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Abstract. Monocular depth estimation (MDE) methods are often ei-
ther too computationally expensive or not accurate enough due to the
trade-off between model complexity and inference performance. In this
paper, we propose a lightweight network that can accurately estimate
depth maps using minimal computing resources. We achieve this by de-
signing a compact model architecture that maximally reduces model
complexity. To improve the performance of our lightweight network,
we adopt knowledge distillation (KD) techniques. We consider a large
network as an expert teacher that accurately estimates depth maps
on the target domain. The student, which is the lightweight network,
is then trained to mimic the teacher’s predictions. However, this KD
process can be challenging and insufficient due to the large model ca-
pacity gap between the teacher and the student. To address this, we
propose to use auxiliary unlabeled data to guide KD, enabling the stu-
dent to better learn from the teacher’s predictions. This approach helps
fill the gap between the teacher and the student, resulting in improved
data-driven learning. Our extensive experiments show that our method
achieves comparable performance to state-of-the-art methods while using
only 1% of their parameters. Furthermore, our method outperforms pre-
vious lightweight methods regarding inference accuracy, computational
efficiency, and generalizability. Code is available on https://github.
com/JunjH/Boosting-Light-Weight-Depth-Estimation.

Keywords: Depth estimation · lightweight network · Knowledge distil-
lation · Auxiliary data.

1 Introduction

Monocular depth estimation has gained widespread attention as an economical
and convenient alternative to depth sensors, providing applications in obstacle
avoidance [23], simultaneous localization and mapping (SLAM) [37,11], robot
navigation [25]. With the rapid development of deep learning in recent years,
significant progress has been made in this field.

https://github.com/JunjH/Boosting-Light-Weight-Depth-Estimation
https://github.com/JunjH/Boosting-Light-Weight-Depth-Estimation


2 J.Hu et al.

0 50 100 150 200 250
Params (M)

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

Ours.

Ours.

Hu et al.

Lee et al.

Chen et al.

Fu et al.

laina et al.

Wofk et al.

Nekrasov et al.

Fig. 1. The total parameters and accuracy of different methods for depth estimation.
As seen, there is a trade-off between accuracy and model complexity. Our method
achieves competitive performance compared with state-of-the-art methods with just a
tiny portion (1%) of parameters.

Most of the previous works mainly focused on the improvement of estimation
accuracy [10,18,15]. However, the depth estimation has to be both computation-
ally efficient and accurate. It is essential for real-world applications with limited
computation resources. Although several prior works have attempted to improve
the computational efficiency with lightweight networks [39,27], they often come
at the cost of significantly decreased inference accuracy. There is an urgent need
for MDE to achieve satisfactory performance while maintaining good efficiency.

In this paper, we propose a novel approach to monocular depth estimation
that aims to achieve high inference accuracy with minimal hardware resources.
To achieve this goal, we introduce a lightweight network with a compact architec-
ture design that reduces the model complexity while maximizing the accuracy of
the depth estimation. Unlike traditional encoder-decoder architectures, our ap-
proach compresses the feature maps extracted by multi-layers of the encoder to a
fixed number of channels at each scale and then upsample them to the same res-
olution. These feature maps are then concatenated and fed to two convolutional
layers to produce the final depth map. Our network, built on MobileNet-v2, has
only 1.7M parameters, making it one of the most lightweight networks in the
literature. By minimizing the model complexity, we aim to strike a balance be-
tween accuracy and computational efficiency, making our approach well-suited
for real-world applications with limited hardware resources.

We next describe our approach to training the lightweight network using
knowledge distillation (KD) [31]. Specifically, we leverage a large network trained
on the target domain X to serve as an expert teacher. Given any input image
from X , the teacher network outputs the corresponding depth map. To improve
the performance of the lightweight network, we propose a novel approach to pro-
mote KD using auxiliary data. Our approach is motivated by two considerations.
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Fig. 2. The left side shows the depth histogram of NYU-v2 training set and ScanNet
validation set, respectively. Both of the two histograms exhibit a long-tailed distribu-
tion and they are highly similar. The right side shows the configuration of knowledge
distillation (KD) considered in this paper. (a) is the standard method that applies KD
with the original labeled set. (b) applies KD with only the auxiliary unlabeled set. (c)
applies KD with the original labeled set and the auxiliary unlabeled set. (d) applies
KD with both the original and auxiliary labeled set.

First, since depth estimation is a non-linear mapping from RGB space to depth
space, KD can be seen as an approximation of this mapping in a data-driven
way. Therefore, the more high-quality data we have, the more accurately we can
approximate the mapping. Second, in depth estimation, we find that auxiliary
data can be more easily collected since many real-world scenarios share similar
scene scales and demonstrate similar depth histograms. For example, two popu-
lar indoor benchmarks, NYU-v2 and ScanNet, exhibit similar long-tailed depth
distributions and depth ranges, as shown in Fig. 2. This observation motivates
our proposal to use auxiliary data to guide KD, which enables the lightweight
network to leverage additional training signals and improve its accuracy.

Our study focuses on two scenarios: labeled and unlabeled data. In the labeled
case, ground truths can be obtained using depth sensors such as Kinect. In the
unlabeled case, auxiliary data can be collected using a visual camera in scenarios
with similar scene scales. Therefore, leveraging auxiliary data is practical for
improving the performance of depth estimation in real-world applications. In
this paper, we propose to take the following learning strategies for these two
specific cases. To this end, we propose the following learning strategies for these
two cases:

– When auxiliary data is unlabeled, we first train the teacher on the original
labeled set and then apply KD with both the original labeled set and the
auxiliary unlabeled set to improve the student.

– When auxiliary data is labeled, we first train the teacher on the combined
original and auxiliary sets, which provides a more discriminative teacher. We
then apply KD to further enhance the student with the mixed dataset.

Using auxiliary data can effectively improve the performance of lightweight
depth estimation, as demonstrated in Fig. 1. Our proposed method achieves
comparable results to state-of-the-art methods, while utilizing only 1% of the
parameters, and outperforms other lightweight approaches by a large margin. To
evaluate the effectiveness of our approach, we conduct a series of experiments
and confirm that:
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– Even without access to the original training set, our approach can still be
effective if enough auxiliary unlabeled samples are available and they have
similar scene scales to the original training samples.

– Combining the original trained set and auxiliary unlabeled set in KD can
significantly improve performance by better bridging the gap between the
teacher and student.

– Directly training the lightweight network with a mixed dataset of both origi-
nal and auxiliary labeled data has limited improvement due to its low capac-
ity. However, the two-stage learning strategy of first training a larger teacher
and then applying KD is more effective in this case.

2 Related Work

2.1 Monocular Depth Estimation

In previous studies, monocular depth estimation has been addressed in a su-
pervised learning approach by minimizing the pixel-wise loss between the pre-
dicted and ground truth depth [8,15]. Various network architectures have been
proposed, including the basic encoder-decoder network [18], networks with skip
connections [15], dilated convolution [10], and pyramid pooling [24], all of which
have shown improved performance. Additionally, the problem can be formulated
as an unsupervised learning task, where the geometry consistency of multi-view
images is taken into account [44]. However, the performance of unsupervised
approaches still lags behind supervised methods.

Real-time depth estimation has also been investigated in several studies. For
example, lightweight networks based on MobileNet and MobileNet-v2 were intro-
duced for fast depth estimation in [39,27], using traditional supervised learning
methods. Additionally, an unsupervised approach for depth estimation was pro-
posed in [20] using a lightweight network with recurrent modules. While these
small networks demonstrate superior computation speed, their accuracy tends
to be significantly lower compared to larger networks.

2.2 Learning with Auxiliary Data

To improve the performance of learning-based methods, it has become increas-
ingly popular to leverage additional labeled training datasets. This strategy has
been shown to be effective in image recognition on ImageNet, with approaches
that use extra data achieving a top-1 accuracy that is greater than 5% higher
than methods that do not utilize additional data [28,9].

In the field of depth estimation, this strategy has also been employed. For
example, Chen et al. [3] used six auxiliary datasets to handle challenging scenar-
ios such as low light, reflective surfaces, and spurious edges, resulting in superior
performance for indoor depth estimation. Additionally, some methods have used
multi-domain datasets, such as indoor and outdoor scenes, as well as synthe-
sized and real-world images, to learn a universal network [30,19,42,1]. However,
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Fig. 3. Diagram of the proposed lightweight network.

these methods often do not account for the scale differences across datasets, and
can only estimate a normalized depth map. In contrast, in this paper, we focus
specifically on indoor depth estimation and aim to reconstruct the true scale of
the scene.

It is worth noting that auxiliary unlabeled data is also commonly leveraged in
image recognition under the setting of semi-supervised learning [38,40]. In image
recognition, auxiliary data must be carefully collected such that its semantic
attribute corresponds to the model’s predicted categories. In the case of depth
estimation, however, auxiliary data is easier to collect in practical scenarios, as
it can be obtained simply by capturing additional images with a visual camera.

Overall, leveraging additional labeled and unlabeled data is a promising strat-
egy for improving the performance of depth estimation methods.

2.3 Knowledge Distillation

In recent years, knowledge distillation has been extensively studied, originally
proposed to transfer knowledge from a large teacher model to a smaller stu-
dent model in image recognition [12]. However, recent studies have attempted
to improve the effectiveness of knowledge distillation. Mirzadeh et al. proposed
using an assistant network between the teacher and student [26], while other
works have employed intermediate features to guide student learning [16,21].
The strategy of distilling from multiple teachers has also been proposed [36].
Additionally, some methods augment the training set using techniques such as
GANs [33] or leveraging extra data on the cloud [41].

While a few works have applied knowledge distillation to depth estimation
[29,1], it is unclear how auxiliary data can improve knowledge distillation for
this task. In contrast, we propose utilizing auxiliary labeled and unlabeled data
to improve knowledge distillation for depth estimation, based on the observation
that many scenarios have similar scene scales in the real world.

3 lightweight Network

Most previous works for pixel to pixel regression tasks use a symmetric encoder-
decoder network [18,22,14]. However, these networks can be computationally in-
efficient, requiring significant GPU memory during computation. Furthermore,
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Table 1. The details of model parameters for the teacher and student.

Network Teacher Student
Backbone ResNet-34 MobileNet-v2
Encoder (M) 21.3 1.6
Decoder (M) 1.4 0.3
Total (M) 21.9 1.7

research on CNNs has shown that there is a high degree of redundancy within
them, with multiple filters capturing similar feature representations [2]. To im-
prove the efficiency of depth estimation networks, we propose an extremely com-
pact network architecture in this paper.

The network architecture we propose is depicted in Fig.3 and is based on a
lightweight design that achieves high inference efficiency. Specifically, given a set
of feature maps extracted by encoder blocks, we first apply channel-wise atten-
tion [13] to attribute weights to each feature map. We then fuse them using the
convolutional layer and compress them to a fixed number of channels (16 chan-
nels) to reduce the model’s complexity. For features extracted with an encoder
at multiple scales, we apply the above operation at each scale, and the outputted
feature maps are upsampled by factors of ×2, ×4, ×8, and ×16, respectively.
Finally, we concatenate them and feed them into two 5× 5 convolutional layers
to obtain the final depth map.

We adopt ResNet-34 and MobileNet-v2 as backbone networks for the teacher
and student, respectively, resulting in 21.9 M and 1.7 M parameters, respectively.
The detailed information is given in Table. 1.

4 Promoting KD with Auxiliary Data

Standard KD We adopt the classical knowledge distillation framework, which
involves a well pre-trained teacher network on a labeled set X . The student net-
work is trained using the ground truth depths and estimations from the teacher
network as supervision. We denote the teacher and student networks as Nt and
Ns, respectively. The loss function used to train the student network is defined
as follows:

L =
1

|X |
∑

xi,gi∈X
(λL(Ns(xi), Nt(xi)) + (1− λ)L(Ns(xi), gi)) (1)

Here, gi represents the ground truth depth for input xi, L is an error measure
between two depth maps, and λ is a hyperparameter that balances the two loss
terms. To compute L, we use the error measure proposed in [15], which takes
into account depth, gradient, and normal losses.

Learning with Auxiliary Data We hypothesize that auxiliary data can be
effective for knowledge distillation (KD) in depth estimation, as long as it shares
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Fig. 4. Results of the student network on NYU-v2 test set. From left to right: the
result of the student that learned via KD with the training set of ImageNet, the result
with supervised learning on NYU-v2 training set, and the result of the student that
learned via KD with the training set of ScanNet.

similar scene scales. To verify this assumption, we conducted a preliminary ex-
periment using a teacher network trained on the NYU-v2 dataset and performing
KD with cross-domain datasets.

The loss function used for training the student is defined as:

L =
1

U
∑
uj∈U

λL(Ns(uj), Nt(uj)) (2)

where U denotes the unlabeled set, Ns and Nt are the student and teacher
networks, respectively, and L is the error measure between two depth maps.

To evaluate the effectiveness of using auxiliary data, we selected two datasets
with different characteristics: ImageNet, an out-of-distribution dataset, and Scan-
Net, another indoor dataset with similar scene scales. Note that only RGB images
from these datasets were used.

As shown in Fig. 4, our experiment demonstrated that using ScanNet as
auxiliary data resulted in slightly better performance than the original training
data alone, while using ImageNet led to a 15.5% accuracy drop. These find-
ings confirm our hypothesis that KD with unlabeled data is effective for depth
estimation, provided that the data has similar scene scales to the original data.

Moreover, we found that incorporating both the original training data and
auxiliary data further improves the performance of the lightweight network. We
considered two scenarios for using auxiliary data, which are discussed in detail
in Sec. 5.1.

The use of auxiliary unlabeled data: The teacher network, denoted as
Nt, is trained on the original labeled set X . During the knowledge distillation
process, we have access to both X and an auxiliary unlabeled set U . The loss
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function used to train the student network is formulated as follows:

L =
1

X
∑

xi,gi∈X
(λL(Ns(xi), Nt(xi)) + (1− λ)L(Ns(xi), gi))+

1

U
∑
uj∈U

(L(Ns(uj), Nt(uj))
(3)

The use of auxiliary labeled data: In this case, the auxiliary data U ′

is fully labeled, which means that we have access to both the input images
and their corresponding ground truth depth maps. We use this data to train
a teacher network, denoted as N ′

t , on a mixed dataset, i.e., X ∪ U ′
. Since the

teacher network is trained on a larger and more diverse dataset, it is expected
to be more discriminative than the one trained on X only.

Next, we use the teacher network N ′
t to perform KD on a student network

Ns, which is learned using both the labeled set X and the auxiliary labeled set
U ′. The loss for the student is formulated as:

L =
1

X
∑

xi,gi∈X
(λL(Ns(xi), N

′
t(xi)) + (1− λ)L(Ns(xi), gi))+

1

U ′

∑
uj ,gj∈U ′

(λL(Ns(uj), N
′
t(uj)) + (1− λ)L(Ns(uj), g

′
j))

(4)

where g′j denotes ground truth of uj .

5 Experiments

5.1 Experimental Setting

We conducted all experiments on the NYU-v2 dataset [32], which is widely used
in previous studies and contains various indoor scenes. We followed the standard
preprocessing procedure [8,18,22]. Specifically, we used the official splits of 464
scenes, with 249 scenes for training and 215 scenes for testing. This resulted
in approximately 50,000 unique pairs of images and depth maps with a size of
640×480 pixels. To reduce the computational complexity, we resized the images
down to 320×240 pixels using bilinear interpolation and then cropped their
central parts to 304×228 pixels, which served as inputs to the networks. The
depth maps were resized to 152×114 pixels. For testing, we used the same small
subset of 654 samples as in previous studies.

To obtain auxiliary data, we randomly selected 204,000 images from 1,513
scenarios of the ScanNet dataset [6].

Implementation Details We adopt ResNet-34 as the teacher network and
MobileNet-v2 as the student network. Both networks are trained for 20 epochs,
and the loss weight λ is set to 0.1. We initialize the encoder module in the
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Fig. 5. (a) Results of the teacher and student network trained with supervised learning.
The blue color denotes results trained on X and the green color denotes results with
X ∪ U ′. (b) Results of the student network learned with KD. The blue color denotes
results of Ns(X ), Ns(U) and Ns(X ∪ U), respectively, and the green color denotes
results of Ns(X ∪ U ′).

network with a model pre-trained on the ImageNet dataset [7], while the other
layers are initialized randomly. We employ the Adam optimizer with an initial
learning rate of 0.0001, a weight decay of 0.0001, and β1 = 0.9 and β2 = 0.999.
We reduce the learning rate to 10% for every 5 epochs.

5.2 Quantitative Evaluation

To simplify our notation, we use the following conventions throughout the paper.
Specifically, we use X , U , and U ′ to refer to the NYU-v2 dataset, the unlabeled
ScanNet dataset, and the labeled ScanNet dataset, respectively. The teacher
models trained on X and X ∪ U ′ are denoted as Nt(X ) and Nt(X ∪ U ′), respec-
tively. Similarly, the student models trained on X , X ∪U , and X ∪U ′

are denoted
as Ns(X ), Ns(X ∪ U), and Ns(X ∪ U ′

), respectively.

Performance without KD We first evaluate the teacher and student network
with supervised learning. We perform experiments on X and the mixed dataset
X ∪U ′, respectively. The results are shown in Fig. 5 (a). It can be observed that
increasing the amount of labeled data leads to performance improvements for
both the teacher and student networks, with the teacher improving from 0.845
to 0.874 and the student improving from 0.802 to 0.825. However, a significant
performance gap still exists between the teacher and student networks, with the
teacher outperforming the student, e.g., 0.845 vs 0.802 and 0.874 vs 0.825.

Performance with KD We conducted a series of experiments to validate
our proposed method. We began by training the teacher networks Nt(X ) and
Nt(X ∪U ′

) on the datasets X and X ∪U ′
, respectively. Subsequently, we trained

the student network in four different settings:
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Table 2. Quantitative comparisons between our method and other approaches built
on large networks on the NYU-v2 dataset.

Method Backbone Params (M) ↓ RMSE ↓ REL ↓ δ1 ↑
Laina et al. [18] ResNet-50 60.6 0.573 0.127 0.811
Hu et al. [15] ResNet-50 63.6 0.555 0.126 0.843
Zhang et al. [43] ResNet-50 95.4 0.497 0.121 0.846
Fu et al. [10] ResNet-101 110.0 0.509 0.115 0.828
Hu et al. [15] SeNet-154 149.8 0.530 0.115 0.866
Chen et al. [4] SeNet-154 210.3 0.514 0.111 0.878
Chen et al.[3] ResNet-101 163.4 0.376 0.098 0.899
Ours Ns(X ∪ U) MobileNet-V2 1.7 0.482 0.131 0.837
Ours Ns(X ∪ U

′
) MobileNet-V2 1.7 0.461 0.121 0.855

1. Using a trained teacher network on the original dataset, we applied knowl-
edge distillation with the original training set, i.e., Nt(X ) → Ns(X ).

2. Using a trained teacher network on the original dataset, we applied knowl-
edge distillation with the auxiliary unlabeled set, i.e., Nt(X ) → Ns(U).

3. Using a trained teacher network on the original dataset, we applied knowl-
edge distillation with both the original training set and the auxiliary unla-
beled set, i.e., Nt(X ) → Ns(X ∪ U).

4. Using a trained teacher network on both the original training set and aux-
iliary labeled set, we applied knowledge distillation with the mixed labeled
set, i.e., Nt(X ∪ U ′) → Ns(X ∪ U ′).

The results in Fig. 5 (b) demonstrate a notable performance gap between
the teacher and student networks when standard KD is applied in setting 1),
with a drop in performance from 0.845 to 0.808. Interestingly, using only auxil-
iary unlabeled data in setting 2) leads to even better performance compared to
standard KD. Combining the original training set and auxiliary unlabeled data
in setting 3) results in a significant performance boost.

As shown in Fig.5 (a) for Ns(X ∪ U ′), when auxiliary data is labeled, the
lightweight network’s performance can be improved through supervised learning.
However, due to the small network’s limited capacity, the improvement is modest,
and the network’s performance is still inferior to that trained with KD and
auxiliary unlabeled data, as seen in the result of Ns(X ∪ U) in Fig.5 (b).

Moreover, a more accurate teacher can be learned to further improve the
lightweight network’s performance through KD, as seen in Ns(X ∪ U ′) of Fig. 5
(b).

5.3 Comparison with Previous Methods.

Comparison with Large Networks: Table 2 compares our method against
previous methods built on different backbone networks, ranging from ResNet-50
to SeNet-154, demonstrating a clear trend of accuracy improvement. Notably,
when utilizing only auxiliary unlabeled data, our method achieves comparable
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Fig. 6. Qualitative comparison of different methods for lightweight depth estimation
on the NYU-v2 dataset.

Table 3. Quantitative comparison of lightweight approaches on the NYU-v2 dataset.
The best and the second best results are highlighted in red and blue, respectively.

Method Backbone Params (M) GPU [ms] δ1
Fast-depth [39] MobileNet 3.9 7 0.775
Joint-depth [27] MobileNet-V2 3.1 21 0.790
Ours Ns(X ∪ U) MobileNet-V2 1.7 11 0.837
Ours Ns(X ∪ U

′
) MobileNet-V2 1.7 11 0.855

results to [43] and [15], and even outperforms [10] and [18] with a significantly
smaller model size of only 1.7 M parameters.

In terms of methods utilizing extra labeled data, the best performance in
Table 2 is achieved by [3], where six auxiliary datasets with a total of 120K extra
training data are carefully selected to handle hard cases for depth estimation,
such as spurious edges and reflecting surfaces. While our method uses randomly
selected auxiliary data from the ScanNet dataset, we believe that utilizing similar
carefully selected data could further improve our method’s performance.

Comparison with lightweight Networks: We conducted a comparison
between our proposed method and two previous approaches for lightweight depth
estimation: Fast-depth [39], a traditional encoder-decoder net, and Joint-depth
[27], which jointly learns semantic and depth information. Table 3 presents the
quantitative results of this comparison, which show that our method outper-
forms the other two methods by a significant margin, even with only about half
of the parameters. Specifically, the δ1 accuracy of our method, Ns(X ∪ U), is
83.7%, which outperforms Joint-depth and Fast-depth by 4.7% and 6.2%, re-
spectively. Furthermore, when the auxiliary data is labeled, the improvement is
more significant, as the accuracy of Ns(X ∪U ′) is 85.5%, representing 6.5% and
8% improvement over Joint-depth and Fast-depth, respectively. In addition, the
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Fig. 7. Results of KD that applies Nt(X ) → Ns(X ∪ U) with different number of
training samples from U .

qualitative comparisons in Fig. 6 show that the estimated depth maps of our
method are more accurate and have finer details.

We also compared the GPU time required to infer a depth map from an
input image. To conduct this comparison, we used a computer with an Intel(R)
Xeon(R) CPU E5-2690 v3 and a GT1080Ti GPU card. We calculated the com-
putation time for the other two methods using their official implementations.
The results show that our method infers a depth map using only 11 ms of GPU
time, which is much faster than Joint-depth. However, it is worth noting that
Fast-depth achieves the smallest inference speed at the expense of degradation
of accuracy and demonstrates the worst accuracy among the three methods.

5.4 Effect of Varying the number of Auxiliary Data

We conducted an ablation study to investigate the impact of varying the number
of auxiliary data on the performance of our lightweight network. Specifically, we
used the teacher model trained on the original labeled set and applied knowl-
edge distillation with different numbers of unlabeled samples taken from U . In
our experiments, we evaluated our approach using 11.6K, 22.0K, 40.2K, 67.6K,
153.0K, and 204.2K auxiliary samples.

As shown in Fig. 7, our results indicate that increasing the number of auxil-
iary data samples generally leads to better knowledge distillation performance.
However, we observed diminishing returns after a certain number of samples,
beyond which adding more samples did not yield any additional improvement.

5.5 Cross-dataset Evaluation

To assess the generalization performance of our lightweight model, we conduct a
cross-dataset evaluation on two widely used datasets: SUNRGBD [34] and TUM
[35]. We directly apply our method, Ns(X ∪ U) and Ns(X ∪ U ′), to evaluate
on these datasets without any fine-tuning. Note that the comparison between
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Table 4. The results of different methods on the SUNRGBD dataset. The best and
the second best results are highlighted in red and blue, respectively.

Method RMSE REL δ1
Fast-depth [39] 0.662 0.376 0.404
Joint-depth [27] 0.634 0.338 0.454
Ours Ns(X ∪ U) 0.577 0.338 0.430
Ours Ns(X ∪ U ′) 0.531 0.306 0.446

Table 5. The δ1 accuracy of different methods on the five sequences from TUM dataset.
The best and the second best results are highlighted in red and blue, respectively.

Method 360 desk desk2 rpy xyz
Fast-depth [39] 0.548 0.308 0.358 0.333 0.287
Joint-depth [27] 0.512 0.410 0.441 0.552 0.583
Ours Ns(X ∪ U) 0.615 0.442 0.498 0.611 0.486
Ours Ns(X ∪ U ′) 0.854 0.695 0.772 0.679 0.905

Ns(X ∪ U ′) and other methods may not be entirely fair as our method employs
auxiliary labeled data. However, we include these results to demonstrate the
effectiveness and reliability of utilizing auxiliary data to improve KD in a data-
driven manner. The results for each dataset are presented below.

Results on SUNRGBD The generalization performance of our method is
evaluated on the SUNRGBD dataset, which is commonly used in previous works
for this purpose [17]. Table 4 presents the results, where the best and second
best results are highlighted in red and blue, respectively. Our method achieves
the lowest RMSE and REL error, while Joint-depth outperforms others in δ1
accuracy and ranks second in REL.

Results on TUM We evaluated the generalization performance of our lightweight
depth estimation method on the TUM dataset using five sequences, namely
fr1/360, fr1/desk, fr1/desk2, fr1/rpy, and fr1/xyz, as in [5]. Depth accuracy was
measured by δ1. As shown in Table 5, our method significantly outperforms the
other methods, demonstrating a satisfactory generalization performance.

The average δ1 accuracy for Joint-depth and Fast-depth is 0.494 and 0.369,
respectively, while our method with only auxiliary unlabeled data, Ns(X ∪ U),
achieves an average accuracy of 0.530. When auxiliary labeled data is used, our
method Ns(X ∪ U ′) achieves an even higher accuracy, with an average of 0.781.

6 Conclusion

n this paper, we revisit the problem of monocular depth estimation by focus-
ing on the balance between inference accuracy and computational efficiency.
We identify the inherent challenge of striking a balance between accuracy and
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model size. To address this challenge, our method proposes a lightweight net-
work architecture that significantly reduces the number of parameters. We then
demonstrate that incorporating auxiliary training data with similar scene scales
is an effective strategy for enhancing the performance of the lightweight net-
work. We conduct two experiments, one with auxiliary unlabeled data and one
with auxiliary labeled data, both utilizing knowledge distillation. Our method
achieves comparable performance with state-of-the-art methods built on much
larger networks, with only about 1% of the parameters, and outperforms other
lightweight methods by a significant margin.
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