
A Learning Approach to Multi-robot Task
Allocation with Priority Constraints and

Uncertainty
Fuqin Deng1,2,3, Huanzhao Huang1, Lanhui Fu1, Hongwei Yue1,4,

Jianmin Zhang1,∗, Zexiao Wu3, Tin Lun Lam2,5,∗
1School of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, Guangdong, China

2The Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518000, Guangdong, China
3The 3irobotix Co.,Ltd, Shenzhen 518000, Guangdong, China

4School of physics and information engineering, Guangdong University of Education,
Guangzhou 510303, Guangdong, China

5School of Science and Engineering, the Chinese University of Hong Kong, Shenzhen, 518000, Guangdong, China.
∗Corresponding authors’ e-mail: zjm99_2001@126.com and tllam@cuhk.edu.cn

Abstract—Multi-robot task allocation has an important im-
pact on the efficiency of multi-robot collaboration. For single-
shot allocation without complicated constraints, some exact
algorithms and heuristic algorithms can find the optimal so-
lution efficiently. However, considering the priority constraints
and uncertain execution time of robots for multiple times of
allocation in an approximate dynamic programming environ-
ment, traditional methods such as heuristic algorithms have
limited performance. To obtain better performance, we propose
a method based on deep reinforcement learning. Specifically,
we first use the directed acyclic graph to describe the priority
relationship between tasks. Then we propose a graph neural
network with a hierarchical attention mechanism to extract
the characteristics of the task groups. Finally, we design the
policy network to solve the approximate dynamic programming
problem of multi-robot task allocation. Through training on
the dataset of a given environment, the policy network can
gradually refine the decision-making process by reinforcement
learning. Experiment results show that the proposed modeling
and solving method can find better solutions than existing
heuristic algorithms. Furthermore, the learned strategy can be
directly applied in other untrained environments with superior
performance.

Index Terms—Multi-robot task allocation, Deep reinforce-
ment learning, Graph neural network.

I. INTRODUCTION

MULTI-ROBOT systems can accomplish complex tasks
by enabling multiple robots to work together and pro-

vide reliable and efficient solutions for practical applications

This work was supported in part by the National Key R&D Program
of China (2020YFB1313300), Shenzhen Peacock Plan of Shenzhen Science
and Technology Program (Grant No.KQTD2016113010470345), the funding
(AC01202101103) from the Shenzhen Institute of Artificial Intelligence and
Robotics for Society, the special projects in key fields of Guangdong Provin-
cial Department of Education (2019KZDZX1025), Innovative Program for
Graduate Education (503170060259) and School-enterprise Cooperation
Projects HX19029, HX20199, HX20247, HX21008 from Wuyi University.
We would also like to thank Dr. Li NanNan from Macau University of
Science and Technology for his valuable discussion on this paper.

such as search and rescue [1], patrol [2], and manufacturing
[3]. In multi-robot systems, the multi-robot task allocation
(MRTA) problem has a significant impact on the efficiency
of robot cooperation. MRTA problem can be described as
follow. Given multiple tasks and robots, under the condition
of satisfying constraints, robots need to form a coalition to
perform the tasks cooperatively. This work aims to arrange
robots to form different coalitions in different periods to
complete various tasks.

MRTA needs to face two problems in the real environment.
In the first problem, there are priorities between tasks, and
the robots need to complete tasks in a certain order. The
priority between tasks is derived from the requirements of the
real environment. We regard a set of tasks with the priority
relationship as the task group. For example, in a smart
factory, two orders require the same product, and the prod-
uct needs to be manufactured according to the production
process. Firstly, multiple robots are required to carry parts
to the working area. Secondly, the robots need to cooperate
to assemble multiple complex parts into products. Then the
products are divided into two batches before packing and
shipping. The whole process can be regarded as a task group.
In this task group, the highest priority task is to carry the
parts, the second priority task is to assemble the parts, and
the last two tasks are to pack and ship the product. In the
second problem, the time required for each robot to perform
the task is uncertain. In many applications, other uncertain
events may occur while robots are performing a task [4],
which affects the execution time of the robot. In addition, the
execution time of robots is related to the number of robots in
the coalition and the characteristics of the task itself. In the
ideal situation, the more robots in the coalition, the shorter
the robot execution time. However, the characteristics of the
task itself may make this situation untenable. For example,

when shipping parts, assigning too many robots will lead
to robot congestion, and reduce the efficiency of the robot.
It is difficult for us to have an accurate knowledge of the
characteristics of each task, which also brings uncertainty to
the task execution time of the robot. If the uncertainty in
the MRTA problem is not addressed, the actual performance
of the generated scheme will be much worse than expected.
Therefore, this work aims to solve the MRTA problem with
priority constraints and uncertain execution time.

For the priority constraints in the task group, one way
is to use mathematical formulas to describe the priority
relationship between tasks, and the whole problem can be
formulated as a mathematical model [5]. However, with the
increase in the scale of the problem, the efficiency of solving
the problem will become very low. Another way is to divide
tasks into executable tasks and non-executable tasks [6]. This
method is simple, but it does not consider the impact of the
structure of the task group on the MRTA problem. To make
full use of the structural information of the task group, two
problems need to be considered. Firstly, we should consider
how to describe the priority relationship between tasks in the
task group, and then how to extract information from them.
For the first problem, the directed acyclic graph (DAG) is
commonly used to describe the priority relationship between
tasks [7]. For the second problem, we notice the excellent
performance of graph neural network (GNN) in processing
graph structure data recently [8] and consider using GNN to
process DAG.

For the uncertainty of execution time, we cannot get all
knowledge about execution time in most cases, so it is
difficult to establish a mathematical model. In order to get
more information about execution time, a natural idea is
to learn from historical data and design efficient heuristic
algorithms, but this requires expert knowledge and a lot
of work. We would like to be able to automate the entire
process of learning from data and designing strategies. Deep
reinforcement learning (DRL) is an appropriate choice for
this purpose as a kind of machine learning method. In DRL,
the agent interacts with the environment through a Markov
decision process (MDP). At each time step, the agent is in a
given environment state and chooses an action according to
its policy, then the agent gets a reward from the environment
and enters a new state. The goal of DRL is to train the
agent by maximizing the expectation of future rewards [9].
Once the problem is established as an MDP, the agent can
be learned in the data from the actual working conditions of
a multi-robot system, independent of inaccurate assumptions
[10].

The main contribution of this paper is to propose a DRL
based method to solve the MRTA problem of multiple task
groups and uncertain robot execution time. Firstly, DAG is
used to model the priority constraints in the task group. On
this basis, the MDP for the MRTA problem is proposed.
Then, we propose a GNN using the hierarchical attention

mechanism. This GNN can encode the nodes in the graph,
extract the key information features and output various
types of embedding vectors. Finally, the policy network is
designed based on the GNN. Experimental data show that
our proposed method is superior to the existing heuristic
algorithms designed for MRTA problems, and the learned
strategy can be applied to MRTA problems that are much
larger than those used in training.

This paper is organized as follows. Section II gives a
discussion of the related work. Section III is the statement of
the problem. The proposed method is introduced in Section
IV. In Section V, we show the setups of our experiments and
analysis of our results. In Section VI, we sum up our study.

II. RELATED WORKS

According to [11], our MRTA problem belongs to the
category of the single-task robots (ST), multi-robot tasks
(MR), time-extended allocation (TA) with cross-schedule
dependencies [XD] under the iTax taxonomy. Because the
problem requires multiple robots to form a coalition to
complete one task at a time, the efficiency of robots will be
affected by other robots in the coalition. Here, we mainly
investigated two aspects: i) Methods for solving MRTA
problems belonging to ST-MR-TA [XD] and the applicability
of these methods to our problem is discussed, ii) Current
progress of deep reinforcement learning and its application
in MRTA.

A. Previous Methods

At present, there have been many studies on MRTA prob-
lems fit within ST-MR-TA [XD]. (Unless otherwise specified,
the MRTA problems mentioned later belong to ST-MR-TA
[XD].) For priority constraints, Korsah [5] describes the con-
straints as mathematical formulas and models them as mixed-
integer linear programming (MILP) problems, and uses an
accurate algorithm to solve the problems. The algorithm
produces the optimal scheme, which is executed by a group
of indoor robots. However, its solution time increases expo-
nentially with the increase of problem scale [12], which is
unacceptable for most applications. To improve the solution
efficiency, Jones [13] uses the genetic algorithm to search
for the optimal solution in all feasible scheme and get good
performance in the MRTA problem of the disaster response.
These two algorithms allocate all tasks at one time before all
robots begin to execute, and accurately plan the schedule of
each robot because they are based on the assumption that the
execution time of the robot is determined. However, in many
practical applications, the environment is dynamic, which
makes the execution time of the robot uncertain. In this case,
we cannot generate a complete schedule for the robot before
the task starts. Therefore, it needs to be allocated multiple
times. At present, few methods can deal with the MRTA
problem with uncertainty. There are decentralized methods
and heuristic methods.

1) Decentralized Method: The decentralized method is
coordinated by robots in various ways, and the robots deter-
mine the tasks they perform respectively. Among the decen-
tralized methods to solve the MRTA problem, the market and
negotiation-based algorithm and the distributed constrained-
based algorithm have received more attention [4]. At present,
both algorithms have been studied for priority constraints
and uncertainty [7], [14]–[16]. This kind of method is robust
when dealing with dynamic problems, but it is at the cost of
reducing the solution quality [17].

2) Heuristic method: Heuristic method determines the
robot coalition for the task according to rules. It is an easy-to-
implement method and can deal with uncertainty. Ramchurn
et al. [12] proposed a heuristic algorithm for MRTA in
search and rescue. Zhang and Parker also introduced several
general heuristic algorithms [18] to solve the MRTA problem,
which can quickly generate acceptable solutions in a dynamic
environment. However, the previous heuristic algorithms
do not take into account the priority constraints between
tasks. Therefore, Bischoff et al. [6] divides the current set
of executable tasks and non-executable tasks according to
the priority of tasks, so that the algorithm can directly
consider the priority constraints of tasks. Compared with the
decentralized method, the heuristic method has significantly
improved the solution quality. However, designing efficient
heuristic algorithms requires rich expert experience and re-
peated experiments. It may be difficult to design efficient
heuristic algorithms in the face of more complex problems.

In order to overcome the limitations of heuristic methods,
we consider enabling the scheduler to automatically learn
the design of scheduling strategy through a data-driven way.
DRL is an ideal technique for this purpose [19].

B. Deep Reinforcement Learning

Deep reinforcement learning (DRL) is a technology that
combines the optimal control ability of reinforcement learn-
ing (RL) with the data mining ability of deep learning (DL)
[20]. Deep reinforcement learning uses the MDP to model the
problem, which is suitable for dealing with the uncertainty
in the problem. Recently, the idea of deep reinforcement
learning as a solution to combinatorial optimization problems
has been widely explored. One strategy is to use graphs
to represent the problem and solve the problem by graph
neural network combined with reinforcement learning. This
method has been widely used in routing problems [21]–
[23]. However, the routing problem abstracts from an undi-
rected graph and does not take into account the priority
relationship between task nodes. In the problem of machine
scheduling, Zhang modeled the job shop scheduling problem
as a directed acyclic graph (DAG) and modified the graph
isomorphism network to deal with directed graphs [19]. But
the problem it solves is different from the MRTA problem
we studied. In [10], a DRL method is proposed for the data
cluster scheduling problem in cloud computing. It also uses
DAGs to describe the time dependence between its tasks.

A GNN dedicated to the scheduling problem is designed to
extract different types of embedding. We get inspiration from
it, improve its GNN and apply it to the MRTA problem.

At present, there is not much work to use deep reinforce-
ment learning in MRTA problems. In [3], they introduce an
algorithm combining graph attention network and imitation
learning to solve the MRTA in manufacturing. However, this
work focuses on the problem of the single-task robots (ST),
single-robot tasks (SR), and time-extended allocation (TA)
with cross-schedule dependencies [XD], so its method can
not be directly applied to our problem.

III. PROBLEM STATEMENT

In the problem, we consider a set of task groups g =
{g1, ...,gn}. There are also a group of robots r = {r1, ...,rm}.
Each task group is composed of a group of tasks. Task group
gi has a group of tasks gi =

{
t i
1, ..., t

i
l

}
. Each task t i

j has
an estimated total workload dt i

j
, which represents the time

required for one robot to complete the task under normal
conditions. There is a priority between tasks in the task
group, which represents the process to complete the action.
The priority between tasks makes it possible for each task
to have one or more predecessor and successor tasks [7].
A task cannot be executed until all its predecessor tasks
are completed. Each robot can only perform one task at a
time, and each task requires multiple robots to form a robot
coalition to perform. Robot coalition Ci

j used to execute task
t i

j. Robots in the coalition contribute equally to the task. But
robots do not have to execute the task at the same time, they
only need to complete the assigned part and then move on
to the next assigned task.

When robots form a coalition to execute tasks, the exe-
cution time of robots in the coalition is affected by various
factors, so when the task is completed is uncertain. In this
MRTA problem, the execution time of the robot is affected
by the following factors:

• The execution time of each robot is uncertain because
each robot will encounter various uncertain situations
when performing tasks so the time required for them
to complete the same workload is not necessarily the
same.

• Although the workload of robots in the coalition is
the same, the execution time of robots is affected by
the number of robots in the coalition. In reality, the
more robots in the coalition, the higher the efficiency
is not necessarily. When there are too many robots in
the coalition, the time for robots to perform tasks may
increase due to congestion.

The goal is to find an allocation strategy to minimize
the average completion time of task groups. The reason for
choosing this goal is to reduce the running time of the whole
multi-robot system and to reduce the resources consumed by
the robot. Due to the uncertainty of the execution time of
the robots and the priority between the tasks, the start time

Figure 1. Overall framework of proposed method.

of the future task depends on the actual completion time of
the previous predecessor task. So a single-shot allocation is
not enough [24].

IV. PROPOSED METHOD

In this section, we will introduce our method. Firstly,
we model the task group as DAG, and then based on this,
we model the MRTA problem as the MDP. Finally, we
introduce the design of the scheduler, which includes GNN
and policy network. Figure 1 shows the overall framework
of the proposed method. The state information is first input
to GNN, the embedded vector output by GNN is input to the
policy network, and the policy network outputs the action to
the environment. The reason why GNN is used to process
state information is that the policy network cannot directly
process the arbitrary number of task and task groups, while
GNN can process any number of DAGs and encode the
information in DAGs as embedded vectors.

A. Model Task Group as DAG

For a task group, we use a directed acyclic graph Gi =
(t,E) to represent the relationship between tasks in the task
group gi. Node t corresponds to tasks, and edge E represents
priority constraints between tasks. The directed edge e jk ∈ E
indicates that task t i

k should complete before executing task
t i

j. Figure 2 shows the directed acyclic graph of the example
in the introduction. In the graph G1, t1

1 is a parts transporting
task, t1

2 represents the part assembly, t1
3 and t1

4 corresponds to
the tasks of packing and shipping products.

Figure 2. A directed acyclic graph G1 of task group g1.

B. Formulate Problem as Markov Decision Process

Solving an MRTA problem instance can be regarded as
determining the robot coalition for each task at different
times. Based on this, we formulate the problem as a Markov
decision process. It includes four elements: state, action, state
transition and reward.

• State: the state sk at the decision step k includes DAGs
representing the unfinished task groups, the current
executable task list, and the list of available robots.
The state of task t i

l is represented by feature vectors
xi

v = (w1,w2,qt i
v
). Where w1 represents the unfinished

workload of the task, w2 represents the total workload,
and qt i

v
represents the number of robots currently work-

ing on the task. The executable task list records which
tasks can be executed at present. The list of available
robots gives the number of available robots.

• Action: action ak taken in the state sk represents a part
of the task allocation scheme. The scheduling decision
is decomposed into a set of two-dimensional action
sequences (t, p), t and p represent the output of the next
task to be executed and the number of parallel robots of
the task group in which the task is located respectively.
According to the number of parallel robots in the task
group, the number of robots assigned to the task can be
determined. This design can reduce the space of action
that must be explored and optimized during training
[10].

• State transition: update the node state and list informa-
tion in DAGs according to the action. If all tasks in
the task group have been completed, remove the DAG
corresponding to the task group from the current state.

• Reward: the goal of reward R is to minimize the average
completion time of all task groups. We set the reward
function obtained after the ak as:

R =−(dk −dk−1)Jk (1)

dk represents the time corresponding to the decision step
k, and Jk represents the number of task groups that the
robot has not completed in time [dk−1,dk). According

Figure 3. An example of using GNN with hierarchical attention mechanism to generate embedding vectors at different levels.

to little’s law [25], it effectively minimizes the average
completion time of all task groups.

C. GNN with hierarchical attention mechanism

In order to extract the features in DAGs, we added a hierar-
chical attention mechanism to the GNN dedicated to schedul-
ing [10]. The design of the GNN is based on two intuitions
inspired by Yang’s work [26]: firstly, MRTA instances have
a hierarchical structure (tasks form task groups, task groups
form an MRTA instance). Therefore, when processing input
state information, we build the representation of tasks, then
aggregate the representation of tasks into the representation
of task groups, and finally aggregate the representation of
task groups into a global representation. Second, even the
same task or task group may have different importance in
different MRTA instance. So we add a hierarchical attention
mechanism to GNN. GNN outputs three different levels
of embedding vectors: task embedding vector, task group
embedding vector, and global embedding vector. Figure 3
shows a simple example of generating embedding vectors
using GNN.

Task embedding vector can capture information about
tasks and their successors. To calculate all task embedding
vectors, it is necessary to carry out multiple times messages
passing steps starting from the task node with the lowest
priority of DAG. In each message passing step, the task node
aggregates the information from all its successor task nodes,
and its embedded vector is expressed as follows:

hi
v = MLPθ1

 ∑
u∈S(t i

v)

αuvMLPθ2

(
hi

u
)+MLPθ3

(
xi

v
)

(2)

Where hi
v is the task embedding vector of task node t i

v in
the DAG Gi, MLPθ1 (•), MLPθ2 (•) and MLPθ3 (•) are multi-
layer perceptron (MLP) ; S(t i

v) represents the set of successor

task nodes of task node t i
v. αuv is the attention coefficient.

Used to indicate the importance of successor tasks. The
attention coefficient is calculated as follows:

αuv =
exp
(
LeakyReLU

(
aT [hi

u||MLPθ3

(
xi

v
)
]
))

∑k∈S(v) exp
(
LeakyReLU

(
aT [hi

k||MLPθ3 (x
i
v)]
)) (3)

Where a is a learnable weight vector, || means that the
two vectors are concatenated. LeakyReLU Nonlinear with
negative input slope α= 0.2 .

Task group embedding vector aggregates information for
all tasks in a task group. The task group embedding vector
regards all task nodes in a task group as its successor task
nodes. Similar to (2), the embedding vector of task group gi
is calculated as follows:

yi = MLPθ4

(
∑

u∈G(i)
β

i
uMLPθ5

(
hi

u
))

(4)

Where β i
u is the attention factor. Unlike the attention

mechanism in the task, this attention is used to determine
the importance of tasks to the entire task group. It is similar
to using the attention mechanism to extract words that are
important to a sentence [26]. So the calculation of the
attention coefficient is different.

β
i
u =

exp
(
LeakyReLU

(
aT

DAGhi
u
))

∑k∈Gi exp
(
LeakyReLU

(
aT

DAGhi
k

)) (5)

Where aDAG is the weight vector, which is randomly
initialized and learned randomly during the training process.

The global embedding vector z summarizes the informa-
tion of all task group embedding vectors. z is calculated the
same way as those of task group embedding vectors.

D. Policy Network

To select the appropriate action, the embedding vectors
output from the GNN also needs to be processed. Since
actions are divided into tasks and the number of robots, they
need to be calculated separately.

• Task node selection: for the task node t i
v in DAG graph

Gi, first calculate the score of t i
v:

λ
i
v = MLPθ6

(
hi

v,y
i,z
)

(6)

The function of MLP is to map the input embedding
vector to the scalar value, and λ i

v represents the score
of choosing task node t i

v. Then input the score into the
softmax function to calculate the probability of selecting
task node t i

v:

prob
(
t i
v
)
=

exp
(
λ i

v
)

∑k∈Φ exp
(

λ
G(k)
k

) (7)

Where G(k) is the task group to which task tk belongs.
Φ is the set of all executable tasks.

• Number of robots: For each DAG Gi, the policy network
also calculates its score firstly:

η
i
p = MLPθ7

(
yi,z, p

)
(8)

Where p is the number of robots allocated to Gi. Sim-
ilar to task node selection, the policy network applies
the softmax function to these scores to calculate the
probability of selecting different numbers of the robot.

E. Training Algorithm

We use the REINFORCE algorithm [27] to train the pol-
icy network. REINFORCE is a well-known policy gradient
method and has been widely used in various fields. It updates
network parameters using the stochastic gradient ascent al-
gorithm based on the observed returns during training, which
increases the probability of actions that increase the reward.

V. EXPERIMENT

A. Experimental setup

The experiment is completed on a computer equipped with
Intel i9-9900k CPU and NVIDIA 3090 graphics card with
24GB memory.

In order to generate the random MRTA problem instance,
we use the method of Suslova et al. [7] to generate the
directed acyclic graph of the task group. The number of task
nodes in the directed acyclic graph is randomly selected from
2 to 15. The estimated total workload of each task is sampled
uniformly from the full interval of [1000,10000]. It does not
take time for the robot to transfer between tasks in the task
group. And the time for robots to transfer between tasks
belonging to different task groups is 1000.

To simulate the uncertainty of robot execution time, firstly,
δ (dt i

j
, |Ci

j|) is used to estimate the execution time of robots

in the coalition, which is deterministic. |Ci
j| is the number of

TABLE I
AVERAGE TASK GROUP COMPLETE TIME OF VARIOUS METHODS IN

DIFFERENT SCALES
(SCALE:NUMBER OF ROBOTS ×NUMBER OF TASK GROUP)

Scale Method
Random GCH MinInterfere Ours

5×5 59083.2 51706.7 55607.6 49079.7
10×10 82585.3 72879.3 51951.2 49807.2
15×15 108738.0 91227.8 51648.9 49337.5
20×20 133422.5 106195.0 50971.3 48895.8

robots in coalition Ci
j. Then, Gaussian distribution is used to

model the uncertainty of robot execution time. In coalition
Ci

j, the execution time of each robot follows the following
distribution:

drm
t i
j
∼ N

(
δ

(
dt i

j
, |Ci

j|
)
,µ
)

(9)

µ is a constant, and drm
t i
j

is the actual execution time for

robot rm to perform task t i
j. We use homogeneous robots to

perform tasks to simplify experiments.
The code implementation of the scheduler uses Tensor-

Flow [28]. For each problem scale, we train the scheduler
for 12000 iterations. All multi-layer perceptrons contain three
hidden layers. We used Adam optimizer [29] for gradient
descent. In the training process, we use the Adam optimizer
to set the constant learning rate lr = 1×10−3.

To verify the performance of the proposed method in solv-
ing the MRTA problem, we compare the proposed method
with three methods. They are random selection algorithm
(random), greedy constructive heuristic (GCH) [6] and Min-
Interfere [18]. The random selection algorithm randomly
selects the task assignment robots from the executable tasks.
The main idea of the greedy constructive heuristic is to
calculate the impact of all executable tasks on the objective
function and assign all available robots to the tasks with the
smallest objective function increment. Mininterfere allows
as many tasks as possible to start as soon as possible, so
the robot will be relatively evenly allocated to each task.
Since Mininterfere does not take priority constraints into
account in its design, we refer to the method of [6] to enable
Mininterfere to handle priority constraints.

B. Results

In the first group of experiments, we train and test
four groups of problem examples with different scales. We
randomly generate 50 examples for each scale to test and
compare the average completion time of task groups of
solutions generated by different methods. The final results
are shown in table I. The first column indicates the number
of robots and task groups under the corresponding problem
scale. It can be observed from table I that the quality of
solutions generated by our proposed method is better than
that of the baseline method under different scales. When the

TABLE II
AVERAGE TASK SOLUTION TIME

Scale Method
Random GCH MinInterfere Ours

5×5 1.3ms 1.4ms 1.3ms 5.0ms
10×10 1.4ms 1.4ms 1.4ms 5.4ms
15×15 1.4ms 1.6ms 1.7ms 5.8ms
20×20 1.4ms 1.9ms 1.8ms 5.9ms

Figure 4. Generalization result of our method in larger scales.

number of robots and task groups is small, the performance
gap of all methods is small. However, with the increase
of the number of robots and task groups, the performance
of the baseline method begins to decline rapidly, and our
method can still maintain good performance. In particular,
the random selection algorithm and GCH assign all robots to
one task, which will reduce the execution efficiency of robots
when the number of robots increases. These results show that
our method can generate better solutions for MRTA problems
of different scales, especially in large-scale problems.

Then we tested the computational efficiency of our
method. We calculated the average solution time required
for each task. The final results are in table II. It can be
seen that the average task solution time does not change
significantly with the expansion of the scale, indicating that
our method is less affected by the problem scale. Although
the solution time of our method is relatively long compared
with other baseline methods, it is acceptable considering that
the solution time is still within a reasonable range and the
performance is improved.

Finally, we evaluated the generalization performance of the
proposed method. In this experiment, we use the strategy
of training in the scale of 20 robots and 20 task groups
to solve the MRTA instances with more task groups and
observe the average task completion time. We compare the
proposed method with the best performing baseline method.
The number of robots is fixed at 20, and the number of
task groups ranges from 25 to 80, and the number of task

groups increases at intervals of 5. The final results are
shown in Figure 4. It can be observed that even solving
the problems larger than the training scale, the performance
of the proposed method is still better than that of the best
baseline method. This shows that the proposed method can
gain experience in the process of training, to deal with the
state not seen in training, indicating the proposed method
has a certain generalization ability. The generalization ability
enhances the generality of the method and reduces the
time cost of training on the corresponding scale, which is
conducive to the application in practical MRTA problems.

VI. CONCLUSION

We present a method based on DRL to solve the MRTA
problem with priority constraints and uncertain execution
time of robots. Firstly, we use the DAG to describe the
priority constraints and establish a Markov decision process
for the MRTA problem. Then a graph neural network with the
hierarchical attention mechanism is proposed, and a policy
network is designed based on it. Trained policy networks can
generate efficient solutions for MRTA problems of different
scales. The experimental results show that the proposed
method is superior to the existing heuristic methods. Fu-
ture research will extend the method to MRTA with more
constraints.

REFERENCES

[1] S. Ramchurn, A. Farinelli, K. Macarthur, M. Polukarov, and N. Jen-
nings, “Decentralised coordination in robocup rescue,” The Computer
Journal, 2009.

[2] P. Fazli, A. Davoodi, and A. K. Mackworth, “Multi-robot repeated area
coverage,” Autonomous robots, vol. 34, no. 4, pp. 251–276, 2013.

[3] Z. Wang and M. Gombolay, “Learning scheduling policies for multi-
robot coordination with graph attention networks,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4509–4516, 2020.

[4] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task
allocation problems with temporal and ordering constraints,” Robotics
and Autonomous Systems, vol. 90, pp. 55–70, 2017.

[5] G. A. Korsah, B. Kannan, B. Browning, A. Stentz, and M. B. Dias,
“xbots: An approach to generating and executing optimal multi-robot
plans with cross-schedule dependencies,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 115–122.

[6] E. Bischoff, F. Meyer, J. Inga, and S. Hohmann, “Multi-robot task al-
location and scheduling considering cooperative tasks and precedence
constraints,” in 2020 IEEE International Conference on Systems, Man,
and Cybernetics (SMC). IEEE, 2020, pp. 3949–3956.

[7] E. Suslova and P. Fazli, “Multi-robot task allocation with time window
and ordering constraints,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 6909–
6916.

[8] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[9] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for com-
binatorial optimization: a methodological tour d’horizon,” European
Journal of Operational Research, vol. 290, no. 2, pp. 405–421, 2021.

[10] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proceedings of the ACM special interest group on data
communication, 2019, pp. 270–288.

[11] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495–1512, 2013.

[12] S. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and N. R.
Jennings, “Coalition formation with spatial and temporal constraints,”
in Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 3-Volume 3, 2010, pp. 1181–
1188.

[13] E. G. Jones, M. B. Dias, and A. Stentz, “Time-extended multi-robot
coordination for domains with intra-path constraints,” Autonomous
robots, vol. 30, no. 1, pp. 41–56, 2011.

[14] E. Nunes, M. McIntire, and M. Gini, “Decentralized allocation of tasks
with temporal and precedence constraints to a team of robots,” in
2016 IEEE International Conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR). IEEE, 2016, pp.
197–202.

[15] N. Hooshangi and A. A. Alesheikh, “Agent-based task allocation
under uncertainties in disaster environments: An approach to interval
uncertainty,” International journal of disaster risk reduction, vol. 24,
pp. 160–171, 2017.

[16] R. Stranders, F. M. Delle Fave, A. Rogers, and N. Jennings, “U-gdl:
A decentralised algorithm for dcops with uncertainty,” 2011.

[17] E. F. Flushing, L. M. Gambardella, and G. A. Di Caro, “A math-
ematical programming approach to collaborative missions with het-
erogeneous teams,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2014, pp. 396–403.

[18] Y. Zhang and L. E. Parker, “Multi-robot task scheduling,” in 2013
IEEE International Conference on Robotics and Automation. IEEE,
2013, pp. 2992–2998.

[19] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learning
to dispatch for job shop scheduling via deep reinforcement learning,”
Advances in Neural Information Processing Systems, vol. 33, pp.
1621–1632, 2020.

[20] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[21] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning com-
binatorial optimization algorithms over graphs,” Advances in neural
information processing systems, vol. 30, 2017.

[22] S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and
A. Singh, “Learning heuristics over large graphs via deep reinforce-
ment learning,” arXiv preprint arXiv:1903.03332, 2019.

[23] Z.-H. Fu, K.-B. Qiu, and H. Zha, “Generalize a small pre-trained
model to arbitrarily large tsp instances,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 8, 2021, pp. 7474–
7482.

[24] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and
J. Bohg, “Dynamic multi-robot task allocation under uncertainty and
temporal constraints,” Autonomous Robots, vol. 46, no. 1, pp. 231–247,
2022.

[25] D. Chhajed and T. J. Lowe, Building intuition: insights from basic
operations management models and principles. Springer Science &
Business Media, 2008, vol. 115.

[26] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchi-
cal attention networks for document classification,” in Proceedings of
the 2016 conference of the North American chapter of the association
for computational linguistics: human language technologies, 2016, pp.
1480–1489.

[27] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992.

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}: A system
for {Large-Scale} machine learning,” in 12th USENIX symposium on
operating systems design and implementation (OSDI 16), 2016, pp.
265–283.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

