇υυ(I⊗Qυ̇υυ)∇∇∇T
υυυo∆υ̇υυ∇∇∇T

soυυυo , (8a)

Qt =∇∇∇toωωωo∇∇∇ωωωo∆ω̇ωω(I⊗Qω̇ωω)∇∇∇T
ωωωo∆ω̇ωω∇∇∇T

toωωωo . (8b)

The robot pose error is introduced by the state transition error
and the robot pose error from the previous moment. Replacing
the true robot poses and the true state transition vectors in (2a)
with the noisy version and neglecting the higher order error
terms yield

υυυi = υυυo
i−1 +Do

υυυi−1
υ̇υυo
i +∇∇∇υυυo

iυυυ
o
i−1

∆υυυi−1 +Do
υυυi−1

∆υ̇υυi, (9)

where ∇∇∇υυυo
iυυυ

o
i−1

=
[

1 0T

R′
αo
i−1

ȧo
i I

]
. ∆υυυi−1 is the odometry error

of the previous step. Substituting υ̇υυo
i = υ̇υυi −∆υ̇υυi into (2a) and

taking derivative of υυυo
i with respect to ∆υ̇υυi yield ∇∇∇υυυo

i∆υ̇υυi =
−Do

υυυi
. The Jacobian matrix of υυυo with respect to ∆υ̇υυ is

∇∇∇υυυo∆υ̇υυ = −

 Do
υυυ0

. . . 0
...

. . .
...

∇∇∇υυυo
M ,υυυo

M−1
. . .∇∇∇υυυo

2,υυυ
o
1
Do

υυυ0
. . . Do

υυυM−1

 .

(10)
According to (6a), the UWB module position only depends on
the current robot pose. Taking the derivative of UWB module
positions with respect to the current robot pose gives

∇∇∇soυυυo = blkdiag(∇∇∇so1υυυ
o
1
, . . . ,∇∇∇soMυυυo

M
), (11)

where ∇∇∇soiυυυ
o
i
= [R′

αo
i
s0, I].

∇∇∇ωωωo∆ω̇ωω and ∇∇∇toωωωo can be computed following the similar
steps in (9)-(11). The derivation of Qt in (8b) is omitted.
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III. ROBOT RELATIVE POSE ESTIMATION

A. Problem Formulation

This section derives a formulation and a WSDR solver for
robot relative pose estimation in the presence of robot position
error and measurement noise. Two moving robots replace
the sensor network in the RBL problem. The UWB modules
mounted on the robots obtain a single range measurement at
each timestamp.

We start with the noise-free inter-robot range and UWB
position. Squaring both sides of (7) gives

do2i − toTi toi − soTi soi+2soTi Rθ0t
o
i + 2soTi p0

− 2toTi RT
θ0p0 − pT

0 p0 = ηηηi.
(12)

ηηηi is the residual, which is equal to zero in the noise-free
case. When UWB measurement noise and odometry error exist,
we replace soi with si, toi with ti, and doi with di. Denote
ΓΓΓ =

[
0 1 −1 0
1 0 0 1

]T
and y0 = [sin θ0, cos θ0]

T , the vectorized
rotation matrix is vec(Rθ0) = ΓΓΓy0. Applying the “vec-trick”
of the Kronecker product to (12), we have

d2i − tTi ti−sTi si + 2(tTi ⊗ sTi )ΓΓΓy0

+ 2sTi p0 − 2tTi R
T
θ0p0 − pT

0 p0 = ηηηi.
(13)

The residual is given by

ηηηi ≈ 2doini + (−2soTi + 2toTi RT
θ0 + 2pT

0 )∆si

+ (−2toTi + 2soTi Rθ0 − 2pT
0 Rθ0)∆ti,

(14)

where the higher-order noise terms are ignored. Stacking (13)
into the matrix form and defining the augmented unknown
parameter vector as v = [yT

0 ,p
T
0 ,p

T
0 Rθ0 ,p

T
0 p0]

T give

h−Gv = Bdnd +Bs∆s+Bt∆t, (15)

where

G(i+ 1, :) =
[
−2(tTi ⊗ sTi )ΓΓΓ −2sTi 2tTi 1

]
, (16)

h(i+ 1, 1) = d2i − tTi ti − sTi si. (17)

Bd is a diagonal matrix with diagonal element Bd(i+ 1, i+
1) = 2doi . The UWB position error ∆s and ∆t affect the
residual through the coefficient matrix

Bs = blkdiag(0, ζζζs1 , . . . , ζζζsM ), (18a)
Bt = blkdiag(0, ζζζt1 , . . . , ζζζtM ). (18b)

From (14), we have ζζζsi = −2soTi + 2toTi RT
θ0

+ 2pT
0 and

ζζζti = −2toTi + 2soTi Rθ0 − 2pT
0 Rθ0 . In practice, we replace

the noiseless variables doi , soi , and toi with measurements from
UWB modules and odometers in Bd, Bs, and Bt since the
higher order noise terms can be neglected. Note that Bs and
Bt contain unknown Rθ0 and p0. We first compute v with
an identity weighting matrix and then substitute the first four
elements back to construct Bs and Bt.

B. Weighted Semidefinite Relaxation

This subsection constructs a quadratically constrained
quadratic programming (QCQP) problem from the formulation
in Section III-A and solves the QCQP problem using the
semidefinite relaxation (SDR) technique. The length of v is

equal to seven, and the degree of freedom is equal to three.
We introduce four constraints and reformulate the relative
localization problem in (15) as

min
v

(Gv − h)TW(Gv − h) (19a)

s.t. v(1)2 + v(2)2 = 1 (19b)
v(1)v(4) + v(2)v(3) = v(5) (19c)
v(2)v(4)− v(1)v(3) = v(6) (19d)

v(3)2 + v(4)2 = v(7) (19e)

The weighting matrix is given by

W = (BdQdBd +BsQsB
T
s +BtQtB

T
t )

−1. (20)

We denote V = vvT and allow the rank of V to be larger
than 1. (19) is rewritten as

min
V,v

GTWGV − hTWGv (21a)

s.t.

[
1 vT

v V

]
⪰ 0 (21b)

1− tr(M1V) = 0 (21c)
v(5)− tr(M2V) = 0 (21d)
v(6)− tr(M3V) = 0 (21e)
v(7)− tr(M4V) = 0 (21f)

The constant term hTWh in (19a) is removed because it does
not affect the value of v. Mk for k = 1, . . . , 4 are 7×7 sparse
matrices with nonzero elements specified as follows:

M1(1, 1) = M1(2, 2) = 1, (22a)
M2(1, 4) = M2(4, 1) = M2(2, 3) = M2(3, 2) = 0.5, (22b)
M3(1, 3) = M3(3, 1) = −0.5, M3(2, 4) = M3(4, 2) = 0.5,

(22c)
M4(3, 3) = M4(4, 4) = 1. (22d)

Optimizing the constrained cost function (21) using the CVX
toolbox in Matlab [36] gives V̂ and v̂. We discard V̂ and
compute the relative pose using v̂. The WSDR solution is

û0 =

[
angle(v̂(2) +

√
−1v̂(1))

v̂(3 : 4)

]
. (23)

We list the steps of WSDR in Algorithm 1 and summarize
workflow of relative robot localization in Fig. 2. WSDR utilizes
range measurements and state transition vectors from multiple
timestamps. And it combines range measurement noise and
state transition errors using a weighting matrix.

In many circumstances, we are interested in the pose of the
most recent moment instead of the initial pose. Fortunately, the
initial pose estimation methods can be adapted to determine
the current pose between two robots after some simple
modifications in Appendix A.

IV. PERFORMANCE ANALYSIS

A. Cramér–Rao Lower Bound

The CRLB is a lower bound on the variance of an unbiased
estimator for a deterministic parameter, indicating the minimum
achievable variance. In this section, we would like to derive the
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Algorithm 1: WSDR
Data: range measurement vector d, state transition

vector υυυi and ωωωi, for i = 1, . . . ,M
Result: initial robot relative pose u0

1 Compute Qs and Qt using (8);
2 Compute G and h using (16) and (17);
3 Compute Mi for i = 1, . . . , 4 using (22);
4 Initialize W = I;
5 Solve v by optimizing (21);
6 Substitute v into (18) to compute Bs and Bt;
7 Update W using (20);
8 Solve v̂ by optimizing (21) with updated W;
9 Compute u0 using (23)

�̇� �̇�

𝐬 𝐭

𝐝

𝟎 𝟎

Fig. 2. Flowchart of robot relative localization.

CRLB of the initial relative pose u0 when the measurement
noise and the robot pose transition error exist. We start the
derivation with the logarithm of the joint probability density
function.

lnp = k − 1

2
(d− do)TQ−1

d (d− do)

− 1

2
∆υ̇υυT (I⊗Qυ̇υυ)

−1∆υ̇υυ − 1

2
∆ω̇ωωT (I⊗Qω̇ωω)

−1∆ω̇ωω.
(24)

Denote ∆φ̇φφ = [∆υ̇υυT ,∆ω̇ωωT ]T and Q̄φ̇φφ = blkdiag(I⊗Qυ̇υυ, I⊗
Qω̇ωω). The Fisher information matrix (FIM) of the unknown
parameter vector γγγ = [uT

0 ,∆φ̇φφT ]T is

FIM(γγγ) =

[
∇∇∇T

dou0
Q−1

d ∇∇∇dou0 ∇∇∇T
dou0

Q−1
d ∇∇∇do∆φ̇φφ

∇∇∇T
do∆φ̇φφQ

−1
d ∇∇∇dou0 ∇∇∇T

do∆φ̇φφQ
−1
d ∇∇∇do∆φ̇φφ + Q̄−1

φ̇φφ

]
,

(25)
Taking the derivative of do with respect to u0 give ∇∇∇dou0

=
[∇∇∇T

do
0u0

, . . . ,∇∇∇T
do
Mu0

]T , where

∇∇∇do
iu0

= ρρρoTi
[
R′

θ0
toi I

]
, (26a)

ρρρoi =
Rθ0t

o
i + p0 − soi

∥Rθ0t
o
i + p0 − soi ∥

. (26b)

The first-order derivative of d with respect to the odom-
etry uncertainties is ∇∇∇do∆φ̇φφ = [∇∇∇do∆υ̇υυ,∇∇∇do∆ω̇ωω]. The lower
triangular matrix ∇∇∇do∆υ̇υυ is given by

∇∇∇do∆υ̇υυ =


0T . . . 0T

∇∇∇do
1∆υ̇υυ1

. . .
...

...
. . . 0T

∇∇∇do
M∆υ̇υυ1

. . . ∇∇∇do
M∆υ̇υυM

 . (27)

∇∇∇do
i∆υ̇υυj

is calculated recursively by

∇∇∇do
i∆υ̇υυj

= −∇∇∇do
iυυυ

o
i
∇∇∇υυυo

iυυυ
o
i−1

. . .∇∇∇υυυo
jυυυ

o
j−1

Do
υυυj−1

, i ≥ j,
(28)

where ∇∇∇do
iυυυ

o
i
= −ρρρoTi [R′

αo
i
s0, I]. Do

υυυi−1
is given by (3a), and

∇∇∇υυυo
iυυυ

o
i−1

is defined below equation (9), respectively.
Note that ∇∇∇do

iωωω
o
i

= ρρρoTi [Rθ0R
′
βo
i
t0, Rθ0 ]. ∇∇∇do∆ω̇ωω is

computed following the similar steps as ∇∇∇do∆υ̇υυ .
The CRLB of the relative pose is equal to the top-left 3× 3

block of the inverse FIM. Applying the block matrix inversion
formula, we have

CRLB(u0)
−1 =∇∇∇T

dou0
Q−1

d ∇∇∇dou0
−∇∇∇T

dou0
Q−1

d ∇∇∇do∆φ̇φφ

× (∇∇∇T
do∆φ̇φφQ

−1
d ∇∇∇do∆φ̇φφ + Q̄−1

φ̇φφ )−1∇∇∇T
do∆φ̇φφQ

−1
d ∇∇∇dou0 . (29)

B. Theoretical Covariance: WSDR

In this subsection, we will demonstrate û0 in (23) achieves
the CRLB performance in (29).

By defining B = [Bd,Bs,Bt]
T and n = [nT

d ,∆sT ,∆tT ]T ,
and replacing v with vo +∆v̂, (19) becomes

min
∆v̂

(G∆v̂ +Bn)TW(G∆v̂ +Bn) (30a)

s.t. KT∆v̂ = 0, (30b)

where

K =∇∇∇T
fovo , (31)

=


2 sin θ0 2 cos θ0 0 0
p0(2) p0(1) cos θ0 sin θ0
−p0(1) p0(2) − sin θ0 cos θ0

0 0 2p0(1) 2p0(2)

0

−I


T

.

From (30b), ∆∆∆v̂ lies in the null space of K. We have

∆∆∆v̂ = Mq, (32)

where M is a matrix whose columns form an orthogonal basis
of the null space of K, and q is a vector of independent
variables. From (23), we have

∇∇∇vu0
=

[
cos θ0 − sin θ0 0 0 c1 c2 0
0 0 1 0 cos θ0 − sin θ0 2p0(1)
0 0 0 1 sin θ0 cos θ0 2p0(2)

]T

(33)
where c1 = −p0(1) sin θ0 + p0(2) cos θ0 and c2 =
−p0(1) cos θ0 − p0(2) sin θ0. After some trivial mathematical
manipulation, we prove KT∇∇∇vu0

= O. The independent
columns of ∇∇∇vu0 spans the null space of K. Thus, we let
M =∇∇∇vu0 . The cost function (30a) becomes

(GMq+Bn)TW(GMq+Bn). (34)

The optimal solution of q is

q = −(MTJM)−1MTGTWBn, (35)

where J = GTWG. Taking expectation of ∆∆∆v̂ gives E[∆∆∆v̂] =
ME[q] = 0. WSDR is unbiased when higher-order noise terms
are negligible. Multiplying both sides of (35) by their transpose
and taking expectations gives

E[qqT ] = (MTJM)−1. (36)



6

And hence, cov(v̂) = M(MTJM)−1MT .
The theoretical covariance matrix for the unbiased estimator

WSDR is

cov(û0) =∇∇∇†
vu0

cov(v̂)(∇∇∇†
vu0

)T = (MTJM)−1. (37)

Substituting (8a) and (8b) into (20) yields

W = (BdQdBd +Bφ̇φφQ̄φ̇φφB
T
φ̇φφ)

−1, (38)

Bφ̇φφ =
[
Bs∇∇∇soυυυo∇∇∇υυυo∆υ̇υυ,Bt∇∇∇toωωωo∇∇∇ωωωo∆ω̇ωω

]
. (39)

Applying Woodbury matrix identity to (38) gives

W = B−1
d Q−1

d B−1
d +B−1

d Q−1
d B−1

d Bφ̇φφ

× (Q̄−1
φ̇φφ +BT

φ̇φφB
−1
d Q−1

d B−1
d Bφ̇φφ)

−1BT
φ̇φφB

−1
d Q−1

d B−1
d .

(40)

Substituting (40) and the definition of J into (37) gives

cov(û0)
−1 = GT

3 Q
−1
d G3

−GT
3 Q

−1
d G4(G

T
4 Q

−1
d G4 + Q̄−1

φ̇φφ )−1GT
4 Q

−1
d G3,

(41)

where

G3 = B−1
d GM, (42)

G4 = −B−1
d Bφ̇φφ. (43)

After performing trivial linear algebra operations in Appendix
B, we demonstrate that G3 =∇∇∇dou0 and G4 =∇∇∇do∆φ̇φφ. As a
result, it can be demonstrated that

cov(û0) = CRLB(u0) (44)

when the higher-order noise terms are negligible.

C. Computational Complexity

The worst-case time complexity [35] for obtaining the ϵ-
solution of an SDP problem is

O(max(Nc, N)4N1/2log(1/ϵ)), (45)

where ϵ indicates the accuracy of the solution. Nc is the
number of semidefinite constraints, and N is the number of
variables. From (21), we have seven unknown variables and four
constraints for the proposed WSDR. The worst-case complexity
of solving the QCQP problem using the convex-based method
depends on the solution’s accuracy instead of the number of
measurements.

V. SIMULATION

In the simulation, we compare the proposed WSDR solu-
tion with the semidefinite programming relaxation (SDP-R)
estimator [31], the efficient unique solution with weighted
least-square refinement (EUS-WLSR) [27], the Euclidean
distance matrix completion (EDMC) estimator [25], and the
two-stage weighted least square (TSWLS) estimator derived in
Appendix C. The average root-mean-square error (RMSE) of
10 randomly generated localization geometries is calculated
to validate the performance of the proposed methods. The
total number of ensemble runs for each geometry is 100. We
place the UWB modules on the x-axis of the robot body
frames at s0 = [−0.2, 0]T meters and t0 = [−0.2, 0]T meters.
The state transition vectors and the initial relative pose are

randomly selected for each geometry. The change of position
and orientation will not be significant in a short period of time.
In the simulation, the rotation angles between two consecutive
timestamps are restricted to be less than 20o. And the robots
travel less than 0.5 meters within a single sampling period.

In practice, UWB module accuracy is affected by various
factors, such as multi-path propagation, interference, and
occlusions. UWB measurement noises at different timestamps
are assumed to be independent with different noise power. In
the simulation, we choose a diagonal matrix with randomly
selected diagonal elements within the interval of [0.5σ2

d, 1.5σ
2
d]

as the covariance matrix of UWB measurements.
The state transition errors between two consecutive times-

tamps are IID. The 3 × 3 covariance matrices of the state
transition errors are

Qυ̇υυ =

[
σ2
α̇ 0T

0 Qȧ

]
, Qω̇ωω =

[
σ2
β̇

0T

0 Qḃ

]
. (46)

The first diagonal elements in Qυ̇υυ and Qω̇ωω are the variances of
the rotation angles. The bottom-right blocks of the covariance
matrices correspond to the uncertainties of the translation
vectors. Although the covariance matrices Qd, Qυ̇υυ and Qω̇ωω

are diagonal in the simulation, the proposed algorithms can
cope with the non-diagonal covariance matrices without further
modification.

Note that the angle unit is degree, and the range unit
is meter. Fig. 3 examines RMSE of the proposed relative
localization solution when the noise power of the state
transition error is fixed at σα̇ = σβ̇ = 0.1 degrees and√
tr(Qȧ) =

√
tr(Qḃ) = 0.01 meters. We compare the RMSE

of WSDR with the RMSEs of the comparison methods and
the CRLB as the UWB measurement noise increases. The
RMSE of TSWLS and WSDR achieve the CRLB performance
when the UWB measurement noise is small. When the σd

increases to 0.032 meters, TSWLS starts to diverge from the
CRLB. The ranging accuracy of commercial UWB modules
available in the market is 0.1 meters. Thus, TSWLS is not
the best choice for the relative pose estimation using UWB
modules. SDP-R does not reach the CRLB performance because
the statistical property of the state transition vectors and the
UWB measurements are not fully exploited. The RMSEs of
EUS-WLSR and EDMC are dominated by the failed instance
because the success rates of EUS-WLSR and EDMC are low.
WSDR produces the smallest RMSE over the entire range of
the noise power we examined. The RMSE of WSDR stays
with the CRLB until σd increases to 0.1 meters.

In Fig. 4 and 5, the UWB measurement noise power is
fixed to σd = 0.1 meters. We examine the performance of the
proposed solutions with increasing odometry error. In Fig. 4,
σα̇ and σβ̇ increases while

√
tr(Qȧ) and

√
tr(Qḃ) is kept at

0.01 meters. In Fig. 5, we set σα̇ and σβ̇ to 0.1 degrees, and
increase

√
tr(Qȧ) and

√
tr(Qḃ). In both Fig. 4 and Fig. 5,

the RMSE of WSDR is slightly above the CRLB because the
UWB measurement noise and the fixed part of the odometry
uncertainties are not small. Nevertheless, SDP-R and WSDR are
more robust than EUS-WLSR, EDMC, and TSWLS. Moreover,
WSDR produces lower RMSE than SDP-R over all the noise
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Fig. 3. RMSE of the relative pose estimation when σd increases.
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Fig. 4. RMSE of the relative pose estimation when σα̇ and σβ̇ increase.
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Fig. 5. RMSE of the relative pose estimation when
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To understand how the number of measurements affects the
localization performance, we fix σd = 0.1 meters, σα̇ = σβ̇ =

0.1 degrees, and
√
tr(Qȧ) =

√
tr(Qḃ) = 0.01 meters. Fig.

6 shows an overall decreasing trend of the CRLB and the

RMSEs as the number of measurements increases. Moreover,
using additional measurements enhances the robustness of
the proposed algorithms. The RMSE of WSDR overlaps with
the CRLB when more than 50 measurements are used. SDP-
R benefits less from additional measurements due to the
cumulative errors in the positions of the UWB modules.
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Fig. 6. RMSE of the relative pose estimation when the number of measurements
increases.

Fig. 7 illustrates the randomly generated relative orientations
and trajectories of four robots in a case study. Our goal is to
estimate the relative pose of Robot 2, 3, and 4 in Robot 1’s
initial body frame. We test the localization geometry shown in
Fig. 7 with 100 ensemble runs.

Fig. 8 shows the estimation performance of the relative
orientation. The black dashed lines are the true value of the
relative orientations. Each box chart displays the following
information: the median, the quartiles, the minimum/maximum
values, and the outliers. The variance of the EDMC is small.
However, the median of the EDMC does not overlap with the
true value for Robot 2 and Robot 3. EUS-WLSR generally
gives a larger variance than the other methods because the
efficient unique solution is calculated using only five range
measurements. TSWLS diverges in some instances because
it is sensitive to the UWB range measurement noise. As we
mentioned, the convex-based SDP-R and WSDR perform more
robustly than the other three estimators. In particular, the
estimates obtained by WSDR lie around the true value and
give the smallest variance.

Fig. 9(a) shows the overview performance in estimating the
relative position of three robots. The other subplots are enlarged
images of the uncertainty ellipses for different robots. The
black circles indicate the true value of the relative positions.
90% of the estimates lie within the uncertainty ellipses of the
respecting estimators. Fig. 9 shows that EDMC is a biased
estimator with a small uncertainty ellipse. The uncertainty
ellipses of EUS-WLSR and TSWLS are notably larger than the
uncertainty ellipses of SDP-R and WSDR because of the failed
instances. The uncertainty ellipses of SDP-R and WSDR cover
small areas, and the averaged estimates lie close to the true
positions. Although SDP-R and WSDR both perform well in
this case study, it is worth noting that the variance of WSDR
is lower than the variance of SDP-R.
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Fig. 7. (a) orientations and (b) trajectories of the robots in the case study.

Fig. 8. A case study in estimating relative orientations of (a) Robot 2, (b)
Robot 3, and (c) Robot 4.

Fig. 9. (a) Overall performance in estimating robot relative position, and the
enlarged plots of the uncertainty ellipses of (b) Robot 2, (c) Robot 3, and (d)
Robot 4.

VI. EXPERIMENTS

The real-world validation was conducted using two-wheeled
robots (SPARKs) with IMU sensors and wheel encoders.

Each robot equips one UWB module (Decawave DWM1000)
measuring the inter-robot ranges. We test the proposed method
on a 4 × 6 square meters field. A motion capture system
(OptiTrack) with 16 calibrated cameras serves as the ground
truth system, which captures the trajectory and orientation of
four robots. Prior to the experiments, we collected several sets
of distance and odometry measurements and compared them
with OptiTrack results to compute the bias and covariance of
the measurements. Fig. 10 shows our experimental environment,
including the UWB modules in the red circles and four moving
robots.

Fig. 10. Four robots move in the arena.

At each timestamp, we collect four moving robots’ odometry
and three range measurements between the reference robot and
its neighbors. The sampling frequency is flexible because it
depends on the network condition. The average sampling rate
is 9.03 Hz in this experiment.

Fig. 11 illustrates the trajectories of the robots. The solid lines
represent the robot poses measured by OptiTrack. The dashed
lines are robot poses obtained by IMUs and wheel encoders in
their initial body frames. Robot 1 moves in a uniform circular
motion; Robot 2 runs at a constant linear speed; Robot 3 and
4 keep invariant orientations and make linear round trips at
varying speeds. Bounding the robot orientation within [−π, π]
causes the sudden changes of the dashed orange line in Fig.
11(a). However, it won’t affect the estimation and tracking
results.

Fig. 12 shows the performance of robot relative localization
and tracking in the laboratory environment. We denote Robot
1 as the reference robot. Orange, blue, and green represent the
initial relative poses of Robot 2, 3, and 4, respectively. The
squares, triangles, circles, crosses, plus signs, and Hexagrams
represent the relative pose obtained by OptiTrack, TSWLS,
WSDR, SDP-R, EUS-WLSR, and EDMC, respectively. The
solid lines and dotted lines show the relative trajectories
obtained from OptiTrack and odometry. The dashed lines and
dash-dotted lines are the filtered result from the sliding window
filter (SWF) and the extended Kalman filter (EKF) using the
state transition model in (5a) and (5b). In Fig. 12, the initial
estimates obtained by WSDR stay closest to their ground truth
values.

Four datasets are collected to calculate the RMSEs in real-
world validation. In each dataset, the localization algorithms
are executed to estimate the relative pose of Robot 2, 3, and 4
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Fig. 11. Setup of real-world experiment. The solid lines represent the true
trajectories captured by OptiTrack. The dashed lines show the trajectories
obtained by odometry.
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Fig. 12. Performance of the real-world experiment.

using the measurements from the first 100 frames. The results
are listed in Table I. WSDR achieves the best accuracy in
estimating both orientation and position, which are 3.97o and
0.22 meters. The comparison methods produce large RMSEs
because of the failed instances.

Accurate initial values of the relative poses are crucial for
SWF and EKF. Thus, we initialize the position and orientation
of the odometry, SWF, and EKF using the estimates obtained
by WSDR. Fig. 13 shows the RMSEs of robot relative pose
tracking. The purple line indicates the RMSE of robot tracking
results relying on the odometry solely. SWF and EKF improve
the accuracy of tracking when the frame index is over 200.
Based on the results shown in Fig. 13, our strategy for
determining the robots’ relative poses at any given time is
to initialize EKF with WSDR estimates and update the robots’

TABLE I
RMSE COMPARISON OF THE RELATIVE LOCALIZATION METHODS

SDP-R
EUS

-WLSR
EDMC TSWLS WSDR

RMSE(θ0) 18.87o 87.69o 19.38o 68.23o 3.97o

RMSE(p0) 1.75 m 5.03 m 2.39 m 2.50 m 0.22 m

relative poses using the odometry and UWB measurements
from subsequent frames.
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Fig. 13. RMSE of the robot relative pose tracking.

VII. CONCLUSION AND FUTURE WORK

This study investigates the 2D robot relative localization
problem using the inter-robot ranges measured by UWB
modules when each robot operates under its local frame with
an imperfect odometer. A novel formulation and a WSDR
solution are developed to determine the initial robot relative
pose. Performance analysis proves that WSDR achieves CRLB
performance when the noise power is insignificant. Simulations
and real-world experiments validate the performance of WSDR.
Future work will focus on the multi-robot relative localization
and tracking problem in 3D. For large-scale, low-cost MEMS-
based multi-robot navigation systems, computing covariance
matrices through the orthogonal projection principle [37], [38]
is an attractive topic for future investigation because it reduces
computation loads and improves the tracking performance.
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APPENDIX A
In some cases, we are interested in estimating the current

relative pose of the robots instead of the initial relative pose.
To determine the relative pose of Robot 2 in AM instead of
A0, we compute the reverse transition vector is

ϋυυi = [−α̇i,−ȧTi Rα̇i
]T . (47)

The covariance of ϋυυi is Qϋυυi
=∇∇∇∆ϋυυi∆υ̇υυi

Qυ̇υυ∇∇∇T
∆ϋυυi∆υ̇υυi

, where

∇∇∇∆ϋυυi∆υ̇υυi
=

[
−1 0T

−R′
α̇o

i
ȧo

T

i −Rα̇o
i

]
. (48)

Since the reverse transition errors between any two timestamps
are independent, the covariance of ϋυυ is

Qϋυυ = blkdiag(QϋυυM
, . . . ,Qϋυυ1

). (49)
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The reverse state transition vector of Robot 2 and its covariance
matrix are computed following similar steps. With the reverse
state transition vectors and the range measurements, uM can
be solved by applying WSDR directly.

APPENDIX B
Substituting (16), (33) and Bd into (42) yields

G3(i+ 1, 1) = (− cos θ0(t
o
ixs

o
iy − toiys

o
ix)

+ sin θ0(t
o
ixs

o
ix + toiys

o
iy) + toix(p0y cos θ0 − p0x sin θ0)

− toiy(p0x cos θ0 + p0y sin θ0))/di = ρρρoTi R′
θ0ti. (50)

G3(i, 2 : 3) =
(Rθ0ti + p0 − si)

T

di
= ρρρoTi . (51)

From (50) and (51), we prove that G3 =∇∇∇dou.
Combining Bd, (18a) and (18b) gives

B−1
d Bs = −∇∇∇doso , B−1

d Bt = −∇∇∇doto . (52)

Combining (39), (43), and (52), we have

G4 = [∇∇∇doso∇∇∇soυυυo∇∇∇υυυo∆υ̇υυ, ∇∇∇doto∇∇∇toωωωo∇∇∇ωωωo∆ω̇ωω] =∇∇∇do∆φ̇φφ.
(53)

APPENDIX C
TSWLS is derived to determine relative robot pose at low

computational cost. In the first stage, we ignore the relationships
between the elements of v and solve (15) as an unconstrained
problem using the weighted least square estimator. The solution
of the first stage is

v̌ = (GTWG)−1GTWh, (54)

The second stage of the TSWLS method aims to refine the
relative pose estimate by exploring the relationships among
the elements in the augmented unknown vector v. We use the
output of the first stage as the input of the second stage. The
estimation error of the first stage becomes the input noise of
the second stage. Denote the unknown parameter vector of the
second stage as v2 = [cos θ20,p

T
0 ]

T . Expressing v̌ by v2 and
collecting all error terms on one side gives

h2 −G2v2 = B2∆v (55)

where

G2 =

1 1 0 0 0 0 0
0 0 1 0 v̌(2) −v̌(1) v̌(3)
0 0 0 1 v̌(1) v̌(2) v̌(4)

T

, (56)

h2 = [1− v̌(1)2, v̌(2)2, v̌(3 : 7)T ]T . (57)

The weighting matrix of the second stage is

W2 = (B2cov(v̌)B2
T )−1 = B−T

2 GTWGB−1
2 , (58)

where cov(v̌) is the covariance matrix of the estimation error
of the first stage result. Replacing v2(2 : 3) with v(3 : 4) in
B2 gives

B2 =



−2v(1) 0 0 0 0 0 0
0 2v(2) 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

−v(4) −v(3) 0 0 1 0 0
v(3) −v(4) 0 0 0 1 0
0 0 −v(3) −v(4) 0 0 1


. (59)

In practice, B2 is constructed using the first stage estimate v̌
instead of its true value. The WLS solution of the second stage
is

v̌2 = (GT
2 W2G2)

−1GT
2 W2h2. (60)

Because the value of cos2 θ0, cos2(−θ0), cos2(π − θ0) and
cos2(−π + θ0) are equal, estimating cos2 θ0 instead of sin θ0
and cos θ0 introduces ambiguities in the rotation angle. We
utilize the sign of the v̌ to restore the information loss. Denote
l = sgn(v̌) as the sign of v̌, the final result of the TSWLS
estimator is given by

ǔ0 =

[
angle

(
l(2)

√
v̌2(1) + l(1)

√
v̌2(1)− 1

)
v̌2(2 : 3)

]
. (61)

The closed-form TSWLS estimator is computationally more
efficient than the convex-based methods. However, TSWLS
does not guarantee that v1(1), v1(2), and v2(1) take values
between 0 and 1. Furthermore, we ignore the higher-order
noise term in both stages of TSWLS. As a result, TSWLS will
diverge earlier than the convex-based method when the range
measurement noise and the odometry uncertainties become
significant.
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