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Abstract— Collaborative localization (CL) has garnered sub-
stantial attention in the field of robotics in recent years.
Nonetheless, conventional CL algorithms have faced challenges
when dealing with practical issues such as spurious sensor data
and limited or discontinued observation and communication
in real-world settings. This paper proposes a fault-tolerant
practical estimated cross-covariance minimum variance update
method (FPECMV) designed to tackle these challenges under
limited connectivity. The proposed algorithm uses a CNN-based
method to evaluate confidence, along with a fault isolation
module to identify faults and manage spurious data in real
time. The proposed fault isolation module utilizes relative mea-
surement information that randomly occurs, without requiring
high observation and communication prerequisites. Notably,
the algorithm takes into account correlations among agents to
maintain consistency in localization filters and attain accurate
localization despite constraints posed by limited connectiv-
ity. To evaluate the performance of the proposed algorithm,
experiments were conducted in a collaborative multi-robot
environment with spurious sensor data and limited connectivity,
using both the BULLET simulation and physical mobile robots.
The experimental results indicate that the overall localization
performance of the proposed algorithm is improved by 21.0%
compared to the state of the art. The experiment results
demonstrate the effectiveness of our algorithm in localizing
group agents in challenging and intricate scenarios with limited
connectivity and spurious sensor data.

I. INTRODUCTION

Multi-agent systems have gained significant attention ow-
ing to their notable advantages in terms of fault tolerance,
extensive coverage, and high estimation accuracy through
data fusion. These systems exhibit tremendous potential in
diverse robotic applications, including swarm [1], SLAM
[2], and modular robotics [3]. To effectively utilize these
applications, precise localization plays a crucial role. Unlike
traditional centralized localization solutions, distributed col-
laborative localization (DCL) achieves precise location by
combining relative measurement information among agents
and their location data [4], and has become a popular area
of research in recent years due to its inherent advantages of
flexibility and accuracy [5], [6].
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In the context of collaborative localization, it is possible to
improve the accuracy of the localization of mobile agents by
establishing connectivity [7] with a measurement network
composed of multiple agents. This enables each agent to
receive real-time relative measurement feedback from its
neighboring agents, thereby enhancing its localization. How-
ever, achieving such tight connectivity requirements imposes
significant demands on various resources, including measure-
ment, communication, computational, and storage resources
[7], [8]. In practical situations, connectivity is often limited
due to various factors, such as communication failures among
agents [9], [10], or agents being in observation blind zones
caused by external events, such as limited communication
ranges [11], [12], obstacle blocking [13], [14], and limited
measuring ranges [15]–[18]. In the past, various algorithms
have been developed, such as those proposed in [19]–[23],
which aim to relax the connectivity requirements by enabling
agents to communicate only when measuring each other.
However, these algorithms tend to adopt conservative update
strategies by ignoring correlations among agents and failing
to leverage measurement updates for the benefit of other
agents within the system network. For instance, the CIF-
based methods discussed in [22] adopt conservative bounds
to account for the absence of cross-covariance information,
thereby resulting in highly conservative estimates. On the
other hand, in the SA-split-EKF method proposed by [8],
each robot determines its position in the global coordinate
system through local dead reckoning (DR) and subsequently
adjusts its pose estimate upon receiving a relative measure-
ment update message from the server. Notably, the computa-
tional and storage expenses per robot are of order O(1) for
any team size. However, it is worth noting that the algorithm
of [8] requires the existence of a server within the agent
group, and the centralized structure of the algorithm renders
it unusable in the event of a server malfunction. Zhu [7] has
proposed the use of the PECMV method, which is capable
of processing relative measurements to correct both the local
state and the corresponding error covariance without explicit
knowledge of the cross-covariance. In addition, this algo-
rithm has been optimized to balance localization accuracy
and computational speed, resulting in reduced spatial com-
plexity. To the best of our knowledge, PECMV is the state of
the art for handling distributed collaborative localization in
limited connected scenarios. However, these works, including
PECMV, are designed for ideal limited connected scenarios.
Once they are employed in real complex environments,
common failures such as spurious sensor data [24] can lead
to significant localization errors or even failures.



In intricate real-world scenarios, robots may experience
their own instability and uncertain external conditions, result-
ing in unexpected situations, including spurious sensor data.
Such inaccurate data can significantly degrade localization
accuracy and cause significant deviations from the true value.
Hence, fault tolerance is critical for collaborative local-
ization. Previous research has focused on troubleshooting
through multi-sensor information fusion and fault detection
for fault-tolerant and accurate collaborative localization [24]–
[26]. Although these works have yielded positive results
in purely fault-tolerant localization, their fault-tolerance is
based on the premise that each agent maintains continuous
observation and communication in the agent network. In the
case of limited connectivity, where data communication and
observations are limited, resulting in a small sample space,
these existing efforts on fault tolerance do not work properly.
In summary, fault-tolerant collaborative localization under
limited connectivity remains unresolved and challenging.

In this paper, we introduce a fault-tolerant distributed col-
laborative localization algorithm. Building on the previously
developed PECMV [7] algorithm, we propose a learning-
based confidence evaluation method and fault isolation mod-
ule to effectively handle measurements with spurious sen-
sor data. It is worth emphasizing that the proposed fault
isolation module utilizes relative measurement information
that randomly occurs, without requiring high observation
and communication prerequisites. Our algorithm accounts
for past correlations among agents, ensuring localization
filter consistency and accurate localization despite limited
connectivity and spurious sensor data faults. Furthermore,
our algorithm does not restrict the type of sensors and sup-
ports a general measurement model. We evaluated the per-
formance of our proposed approach using both simulations
and physical experiments with vision-based measurement
mobile robots. The results demonstrate that our proposed
algorithm outperforms the PECMV algorithm in challenging
and complex scenarios that involve limited connectivity and
spurious sensor data faults.

The rest of the paper is organized as follows. Section II
outlines the system models definition. Section III presents
the proposed algorithm. Section IV validates the proposed
algorithm through a series of simulations and experiments.
Finally, the last section concludes the paper and discusses
future research directions.

II. SYSTEM MODELS DEFINITION

A. Robot Motion Model

Let’s consider a group of N agents equipped with com-
munication and computation capabilities. The mathematical
expression for the motion model of each agent i ∈ V =
{1, ..., N} at discrete time t ∈ Z+ is given by

xi(t) = f(xi(t− 1), ui
m), xi ∈ Rni

, (1)

which describes the state of agent i at time step t, denoted by
xi(t) ∈ Rni

, encompasses the agent’s position, velocity, and
orientation. The self-motion measurement command, ui

m =

ui(t)+ νiu, is obtained from sources such as odometry or an
inertial measurement unit (IMU), where νiu represents the
measurement noise.

B. The Measurement Model

During the mission horizon, the agents’ localization accu-
racy is reduced by noise in the self-motion measurements.
If the availability of absolute measurements for correcting
dead-reckoning-based localization is limited, joint processing
of relative measurements between two agents is utilized
to limit the error and enhance the accuracy. The relative
measurement, which may include relative range, bearing,
pose, or a combination of these, is denoted by zij(t) and
is obtained by agent i from agent j at time t,

zij(t) = h(xi(t), xj(t)) + νi(t), zij(t) ∈ Rni
z , (2)

where h(xi(t), xj(t)) is the measurement model, and νi(t) ∈
N(0, Ri(t)) is the zero mean Gaussian measurement noise
with covariance matrix Ri(t) ∈ S++

ni
z

. At each time step
t ∈ Z+, each agent applies a local filter to estimate
its own state x̂i−(t) ∈ Rni

and the corresponding error
covariance matrix P i−(t) ∈ S++

ni using its motion model
and sporadic access to absolute measurements from sources
such as known landmarks. We denote the prior belief of
agent i at time t as beli−(t) = (x̂i−(t), P i−(t)). When there
is no inter-agent measurement available to update the local
belief, the propagated belief is considered the updated belief,
i.e., beli+(t) = beli−(t) = (x̂i−(t), P i−(t)). However,
when a relative measurement is accessible, the local belief
is updated using fusion approaches. These approaches are
briefly described below.

III. ALGORITHM

A. Application Scenarios

The collaborative localization algorithm is improved based
on the practical estimated cross-covariance minimum vari-
ance update method (PECMV) [7], and we propose an
FPECMV method for application scenarios with limited con-
nectivity, and spurious sensor data, which can fuse relative
measurement data from multiple robots. The conditions of
the scenario are described as follows.

• Limited connectivity: In the scenario, the observation
and communication of robots are limited and discontin-
uous. The robot’s pose is not observed at every moment
due to obstacles, the robot’s observation range, or robot
malfunction. And robots may have communication fail-
ures due to environmental disturbances.

• Spurious sensor data: There are measurement fault in
certain robots that are measuring relative poses.

B. Algorithm update procedure:

Fig. 1 shows the flow chart of our fault-tolerant distributed
collaborative localization algorithm, which comprises three
principal modules: CNN-based confidence evaluation, Fault
Isolation, and Collaborative Localization. Different from
PECMV, we developed a fault isolation module capable of
utilizing relative measurement that is occasionally obtained.
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Fig. 1. The flowchart of the proposed FPECMV. The underlying collaborative localization module is built upon [7]. The proposed CNN-based confidence
evaluation module computes the confidence score by analyzing the measurements. The proposed fault isolation module employs randomly occurring relative
measurement data, without requiring high observation and communication prerequisites.

We take 5 frames of relative measurements from other
robots at a time and combine them with the latest 5
frames of local states data to form the state matrix Tj =
[zij(t1), ..., z

i
j(t5), x

i−(t1), ..., x
i−(t5)]. Assuming a sensor

frequency of 30HZ, each observation time is roughly 167ms,
and a higher measurement frequency leads to a shorter
observation time required by the algorithm. We parameterize
Tj as the input vector Sk of the neural network according to
Eq. (3) and Eq. (4), Tj ∈ T, Sj ∈ S.

Our network architecture consists of four convolutional
layers followed by three fully connected layers. A batch
normalization layer is placed between convolutional layer
1 and convolutional layer 2, and another batch normal-
ization layer is placed between convolutional layer 3 and
convolutional layer 4. These batch normalization layers are
added to accelerate the convergence of the network. The
activation functions of convolutional layers 1 and 2, as well
as the two batch normalization layers, are Rectified Linear
Unit (ReLU) functions. To prevent overfitting, we apply a
dropout probability of 0.1 to the fully connected layer 1 and
fully connected layer 2. The output layer uses the Sigmoid
activation function S(X) = 1

1+e−X , which constrains the
value of wj to be within the range of [0,1]. The structure of
our network is shown in Fig. 1.

We generated an augmented dataset in a simulated en-
vironment, which includes spurious sensor data and their
corresponding confidence scores. The augmented dataset is
generated based on the features extracted from the real envi-
ronment, which also contains spurious sensor data. Specifi-
cally, 70% of the artificially generated spurious sensor data
was allocated to the training dataset, while the remaining
30% was designated for the validation dataset.

During the training phase, the Adam optimizer is em-

ployed with a learning rate of 0.01 and an L2Decay value
of 0.00005. A batch size of 32 is utilized for the training
process, which continues for 80 epochs. After each epoch,
the test accuracy is calculated, and the model parameters
are saved persistently whenever the accuracy surpasses the
accuracy achieved in the previous epoch. This approach fa-
cilitates the retention of the model with the highest accuracy,
as opposed to the one obtained at the end of the final epoch.

The neural network functions as a rater and produces a
self-adaptive confidence score wj− ∈ W− for the observer.
The observers are regarded as sources. We set a confi-
dence score threshold β below which sources are deemed
unreliable. Such sources are considered faulty, and they
are excluded from subsequent information fusion steps to
achieve fault isolation. Following fault isolation, we obtain
W+ = [w1+, ..., wj+]. The confidence score wj+ provided
by the CNN network can reflect the potential presence of
such data in relative measurements. By synthesizing the
relative measurement state according to wj+, the impact
of spurious data can be greatly reduced. After normalizing
the scores of each source and ensuring that their total sum
equals 1, we merge the final data according to the confidence
scores of all sources. We merge the information as follows:
gi(t) = wj+ × zij(tN ), wj+ ∈ W+. Here, gi(t) denotes the
relative measurement state of agent i.

S = parameterization(T) (3)

Input = vectorization(S) (4)

labelW = vectorization(W ) (5)

After completing the fault isolation step, our CL module
will commence operation. The local belief update procedure
will commence in the following manner. We set the joint



Algorithm 1: FPECMV method
Input:
Relative measurements from robots set K: T
Isolation threshold: β
The belief of last time: beli+

The belief robots set K: B
Output: Updated state of agent i

1 xi−(t)← getCurrentState();
2 A← getCurrentMotion();
3 if T is not None then
4 foreach j ∈ K, Tj ∈ T, Sj ∈ S do
5 Sj ← NormalizedAndMaped(Tj);
6 wj− ← cnnPredict(Sj);
7 wj+ ← isolation(wj−, β);
8 W+[j]← wj+;
9 end

10 foreach wj+ ∈W+, zij ∈ T , belj− ∈ B do
11 gi ← gi + wi+ ∗ zij(tN );
12 belj− ← recalculateBelief(wi+, belj−)
13 end
14 beli+ ← moduleCL(beli−, belj−, zi, A, gi);

state of {i, j} as xJ(t) = (xi(t)⊤, xj(t)⊤), the joint belief
of {i, j} as bel−J (t) = (x̂−

J (t), P
−
J (t)), where

x̂−
J (t) =

[
x̂i−(t)
x̂j−(t)

]
, P−

J (X) =

[
P i− P−

i,j(t)

P−
i,j(t)

⊤ P j−

]
. (6)

The joint covariance matrix is subsequently set to

P−
J (X) =

[
P i− X
X⊤ P j−

]
, (7)

with the estimation of X = P−
i,j(t). We obtain X∗ from

X∗ = argmax
X

det

[
Ini

0

]⊤

(P−
J (X)−1 +Hi⊤Ri−1

Hi)−1

[
Ini

0

]
,

(8)
subject to [

P i− X
X⊤ P j−

]
> 0. (9)

It is noteworthy that Hi =
[
Hi

i Hi
j

]
corresponds to the

identity matrix Ini .
P−
ij (t) is computed by finding the value of X that results in

the most conservative updated covariance. This optimization
challenge is expressed as a convex matrix optimization with
linear inequality constraints and we solve it using the method
in PECMV [7]. Once X is obtained from Eq. (8), the belief
is updated as

beli+(t) = (x̂i+(t), P i+(t)), (10)

for agent i is

x̂i+ = x̂i− +Ki(zij − ẑij), (11)

P i+ =

[
Ini

0

]⊤
(P−

J (X∗)−1 +HiRi−1

Hi)−1

[
Ini

0

]
, (12)

Fig. 2. Trajectory of Robots in simulation. The cross symbol represents
the starting point and the solid circle symbol represents the ending point.

where

Ki =

[
Ini

0

]⊤
P−
J (X∗)Hi⊤

(
HiP−

J (X∗)Hi⊤ +Ri
)−1

.

(13)
It satisfies P i+(t) ≤ P i−(t).

The decentralized CL algorithm based on FPECMV
method is given by Algorithm 1.

IV. SIMULATIONS AND EXPERIMENTS

A. Simulation

The BULLET physics simulation engine is utilized to exe-
cute the simulation. The system under investigation consists
of 8 mobile robots, and their equations of motion, which
include linear acceleration ai(t), linear velocity vi(t), and
angular velocity wi(t), are described as follows: ai(t) = aim(t) + ϕ(t)

vi(t) = vi(t− 1) + δt× ai(t− 1)
wi(t) = wi(t− 1) + δt× aiw(t− 1)

, (14)

where i ∈ {1, 2, 3, 4, 5, 6, 7, 8}, aim(t) and aiw(t) are mea-
sured linear and angular acceleration, while ϕ(t) is the
corresponding measurement noises. We assume that the self-
measurement noise of agents is 10% of the linear velocity
and 5% of the angular velocity. In addition, the simulation
employs relative pose measurements that are corrupted by
a relative measurement noise with a standard deviation
of [0.01m, 3 degrees]. Absolute range measurements with
respect to landmarks that have known positions can also
be obtained occasionally. During the simulation, a random
spurious sensor data error was introduced when the robots
measured each other’s pose. The probability of generating
spurious sensor data was set to 10%, which was consistent
with the probability of the spurious sensor data occurring in
our physical experiment. Additionally, the standard deviation
of the error was set to 0.2m. Fourteen cylindrical obstacles



Fig. 3. RMSE over time of each robot position estimation for simulation scenario.

Fig. 4. RMSE of robots position estimation for simulation scenario.

with a diameter of 1 m and a height of 0.8 m were placed
in the simulation environment, and they were used to limit
the observation between robots. Its placement is shown in
the Fig. 2. Finally, each robot obtained only one absolute
measurement at the start point.

The trajectory diagram in Fig. 2 illustrates that the orange
curve (DR) gradually deviates from the true value, as a result
of the accumulated error of IMU. In contrast, the blue and
green curves representing the PECMV and our proposed
method, respectively, exhibit a correction that leads them
to return to a trajectory closer to the true value (refer line)
after observing each other. However, the presence of spurious
sensor data causes the blue curve to exhibit more significant
deviations compared to the green curve. Notably, the green
curve (Ours) appears to be less affected by the spurious
sensor data, especially during the mutual measurement phase,
thus closely approximating the true value trajectory.

Based on the results presented in Fig. 3 and Fig. 4, it
is evident that the RMSE curves of the PECMV algorithms
exhibit notable fluctuations (ranging from approximately 0.1

Fig. 5. Average RMSE of robots position estimation for simulation
scenario.

to 0.4 meters) during the mutual observation period of the
robots (e.g., 4-8 seconds, 13-15 seconds, and 21-24 seconds).
These fluctuations are attributed to the occurrence of spurious
data failures among the robots. Conversely, the RMSE curve
of our proposed algorithm (shown in green) is relatively
stable during mutual measurement, indicating that it is more
resilient to the perturbations caused by measurement faults
when faced with a considerable amount of spurious sensor
data.

Moreover, the use of relative measurement information by
the DCL algorithm significantly reduces the position errors
of each robot during mutual observation. This is evident in
Fig. 5, which shows the variation of the average RSME over
time for all eight robots. The results clearly demonstrate the
better positioning accuracy of our algorithm in comparison
to the PECMV algorithm in this scenario.

B. Experiment

The experiment was conducted in an indoor area measur-
ing 6 by 4 meters, using the wheeled robot named Spark
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Fig. 6. Experimental environment and robot configuration.

Fig. 7. Trajectory of robots in experiment. The cross symbol represents
the starting point and the solid circle symbol represents the ending point.

equipped with an integrated IMU and camera and operated
through the Robot Operating System (ROS), as illustrated in
Fig. 6. The experiment entailed deploying four Spark robots,
each commencing from a corner in Fig. 7 and subsequently
following a predetermined trajectory to a specified end point
at a forward speed of 0.2 m/s. A vision measurement system
was employed to determine the relative position of the
robots. This system comprised six stationary Aruco tags
mounted around the robot, with the camera on top of the
robot capturing the relative position and pose of the Aruco,
which was then converted into the relative orientation of the
robot. The effective measuring distance of Our Aruco-based
vision measurement system is 6m. The Optitrack motion
capture device was utilized to obtain a reference value for the
experiment, recording the trajectory and pose of each robot.
Additionally, four obstacles were strategically placed in the
experimental environment to limit the observation between
robots, as illustrated in Fig. 7. It is worth noting that each
robot only receives an absolute measurement at the start
point.

The robot’s elevated center of gravity and limited chassis
performance resulted in significant motion-induced jitter,
leading to distorted or blurry images, especially when both
the observer and the observed moved concurrently. More-
over, deficiencies in lighting conditions and erratic mea-
surements of Aruco tags at certain angles posed realistic

interferences or failure factors, leading to the generation
of spurious data in vision measurements. As a result, we
analyzed the statistics of spurious data occurrences in visual
measurements, which showed an error probability of about
10% and a range of 10-30 cm. These findings corroborated
the expected incidence of spurious sensor data conditions.

The experimental results, shown in Fig. 7, illustrate that
the orange curve (DR) progressively diverges from the refer-
ence value due to cumulative errors in the IMU. In contrast,
the blue and green curves (PECMV, Ours) effectively correct
the trajectory when the robots measure each other. However,
due to the impact of random spurious sensor data faults,
the blue curve (PECMV) exhibit some degree of deviation,
whereas the green curve (Ours) remains unaffected by the
spurious data and more closely approximates the true value
(represented by the black reference line generated by the
motion capture system). The experimental results align with
the simulation results.

Fig. 8 and 9 provides further insights into the experiment
by presenting the RMSE results for the positions of the
four robots under different algorithms. During the phase of
mutual measurement among the robots, the errors in their
positions were significantly reduced as anticipated. However,
when subjected to the interference of the spurious data
caused by measurement fault, the robots using the PECMV
algorithms exhibited significant fluctuations in their position
errors, indicating the influence of the faults. In contrast, the
robots implementing our proposed algorithm demonstrated
minimal fluctuations, which suggests that it is less affected
by spurious sensor data faults and possesses good fault
tolerance.

The reason for the curves partially overlap is that despite
the existence of spurious data, the normal measurement
results can still be obtained, and PECMV will correct the
error when the normal relative measurement is obtained.
However, it does not mean that PECMV can resist the
interference of spurious sensor data. As shown by the RMSE
curve of Robot4 in Fig. 8, around 60s, robot4 obtained a
relative measurement state containing spurious data, which
caused its error to increase sharply and maintained this error
in the following time. On the contrary, our algorithm can
effectively isolate the spurious data and correct the position
error.

Moreover, Fig. 10 shows the average RMSE curve of
the four robots, demonstrating a clear downward trend for
our algorithm after acquiring relative measurement informa-
tion. Notably, curve of our algorithm remained consistently
lower than that of the PECMV over time, highlighting the
effectiveness of our approach in practical scenarios. In the
experiment, the average RMSE of our algorithm and PECMV
are 0.0645m, 0.0815m, respectively. Our approach exhibits
an average RMSE reduction of 21% compared to PECMV.

These experimental findings collectively indicate that our
proposed algorithm outperforms the PECMV algorithms in
situations characterized by both limited connectivity and
spurious sensor data.



Fig. 8. RMSE over time of each robot position estimation in experiment.

Fig. 9. RMSE of robots position estimation in experiment

V. CONCLUSION

This paper introduces a fault-tolerant distributed collab-
orative localization algorithm that incorporates a learning-
based confidence evaluation method to handle measurements
containing spurious sensor data. The proposed algorithm
maintains localization filter consistency by considering past
agent correlations implicitly. The simulation and experimen-
tal results demonstrate the effectiveness of our distributed
algorithm in achieving accurate localization under spurious
sensor data and limited connectivity constraints. Moreover,
our algorithm supports generic measurement models since
we do not prescribe the type of sensor.

Furthermore, we aim to enhance the algorithm’s fault-
tolerance performance by detecting various types of data
faults, thereby increasing its overall robustness. Due to
the proposed localization algorithm’s lightweight and robust
nature, we plan to deploy this solution to our developing
modular self-reconfigurable robot [27], [28] and implement a
modular self-reconfigurable robot system that includes visual
self-localization.
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