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DISG: Driving-Integrated Spherical Gear Enables
Singularity-Free Full-Range Joint Motion
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Abstract—Dexterous joints have attracted interest in the field
of robotics. This paper presents a driving-integrated spherical
gear (DISG) that enables entire spherical meshing and active
driving between two spherical gears, forming a dexterous multi-
DoF rolling contact joint. The driving-integrated spherical gear
consists of a pair of spherical gears and an omnidirectional
internal driver. The spherical gear shape is a combined projection
of the conventional planar gear profile in the longitudinal and
latitudinal directions, which can mesh and be driven over
the entire sphere. An actively driving magnet and a passively
following magnet are magnetically connected across the spherical
gear and together form the internal driver, enabling arbitrary
connection points throughout the sphere. In all configurations,
one spherical gear can roll in all directions on the surface of
the other. Furthermore, we analyze the kinematics of DISG and
prove that the DISG-based dexterous joint has good kinematic
characteristics, such as singularity-free and full-range workspace.
We verify the theoretical and physical characteristics of DISG in a
series of experiments on the prototype. As an extension, we imple-
ment a 3-DoF independent robotic wrist by tandemly connecting
a revolute joint. We also compare DISG-based joints to other joint
actuators and show that DISG-based joints have advantages in
dexterity, motion range, compactness, and lightweight.

Index Terms—Spherical Gear, Dexterous Joint, Kinematics
Analysis, Actuator

I. INTRODUCTION

THE spatial orientation of an end-effector is closely linked
to its ability to perform the desired task, while robotic

joints provide rotational degrees of freedom (DoF) for chang-
ing spatial orientation [1, 2]. Prosthetic studies suggest that
increased joint dexterity can contribute more to manipulation
capacity than a highly dexterous end-effector with limited joint
capability [3]. Motivated by societal expectations, research
on multi-DoF mechanisms, actuators, and integrated robotic
joints has been ongoing [4–6]. Compared to conventional
series/parallel multi-DoF mechanisms, single joints with multi-
DoF offer greater dexterity, compactness, and functionality,
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Fig. 1: A dexterous joint by driving-integrated spherical gears

and have recently attracted increasing interest from robotics
communities [6, 7].

Throughout the years, many integrated multi-DoF mech-
anisms and actuators have been proposed. The traditional
mechanism operates by utilizing friction to transfer forces
through a sphere and a series of friction wheels placed around
it [8–10]. Later, the friction wheels were replaced with omnidi-
rectional wheels [11], providing better flexibility. Nevertheless,
slippage is inevitable in such designs, thereby presenting
challenges to the progress of associated controls. Another well-
known integrated multi-DoF mechanism is the spherical motor,
which is an extension of an induction or stepper motor in
three dimensions [5, 6]. These designs have the advantage of
dexterity and back-drivability. However, the motion range of
spherical motors is limited by bearing constraints. The widely
recognized wrist mechanism, Omni-Wrist III [12], is also an
integrated multi-DoF joint. However, its large size and link in-
terference make it cumbersome and restrict its range of motion.
In conclusion, most of the integrated multi-DoF mechanisms
still require improvement in terms of compactness, weight, and
simplicity.

Spherical gears are a three-dimensional extension of tra-
ditional planar gears, providing multiple rotational DoF to
change spatial orientation. Due to their high torque transmis-
sion and reliable positioning from the teeth, spherical gears
have great potential and advantages in realizing multi-DoF
single joints [7]. The early proposed spherical gear mechanism
consists of two meshing paired spheres, where one sphere has
a spherical gear surface with conical-shaped convex teeth, and
the corresponding location on the other sphere is a pit of the
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same shape. The two spherical gears mesh and transmit power
through these convex teeth and pits [13, 14]. Roboticists have
subsequently made progressive modifications and refinements
to the tooth shape of such gears to improve tooth wear resis-
tance, loading capacity, transmission performance, and other
characteristics [15–17]. However, all these spherical gears
with discrete teeth do not adhere to the correct transmission
principle, resulting in poor transmission performance [18].
In [19], Park et al. proposed the semi-spherical bevel gear,
which enables continuous transmission of two spheres in the
latitudinal direction. The classical involute gear profile is
projected along the longitudinal direction to the poles of the
spheres, generating curved teeth uniformly distributed along
the spherical surface. The curved teeth provide the ability to
mesh continuously along the latitudinal direction. As a result,
the formed spherical gear can achieve continuous meshing
transmission in the latitudinal direction at any axis intersection
angle. On the other hand, Ting et al. proposed the ring-involute
spherical gears mechanism in [18] to realize the continuous
transmission of two spheres in the longitudinal direction. The
involute profile of the same gear is rotationally mapped along
the axes of the tooth peaks and valleys, respectively, generating
two ring-involute spherical gears conjugate in the longitudinal
direction. The two spheres can pure roll in mesh along the
longitudinal direction, changing the intersection angle of the
polar axes of the two spheres. An interesting product from
the industry, Spherigear Transmission [20], shows exciting
potential through the spatial gear structure, but unfortunately,
it is not globally surface drivable, and external fixed frame
limitations lead to its singular transmission. None of the
above works have been able to achieve continuous drivable
transmission across the entire spherical surface. Furthermore,
prior research on spherical gears has solely focused on the
passive gear tooth design, without considering their poten-
tial as actuators. Tadakuma et al. have dedicated numerous
years to the development of spatial gear drive mechanisms
[21–24]. Recently, they pioneered a spherical gear actuator
ABENICS in [7], which utilizes innovative gears to enable
a 3-DoF ball-and-socket joint interaction. Based on nonslip
gear meshing, ABENICS provides high-torque transmission
and reliable positioning without 3D sensors and is simple
to control. However, the coupled tooth shape causes its sin-
gularity, and the external holder drive limits its range of
motion. Therefore, a spherical gear-based actuator capable of
continuous spatial transmission and dexterous joint motion is
still under investigation.

The rolling contact joint, a bio-inspired dexterous joint, is
formed when one body rolls without slipping over another
body [2]. Due to its ability to simplify controller design and
expand workspace [25–27], the rolling contact joint holds
great promise for developing robotic joint actuators that are
free from joint limitations or kinematic singularities [28].
Numerous applications and implementations of rolling contact
joints have emerged in the last decade [29–33]. Notably, the
traditional planar gear is a classic 1-DoF rolling contact joint
[34], while some of the attempts to use spherical gears are
essentially a type of passive 2-DoF rolling contact joint [13–
15]. However, much of the research on rolling contact joints

has been restricted to 1-DoF planar motion joints or passive
joints, with only one report of a spatial rolling contact joint
actuator. Kim recently proposed a virtual 2-DoF rolling contact
joint on their humanoid robot LIMS2, which utilized a bevel
gear set with wire coupling to imitate rolling contact motion
[28]. This mechanism demonstrates the benefits of 2-DoF
rolling contact motion in terms of dexterity and singularity-
free operation, but the emulation using gear mechanisms limits
the motion range. In general, these works on rolling contact
joints have joint limitations or kinematic singularities that
detract from the dexterity of rolling contact joints. Developing
a dexterous multi-DoF rolling contact joint actuator remains a
challenge.

This paper presents a novel driving-integrated spherical
gear (DISG) that provides full-range and singularity-free joint
motion. The proposed spherical tooth surface combines lon-
gitudinal and latitudinal tooth surfaces, which are globally
meshed and drivable, enabling continuous rolling between the
two spherical gears. The DISG is equipped with an internal
integrated actuator consisting of an actively driving magnet
and a passively following magnet. The magnetic pair between
them allows for arbitrary connection points across the spheres,
enabling omnidirectional and full-range motion for the DISG.
In this study, we analyze the kinematics of the DISG-based
joint, including its workspace and singularities. Our findings
suggest that the proposed joint has a full-range workspace
and no singularities, with superior motion range compared to
existing joints. To validate the DISG design, we developed
a prototype and demonstrated the kinematic performance of
the DISG-based joint. Additionally, we implemented a 3-DoF
independent robotic wrist by connecting an additional revolute
joint in tandem. Our comparative analysis demonstrates that
the DISG-based joint offers advantages in terms of dexterity,
motion range, compactness, and lightweight compared to other
joint actuators.

The main contributions of this paper are as follows:
1) A novel spherical gear structure is proposed, which

allows for global meshing and drivability, resulting in a
robust implementation of spatial rolling contact joints.

2) An internally integrated omnidirectional drive magnet
pair is proposed, which, together with the spherical gear
structure, forms a driving-integrated spherical gear on
which a dexterous joint actuator is implemented.

3) The kinematics of DISG are analyzed, and it is demon-
strated that the proposed DISG-based dexterous joint
possesses kinematic characteristics such as singularity-
free and full-range workspace.

4) A series of experiments is conducted to verify the
characteristics of DISG. The comparison results with
other joint actuators show that the DISG-based joints
offer advantages in terms of dexterity, motion range,
compactness, and lightweight.

The rest of the paper is organized as follows. Section II
presents the mechanical design of DISG. Section III derives
the kinematic model of DISG, and examines its singularities
and workspace. Section IV analyzes the force and torque ca-
pabilities of DISG. Section V performs a series of experiments
on a DISG prototype. Section VI discusses the characteristics
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Fig. 2: Two spherical gears meshing along the latitudinal and longitudinal directions respectively are combined to obtain
spherical gears meshing along the global sphere. (a) ring-involute spherical gears meshed along the longitude direction; (b)
spherical gear pairs meshed along the latitude direction; (c) proposed spherical gears meshed along the global sphere.
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Fig. 3: (a) Improved spherical gears pair meshed along the
latitudinal direction; (b) Latitudinal meshing spherical gear
can be equated as a superposition of a set of curved bevel
gears with equal modulus and varying cross-axis angles; (c)
Relative rolling between two spheres can be considered as
relative rolling between two pitch cones at corresponding pitch
angles.

and manufacturing methods of DISG. Finally, Section VII
concludes the entire paper.

II. MECHANICAL DESIGN

A. Spherical Gear

This paper proposes a method to create tooth profiles for
spherical gears that can mesh and drive in both longitudinal
and latitudinal directions. This is achieved by combining the
tooth profiles of spherical gears that can mesh separately in
each direction. Previously, Ting et al. in [18] proposed an
involute ring spherical gear that could mesh and roll along the
longitudinal direction (Fig. 2(a)). However, this design did not
allow for transmission in the latitudinal direction. In contrast,
[19] have presented spherical gear pairs that can mesh and

roll in the latitudinal direction. We use these spherical gears as
references to create our tooth profiles, allowing for meshing in
both longitudinal and latitudinal directions(Fig. 2). We start by
determining the basic modulus MB and basic tooth number TB
of the spherical gears based on the desired sphere dimensions.
Similar to the concept of pitch circle tangency in planar gears,
our proposed spherical gear design features two pitch spheres
that are tangent to each other, with the pitch sphere diameter
of DB :

DB = TB ×MB . (1)

The spherical gears used in combination must be of the
same size, sharing the same basic modulus MB and basic
tooth number TB . It is noteworthy that, akin to their planar
counterparts, spherical gears exhibit improved transmission
smoothness with an increased tooth number and a reduced
modulus. This is attributed to a greater number of teeth
being engaged simultaneously, allowing for a more seamless
meshing process.

To obtain two conjugate spherical gears pair meshing in
the longitudinal direction, we first determine the planar gear
profile according to the modulus MB and tooth number TB ;
then rotate the planar gear profile using the axes of the tooth
peaks and valleys as the rotation projection axes, respectively.
The result of this process is two gears represented as ring-
involute gears (I) and ring-involute gears (II) (Fig. 2(a)), which
will be used for the subsequent gear combinations in Fig. 4.

Next we consider the conjugate spherical gears pair meshing
in the latitudinal direction. The transmission between bevel
gears involves a relative roll between two pitch cones, as de-
picted in Fig. 3 (c)). Thus, we propose using a combination of
curved bevel gears with varying cross-axis angles as spherical
gears for latitudinal meshing. This proposed spherical gear is
a superposition of a set of bevel gears with varying modulus
and varying cross-axis angles. Furthermore, the teeth number
of each bevel gear is related to its latitudes. Notably, we
employ a bevel gear that permits the cross angle to vary, which
was introduced by Park [19]. Its mathematical model can be
derived from the traditional bevel gear mathematical model
[35] (see Appendix A). In addition, the latitudinal meshing
spherical gear is split into a gear set comprising TB +1 bevel
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Fig. 4: Two conjugate spherical gear meshes along the both latitudinal and longitudinal directions can be obtained by the
intersection and combination of the profiles of ring-involute gears and bevel gear sets.
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Fig. 5: The relative motion between the proposed spherical
gears, where x and y axes of the tangent plane coordinate
system (in the tangent plane) represent the axes of the 2-
DoF of the spherical gear, and there is no relative motion
between the spherical gears along the z-axis (perpendicular to
the tangent plane).

gears, given that the teeth number of the ring-involute spherical
gear is TB . Fig. 3(b) shows this bevel gear combination, where
the pitch circle diameter Di of the i-th bevel gear is associated

with its latitude:

Di = DB × sin(βi), i ∈ Z, i ∈ [1, TB + 1], (2)

where βi =
180◦×(i−1)

TB
and βi characterizes its latitude. In the

gear combination, the teeth number Ti of the i-th bevel gear
is determined by Eq. (3),

Ti =

[
Di

MB

]
, i ∈ Z, i ∈ [1, TB + 1]. (3)

The shape of each bevel gear is determined by several factors,
including the number of teeth Ti, modulus MB , and pitch
angle γi = 90◦ − βi. To produce two latitudinally meshed
spherical gears, TB + 1 pairs of bevel gears are integrated,
with each pair meshing within its designated latitude. This
procedure results in two latitudinally meshed spherical gears
(Fig. 2(b)), which are denoted as bevel gear set (I) and bevel
gear set (II). These gear sets are subsequently utilized in the
gear combinations depicted in Fig. 4.

Fig. 4 illustrates a method for combining the profiles of
ring-involute gears and bevel gear sets to obtain a tooth shape
that allows for meshing and drivability along both latitudinal
and longitudinal directions. By intersecting the ring-involute
gear pair and the bevel gear combination pair, we obtain four
spherical gears labeled (a), (b), (c), and (d). Each tooth in
the four spherical gears is formed by combining the tooth
surfaces of the ring-involute spherical gears and the bevel gear.
Specifically, the tooth profile surface along the longitudinal
direction is the ring-involute spherical gears tooth surface,
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Fig. 6: (a) The proposed omnidirectional internal drive consists of an actively driving magnet and a passively following magnet,
where the active-passive magnet pair hold a magnetic connection across the spherical gear surface; (b) The actively driving
magnet is an integrated omnidirectional trolley with four omnidirectional wheels and a permanent magnet at the bottom.
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Fig. 7: Omnidirectional internal drives can generate ux and
uy , and their coupling generates velocities in any direction in
the tangential plane, driving the sphere to roll in all directions.

and the latitudinal direction is the bevel gear curved tooth
surface. Gears (a) and (b), (c) and (d) mesh in the longitudinal
direction, while gears (a) and (c), (b) and (d) mesh in the
latitudinal direction. Furthermore, gears (a) and (d), and gears
(b) and (c), are non-interfering. Subsequently, the two sets of
gears are separately united to obtain two conjugate spherical
gears, denoted as (e) and (f), which provide conjugate meshing
over the entire sphere.

Next, we discuss the motion between two spherical gears.
Fig. 5 illustrates the relative motion between the spherical
gears (e) and (f) which are designed for conjugate meshing
over the entire sphere. The gears mesh in both longitudinal
and latitudinal directions, resulting in available rolls in both
directions. By combining the longitudinal and latitudinal rolls,
omnidirectional rolling motion can be achieved between the
gears. It is important to note that rotation around the vertical
axis of the tangent plane is not possible in any attitude due to
the constraint of the tooth surface. Furthermore, the relative
roll between the two gears can drive the polar axes of the
gears in all directions, thus enabling dexterous multi-DoF joint
motion.

B. Omni-Driver

The structures of the teeth discussed in Section II-A
facilitate an omni-directional rolling motion between two
spheres. Furthermore, a mechanism for achieving an omni-
directional internal drive is proposed, which together with the
proposed spherical gear surface forms DISG, realizing the
active multiple-DoF spatial transmission.

The proposed omnidirectional internal drive is depicted in
Fig. 6(a) and is comprised of an actively driving magnet and
a passively following magnet, which are connected through
a magnetic connection across the spherical gear. Fig. 6(b)
shows the actively driving magnet, which is an omnidirectional
trolley equipped with a permanent magnet at the bottom.
The trolley has four omnidirectional wheels that are evenly
spaced at 90◦ intervals, each of which can rotate around and
slide laterally along the wheel axis. The four wheels of the
omnidirectional trolley are in contact with the sphere, while
there is no direct contact between the permanent magnets at
the bottom and the sphere shell. The actively driving magnet
generates velocities in the tangential plane by two DC motors
that drive the two active wheels located 90◦ apart. The two
passive wheels, mounted on the frame with low-friction bear-
ings, serve as supporting casters and rotate passively with the
trolley movement. The drive of the two active wheels coupled
can generate translational velocities inside the sphere in any
direction along the tangential plane, as depicted in Fig. 7. The
position and speed of the actively driving magnet inside the
sphere can be altered by driving the two motors. Additionally,
the actively driving magnet integrates the controller, drive
circuit, and battery without any physical connection to the
outside, which greatly contributes to the flexible rolling and
the expansion of the spherical gear.

The passively following magnet is a permanent magnet that
is equipped with six supporting casters capable of sliding
in all directions with minimal friction inside the spherical
shell. The actively driving magnet and passively following
magnet are designed to incorporate two NdFeB permanent
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Fig. 8: (a) The dynamic rolling of DISG driven by the active-passive magnet combination. (b) A dexterous multi-DoF rolling
contact joint actuator is implemented based on DISG.

magnets with opposite polarity, which generates a strong
magnetic force between the two spheres, thus facilitating a
robust connection between the two spherical gears. Although
the passively following magnet cannot actively move on its
own, it can flexibly follow the actively driving magnet due
to the magnetic force between them, resulting in low-friction
sliding inside the sphere and enabling arbitrary connections
between the two spherical gears. It is noteworthy that the force
and torque capabilities of the spherical gear pair can be further
enhanced by adjusting the size and strength of the passively
following magnet.

Fig. 8(a) depicts the spatial transmission of the DISG by
means of the actively driving magnet. The DISG relies on DC
motors to rotate the friction wheels that move the trolley within
the spheres. The relative rolling between the spheres is subse-
quently propelled by this motion. To ensure efficient transfer of
the motor torque through the friction wheel, the friction force
between the wheel and the inner wall needs to be substantial
throughout the drive process. The joint configuration in the
DISG design is dependent on both the load and position of
the actively driving magnet. Fig. 8 displays the variation in
joint configuration without load, with the magnet co-axial
configuration as the static joint configuration(the analysis of
the force and moment between the two magnets is shown in
Section IV). By driving the actively driving magnet within the
sphere, the DISG can shift from one static configuration to the
next. The movement of the trolley within the sphere propels
the configuration change of the DISG, which occurs in two
stages. During the Stage I, the trolley moves actively away
from the contact point, while the passively following magnet
slides inside the other sphere under magnetic attraction. In
the Stage II, the two magnets generate a significant magnetic
moment as they move away from the contact point. This
moment promotes relative rolling between the spheres until the
two magnets reach a stable torque equilibrium state. Generally,
the motion of the actively driving magnet within the sphere
propels the sliding of the passively following magnet, which
generates a torque that propels active rolling between the

spheres. The DISG demonstrates good motion capabilities
owing to the mobility of the actively driving magnet that can
maneuver in all directions within the sphere. This enables
one sphere to roll in any direction on the other sphere. The
sphere housing the actively driving magnet can traverse along
any path and reach any point on the other sphere, thereby
facilitating good kinematic performance of the DISG.

In the context of two point-connected bodies, a rolling
contact joint is formed when one body rolls without sliding
on the surface of the other body [2]. The DISG is comprised
of two spherical gears that are interconnected through a
magnetic mechanism. Specifically, an actively driving magnet
is connected to a passively following magnet across the two
gears, which results in a robust point connection between the
pitch spheres of the gears. Besides, the meshed tooth shape
of the gears ensures that the relative motion between the
two spheres is pure rolling, without any sliding motion. As
a result of the proposed DISG, a dexterous rolling contact
joint actuator is created between the two spherical gears,
as illustrated in Fig. 8(b). It is worth noting that traditional
implementations of rolling contact joints are restricted to 1-
DoF circular rolling contact joints, whereas the DISG-based
joint belongs to multi-DoF rolling contact joints. The proposed
joint can rotate omnidirectionally in any configuration, while
the rotation center varies along the spherical surface according
to the joint configuration. This achieves a singularity-free and
full-range workspace. A detailed kinematic analysis will be
presented in Section III.

III. KINEMATICS ANALYSIS

In this Section, the kinematics of the DISG-based joint is
modeled, i.e., linear and angular velocities of the end body
relative to the base body, given the velocity of the omni-drive
trolley. Kinematic non-singularity and full-range workspace
reachability of the DISG-based joint are proved using the
established kinematic equation.
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A. Kinematics Modeling

This Section defines four coordinate frames to represent the
objects involved in the DISG-based joint motions, as shown in
Fig. 9, including the base body-fixed frame

∑
B, end body-

fixed frame
∑
E, tangent plane body-fixed frame

∑
P , and

inertial frame
∑
I .

Defining the DISG-based joint velocity B
PωE , which repre-

sents the angular velocity of
∑
E with respect to

∑
B and

expressed in the frame
∑
P (note that the joint axes are

aligned with the axes of the frame
∑
P ). The left superscript

‘∗’ and subscript ‘#’ represent that a vector is with respect
to frame ‘#’ and expressed in frame ‘∗’. How the DISG-
based joint velocity B

PωE generates linear and angular velocity
of

∑
E relative to

∑
B is the focus of this subsection. A

more physically meaningful set of angular velocities P
PωE that

closely relate to the omni-driving unit of DISG, as shown in
Eq. (5), is defined, it has the following relationship with the
DISG-based rolling contact joint velocity B

PωE :
B
PωE = B

PωP + P
PωE = 2 P

PωE , (4)

The velocity of the omni-drive trolley are defined easily in
the tangent plane

∑
P as ux and uy , which are used to realize

the DISG-based joint velocity and satisfy the relationships
with P

PωE : 
ux − l PPωEy = 0,

uy + l PPωEx = 0,
P
PωEz = 0,

(5)

due to the pure meshing rolling assumption of the motions
between the base and end bodies, where l is the radius of the
sphere bodies. It is worth noting that rotations of two bodies
around the vertical axis of their tangent plane is not allowed
due to rotational torsion.

This paper uses Euler angles to describe the orientation of
the end body

∑
E with respect to the tangent plane

∑
P , as

shown in Fig. 10, including the azimuth α and elevation β of
the contact point between the end-sphere and tangent plane,
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Fig. 10: Euler angles describing the orientation of end sphere
E in the DISG-based joint

and the holonomy angle γ between the x-axis of the
∑
P

and Gaussian frame[26] at the contact point. As a result, the
coordinate transformation matrix from

∑
E to

∑
P can be

expressed as
PRE = Rx(π)Rz(γ)Rx(β)Ry(−α), (6)

where Rx,Ry,Rz are elementary rotations [2].
The derivatives of the Euler angles (α, β, γ) and the angular

velocity of the end body relative to tangent plane P
PωE satisfy

the relation:
P
PωE = JA

(
d
dt

[
α β γ

]⊤)
(7)

with the Jacobian matrix JA

JA=
[
−PRMj |Rx(π)Rz(γ)Rx(β)i |Rx(π)Rz(γ)k

]
=

 cβ sγ cγ 0
cβ cγ −sγ 0

sβ 0 −1

 ,
(8)

where c(·) and s(·) are short for cos(·) and sin(·), respectively,
and reversely

d
dt

αβ
γ

 =

 sγ
cβ

cγ
cβ 0

cγ −sγ 0
sβ sγ

cβ
sβ cγ

cβ −1

P
PωEx
P
PωEy
P
PωEz

 , (9)

Using the non-holonomic constraints in Eq. (5), Eq. (9)
turns into

d
dt

αβ
γ

 =


cγ
l·cβ − sγ

l·cβ
− sγ

l − cγ
l

sβ cγ
l·cβ − sβ sγ

l·cβ

[
ux
uy

]
. (10)

When omni-drive trolley moves with the velocity ux and
uy , the update of the Euler angles α, β, γ and the corre-
sponding PRE shown in Eq. (6) follows the law in Eq. (10).
Assuming without loss of generality that the coordinate frames∑
B,

∑
P and

∑
E are aligned at the initial moment, then

BRP = PRE and is obtained in Eq. (6).
Defining the radius of the sphere bodies as l, therefore, the

position of the end body
∑
E relative to the base body

∑
B

can be calculated as follows:
B
BrE = BRP

(
2l P

P ẑ
)
, (11)
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(a) (b) (c) (d)

Fig. 11: The workspace of the DISG-based joint end for lo
R = (a)1, (b)2, (c)5, (d)10

where P
P ẑ = [0, 0, 1]

⊤ is the expression of a unit vector along
z-axis of

∑
P .

Having the non-holonomic constraints Eq. (5), the angular
velocity of

∑
E relative to

∑
B is

B
BωE = B

BωP + P
BωE

= − P
BωB + P

BωE

= −BRP
P
PωB + BRP

P
PωE

= 2BRP
P
PωE

= Jω

[
ux uy

]⊤
,

(12)

when omni-drive trolley moves with the velocity ux and uy ,
and the angular Jacobian matrix Jω is calculated as

Jω = 2BRP

0 − 1
l

1
l 0
0 0

 , (13)

using the non-holonomic constraints Eq. (5).
The linear velocity of

∑
E relative to

∑
B, when omni-

drive trolley moves with the velocity ux and uy , is obtained
by deriving the Eq. (11):

B
BvE = 2 l

[
B
BωP

]
×

BRP
P
P ẑ

= −2 l
[
BRP

P
P ẑ

]
×

B
BωP

= −l
[
BRP

P
P ẑ

]
×
Jω

[
ux uy

]⊤
= Jv

[
ux uy

]⊤
,

(14)

where the symbol ‘×’ represents the skew-symmetric matrix
of a vector, and the linear Jacobian matrix Jv is calculated as

Jv = −l
[
BRP

P
P ẑ

]
×
Jω. (15)

B. Singularity Analysis

The kinematic singularity of the DISG-based joint is exam-
ined through the established kinematic model. In this context,
singularities refer to joint configurations where the motion of
the joint cannot be generated in a certain direction despite the
provision of high velocities to the omni-drive wheels.

In mathematical sense, the nonsingular orientations of the
DISG-based joint are those orientations for which there is at
least one set of wheel velocities (ux, uy) capable of generating
the desired joint velocity. This indicates that the mapping

l1

l2

l3

lo

r
l1

R

R

R
θR

Fig. 12: The geometric parameter of the DISG-based joint.

matrix from wheel velocity to joint velocity is a matrix
of full rank for all feasible joint configurations within the
workspace, which could be validated in a straightforward way
by calculating that the determinant of the mapping matrix is
not zero.

Recalling the DISG-based joint velocity B
PωE defined in the

Section III-A and its relationship with the omni-wheel velocity
in non-holonomic constraints (5), a compact mapping from
the omni-wheel velocity to DISG-based joint velocity can be
formulated as [

B
PωEx
B
PωEy

]
=Q

[
ux
uy

]
, (16)

where
Q =

[
0 − 2

l
2
l 0

]
(17)

is the mapping matrix from the wheel velocity to the joint
velocity.

It is readily to calculate the determinant of Q as

Det(Q) =
4

l2
̸= 0. (18)

Henceforth, it can be inferred that the mapping matrix be-
tween the wheel velocity and the joint velocity is consistently
of full rank. This observation indicates that the DISG-based
joint proposed is free from kinematic singularities throughout
its workspace.
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(c) (d)

F(N) T(N-m)

(b)

β(°)

(a)

4

3

2

1

0

-1

-2

-3

-4

kA

θ2

θ1

Fig. 13: Strength analysis of DISG: (a) Magnetic field distribution between two magnets inside the spherical gears; (b), (c)
and (d) show the clamping angle β, the magnitude of the magnetic force Fm, and the torque at the contact point TB , relative
to θ1 and θ2, respectively.

θ1

θ2

GA

N1
f

FM

θR

FM
β

GP

N2

Fig. 14: The force analysis of the active and passive magnets
in DISG.

C. Workspace Analysis

This section analyzes the workspace of the DISG-based
joint. In Fig. 12, the geometric parameters of the DISG-based
joint end are presented. Based on the analyzed geometry, it
can be inferred that

l1 cos θR = R

(l1 + lo +R) cos 2θR = l2

(l1 + lo +R) sin 2θR = l3

. (19)

The distance r between the end of the output link and the
origin of

∑
B is solved as

r =
√
(l1 + l2)2 + l23

=
√
l21 + l22 + l23 + 2l1l2

=
√

4R2 + (lo +R)2 + 4R(lo +R) cos θR

, (20)

where θR is the angle between the line connecting the two
spheres and the vertical direction, characterizing the configu-
ration of the DISG-based joint, R is the radius of the sphere,
and lo is the length of the output link. Based on Eq. (19), it
is evident that in a DISG-based joint with fixed parameters

(i.e., given values of R and lo), the distance r changes as
a function of θR. This is a consequence of the fact that the
rotation center of the DISG-based joint is the point of contact
between the two spheres, and it varies continuously with the
configuration of the joint. Rolling contact motion involves a
motion in which the rotation center varies along the surface
of the base sphere

∑
B, and as such, the joint configuration

has an impact on the distance between the end sphere
∑
E

and the base sphere
∑
B.

Fig. 11(a)-(d) depict the workspace of DISG-based joint
ends for various lo-to-R ratios. It is noteworthy that the
motion is non-singular, and the complete 3-D workspace can
be obtained by rotating the plot 360◦ around the z-axis. We
present the cross-section to facilitate a clear comprehension
of the relationship between the shape and the workspace
boundary. Evidently, the joint exhibits a full range of motion,
and as the lo-to-R ratio increases, the workspace approaches a
standard sphere. According to Eq. (20), r ≈ lo when lo ≫ R,
implying that the distance between the end and the base

∑
B

is approximately equal to the length of the output link. Hence,
the workspace of the DISG-based joint can be approximated
as a standard sphere, rendering the joint a spherical joint in
such a scenario. In conclusion, the proposed DISG-based joint
is a 2-DoF full-range joint, whose workspace approximates a
sphere.

IV. FORCES AND TORQUES IN DISG
This section presents an analysis of the strength of the

DISG, specifically examining its breaking force and output
torque. The forces and drives in the DISG system stem
primarily from the magnets used. Therefore, this analysis
first considers the forces and torques between the magnets
themselves. In the DISG, two permanent magnets are separated
by spheres and maintained in a connected state through
magnetic attraction. The magnetic force and torque between
the two permanent magnets are dependent on the poses of
the magnets within the spheres, which, in turn, are influenced
by the geometrical parameters of the magnets, including their
size, material, and geometric constraints imposed by the DISG
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system. To investigate the relationship between the magnetic
force and torque and these parameters, a series of finite
element method (FEM) calculations were performed under
conditions consistent with a manufactured prototype of the
DISG system. This prototype includes a 10 × 10 × 10mm3

actively driving cylindrical magnet, a 10 × 10 × 20mm3

passively following cylindrical magnet, and a spherical gear
surface made of resin with a tangential pitch sphere diameter
of 86 mm and an inner diameter of 84 mm (detailed in Table
I). Fig. 13(a) shows the magnetic field distribution between the
two cylindrical magnets inside the spherical gear, where θ1 and
θ2 denote the angles between the central axes of the magnets
and the line connecting the spherical center, respectively. Fig.
13(c) and (d) illustrate the magnitude of the magnetic force
connecting the two magnets and the torque at the contact point,
respectively, with respect to θ1 and θ2. As shown in Fig. 13(c),
the magnetic force decreases monotonically as either θ1 or θ2
increases. At θ1 = θ2 = 0◦, the magnetic force is maximal
at 75.8 N, indicating that the force is strongest when the two
magnets are coaxial. The torque between the magnets, depicted
in Fig. 13(d), increases as θ1 and θ2 increase from 0 and
reaches a maximum value of 0.49 N · m at θ1 = θ2 = 21◦.
Notably, the strength and size of the active-passive magnet
pairing can be increased to enhance the magnetic force and
torque between them.

Furthermore, the internal state of the trolley and the joint
configuration have a combined effect on the connection force
and output torque of the spherical gear. Therefore, we proceed
to examine the force of DISG during driving. As detailed in
Section II-B, the trolley moves under active control and attracts
the following magnet to passively follow. Subsequently, the
magnetic torque produced drives DISG to rotate. The output
torque of DISG, which is related to θ1 and θ2, is the magnetic
torque between the misaligned magnet pairs. Fig. 13(c) and (d)
display the magnetic force and torque for any given θ1 and θ2.
However, many of these states are not feasible as, in reality,
θ2 simply follows the changes in θ1 passively, indicating that
θ2 is determined by θ1. For instance, let us consider the
case of no load, where we can investigate how θ2 changes
passively when θ1 changes actively. In Fig. 14, we can see the
situation where the actively driving magnet leads the passively

MB = 1, TB =86

MB = 5, TB =17

MB = 3, TB =28

Fig. 15: The DISG prototypes with different modulus

following magnet to slide. By analyzing the forces acting on
the passively following magnet in this scenario, we have

FM sin(β) = GP sin(θ2 + θR), (21)

where FM , β are associated with θ1 and θ2. To put it simply,
given a magnet weight GP and joint angle θR, we can express
Eq. (21) as a binary equation of θ1 and θ2, which means we
can view θ2 as a function of θ1. Using this, we can then
determine the connection force and output torque. To obtain
the maximum DISG strength, we block the rotation and ignore
the weight of the passive magnet, i.e., GP = 0 and θR is fixed.
By utilizing the interpolation method, we can obtain the three
functions of FM , β, and T based on the data in Fig. 13(b),
(c), and (d),

β = fβ(θ1, θ2), (22)

FM = fFM
(θ1, θ2), (23)

T = fT (θ1, θ2). (24)

Then we substitute Eq. (23) and (22) into the Eq. (21) to
get θ2 as a numerical function about θ1,

θ2 = fθ2(θ1), (25)

as shown in the black line in Fig. 13(b). We can observe
that θ2 increases in an almost linear fashion as θ1 increases.
Moreover, by substituting Eq. (25) into Eqs. (23) and (24), we
can calculate the magnetic force and torque with respect to
θ1. In Fig. 13(c) and (d), we have also plotted Eq. (25) which
depicts the magnetic force Fm and torque TB as a function of
θ1 along the black lines. As shown in Fig. 13(c), the magnetic
force at θ1 = 0◦ is the highest, with a value of 75.8 N, but
it decreases consistently as θ1 increases, dropping rapidly to
5.4 N at θ1 = 50◦. Similarly, Fig. 13(d) demonstrates that the
magnetic torque between the spheres increases initially and
then decreases as θ1 rises, reaching a maximum value of 0.43
N · m at θ1 = 20.7◦. Hence, the DISG’s theoretical breaking
force is 75.8 N, while the maximum output torque is 0.43 N·m.
It is worth noting that as illustrated in Fig. 13(c), the magnetic
connection force between the spheres decreases continuously
as θ1 increases. This implies that continuous driving of the
trolley when the DISG is blocked may result in a reduction
of DISG strength or even breakage. The actual measurement
results of the prototype indicate that the maximum connection
force and output torques are 72.5 N and 0.39 N·m, respectively,
which are consistent with our analysis results.

V. EXPERIMENTS AND RESULTS

This section demonstrates the spherical gear prototype and
its capability for global and unlimited meshing through experi-
mentation. Moreover, we expound upon the inherent kinematic
characteristics of the DISG-based joint, including singularity-
free motion and a full-range workspace. The verification of
the derived kinematic model is also outlined. The inclusion
of a loaded DISG control experiment further enhances the
presentation. Additionally, we introduce a 3-DoF independent
full-range wrist extension based on DISG and conduct com-
parative analyses with analogous joint configurations.
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Fig. 16: A spherical gear rolls on the surface of another with an ∞-shape trajectory.

A. Global meshing spherical gears

Fig. 15 illustrates a variety of spherical gear prototypes,
each possessing distinct modulus and tooth numbers while
sharing similar pitch sphere diameters. Similar to planar gears,
spherical gears exhibit enhanced smoothness in operation
as the tooth number increases, facilitating improved gear
functionality. However, caution is needed as overly large
gear modulus increases magnet pair distance, harming DISG
strength and performance. Furthermore, the sphere housing the
mechanism must be adequately sized to comfortably contain
the trolley; otherwise, an appropriate fit cannot be achieved.
Taking these factors into consideration, we opt to employ gear
parameters of MB = 1 and TB = 86 for our subsequent
experimental endeavors.

To validate the ability of the two spherical gears to mesh
globally and without restriction, we designed a large range of
motion trajectory that would cover as much of the sphere as
possible. The experimental setup involved fixing one spherical
gear to the base, and then using an active-passive magnet
combination to connect the two gears. The DISG prototype
was set to follow an ∞-shaped rolling trajectory driven
by the actively driving magnet. Fig. 16 displays some key
frames captured during the desired trajectory performed by
the spherical gear pair, demonstrating the nature of the global
drivable meshing and the unlimited rolling of the spherical
gear pair.

B. DISG-based rolling contact joint

Fig. 17 depicts a DISG-based rolling contact joint prototype
with gear parameters matching those in Section V-A. The gear
housing’s dimensions are specified: a pitch sphere diameter of
86 mm and inner sphere diameter of 84 mm. Utilizing N52
NdFeB magnets, a 10 × 10 × 20mm3 cylindrical magnet is
affixed to the actively driving magnet, and a 10×10×10mm3

cylindrical magnet is affixed to the passively following magnet.

IR-Markers

Spherical Gear
Structure

DC Motor
(Add. DoF)

Base

(b) Passively Following
Magnet

(a) Actively Driving
Magnet

Fig. 17: Prototype of the DISG-based rolling contact joint

The magnet pair offers a max connection strength of 72.5
N and a max load moment of 0.39 N · m. Additionally, a
DC motor is incorporated into the output link of the joint
as an extra DoF to form the joint combination in the RC-
R configuration. In Section V-D, we will demonstrate the
kinematic performance of a 3-DoF independent robotic wrist
extension using this additional revolute joint. The end of the
joint output link is equipped with a tracking marker consisting
of five infrared reflection markers (IR-markers). The position
and attitude of the joint end can be obtained using the motion
capture system. Table I provides the detailed parameters of the
DISG-based rolling contact joint.

The DISG-based joint kinematics were validated through
prototype experiments and the dexterity of the DISG-based
rolling contact joint was demonstrated. Fig. 18 depicts the
joint configuration characterization, where a 2-DoF DISG-
based joint can be oriented solely with the azimuth ψ and the
evaluation θ. Notably, an intriguing aspect of the configuration
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TABLE I: DISG PROTOTYPE PARAMETERS

Characteristics Values

Actively Driving
Magnet

Mass 115.4 g
Magnet Size 10×10×10 mm3

(BH)max 52MGOe

Passively Following
Magnet

Mass 82.5 g
Magnet Size 10×10×20 mm3

(BH)max 52MGOe

Spherical Gear
Structure

TB 86
MB 1
Pitch Sph. Diam. 86 mm
Int. Sph. Diam. 84 mm

Max. Breaking Force 72.5 N

Max. Output Torque 0.39 N · m

characterization is that our methodology can characterize the
entire 2-DoF space, but it becomes redundant at the poles.
Specifically, when θ = 0, the output linkage is consistently ori-
ented in a vertical upward direction, regardless of the ψ value,
thereby rendering ψ redundant when expressing the orientation
at the poles. As a result, when the DISG configuration shifts
in the vicinity of the poles, ψ undergoes significant changes.
The optical encoders mounted on the wheels provide actual
position feedback for the actively driving magnet (c1a, c2a),
while the kinematic model calculates the target encoder counts
(c1t, c2t) corresponding to the desired joint configurations
(ψt, θt). A closed-loop position control approach is adopted
using a PID controller based on the target input from the
kinematics (c1t, c2t) and the actual position feedback from the
encoder (c1a, c2a), and the PWM output is directly applied
to drive the two DC motors of the actively driving magnet.
The motion capture system is used to measure the end’s atti-
tude. Several reference configurations are assigned, they are:
C1[−180, 90]◦, C2[−135, 90]◦, C3[30, 90]

◦, C4[−45, 135]◦,
and C5[0, 180]

◦, which are executed sequentially with a
stopping time of 2 seconds each. Since this experiment is
essentially an open-loop control based on the kinematic model,
the accuracy of reaching the target configuration is heavily
dependent on the correctness of the kinematic model.

Fig. 19 illustrates various motion frames captured at key
moments, along with the orientation of the end during the
prototype’s sequential passage through the reference configu-
rations. In Fig. 19(b), the Euler angles measured by motion
capture and those calculated based on the encoder mea-
surements and kinematics model are presented. The motion
trajectory showcases the large workspace of the DISG-based
joint. In the experiment depicted in Fig. 19, the measured
trajectory and the kinematics-based calculations closely over-
lap throughout the motion, where the attitude errors of the
end in each reference configuration are e1[+1.41,−1.65]◦,
e2[+1.89,−1.92]◦, e3[+1.23,−3.18]◦, e4[+1.87,−3.64]◦ and
e5[−3.75,−1.16]◦ respectively. The subplots demonstrate that
the maximum errors for both Euler angles are less than 4◦ ,
confirming the accuracy of the derived kinematic model. Re-
garding experimental errors, the precision of position control

x

z’’, z’’’

x’

φ

ψ

θ

y’, y’’

y

z, z’

Fig. 18: The joint configuration is characterized by azimuth ψ
, evaluation θ, and yaw ϕ.

is impacted by both the gravity and the wheel slippage. The
effect of gravity on the positioning error is negligible since
there is no additional load. However, wheel slippage is the
primary factor contributing to the error observed in Fig. 19(b).
The DISG drive employs DC motors to rotate the wheel and
transmit torque via the friction wheel to move the trolley in the
sphere. Due to manufacturing process limitations, slight and
uncontrollable slippage occurs on the friction wheel, causing
the motor encoder measurements to inaccurately calculate
the trolley’s position inside the sphere as it moves through
it. Although these errors are minor, the cumulative errors
resulting from long working hours are not negligible and are
the primary reason for position errors in the experimental
results.

C. Singularity-free nature of DISG-based joint

This section presents a comparison between the proposed
DISG-based robotic wrist and a traditional 2-DoF wrist,
composed of two revolute joints in series. Our aim is to
demonstrate the singularity-free nature of the proposed joint.
Both wrists can be described using the azimuth ψ and the
elevation θ, as depicted in Fig. 19(a). The conventional 2-
DoF wrist experiences singularity at θ = 0◦, causing a loss of
velocity along the second revolute joint axis. Conversely, the
proposed DISG-based joint can rotate freely in all directions
within the workspace, without encountering any singularities.

To conduct the comparison, we set identical joint angular
velocities and motion trajectories for both wrists. Specifically,
we specified the initial configuration [90, 90]◦, the intermediate
configuration [0, 0]◦, and the final configuration [0, 90]◦. Fig.
20(a) presents motion frames captured at different time inter-
vals during the tracking of the desired trajectory by both wrists,
while Fig. 20(b) displays the corresponding changes in Euler
angles. Notably, the conventional wrist reaches singularity at
θ = 0◦, requiring it to adjust the azimuth ψ before continuing
from the intermediate to the final configuration. In contrast,
the proposed DISG-based joint can can move directly through
the desired trajectory, illustrating its singularity-free nature.
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(a)

C1 C2 C3 C4 C5C0

C0 C3C1 C4C2 C5

(b)

Fig. 19: The kinematics of the 2-DoF DISG-based joint is verified by prototype experiments: during the DISG-based joint
sequence through the reference configuration, (a) some motion frames captured at key moments, and (b) euler angles
characterizing orientation.

0.0 s 2.77 s 4.23 s 5.81 s 7.95 s

0.0 s 2.77 s 4.23 s 5.81 s 7.95 s

(a)

(b)

Fig. 20: Comparison of the proposed DISG-based robot wrist with a conventional 2-DoF wrist on singularities. (a) the DISG-
based robot wrist passes through the reference configuration without singularities; (b) the conventional 2-DoF wrist encounters
singularities and must adjust the azimuth ψ before continuing to the next configuration of motion.

D. 3-DoF independent robotic wrist extension

As an extended application, a 3-DoF robotic wrist with
a full-range workspace is realized by connecting a revolute
joint in series after DISG. A DC motor with an encoder is
mounted on the end of the DISG-based rolling contact joint,
together forming a 3-DoF wrist in a hybrid RC-R (rolling
contact-revolute) configuration, as shown in Fig. 17. The 3-
DoF robotic wrist configuration is characterized by azimuth

ψ, evaluation θ, and yaw ϕ, as shown in Fig. 18. The 3-
DoF robotic wrist configuration is characterized by azimuth
ψ, evaluation θ, and yaw ϕ, as shown in Fig. 18. In contrast
to the 2-DoF wrist, where the yaw ϕ is determined for a given
azimuth ψ and evaluation θ, in the 3-DoF wrist, these three
Euler angles are independent.

To test the proposed 3-DoF robotic wrist, a control system
scheme similar to the one used in previous experiments is
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C1 C2 C3 C4 C5C0

(a)

(b)

C0 C3C1 C4C2 C5

Fig. 21: A 3-DoF independent robotic wrist application based on DISG: during the 3-DoF wrist sequence through the reference
configuration, (a) some motion frames captured at key moments and (b) euler angles characterizing orientation.

employed. Optical encoders mounted on the three motors
(c1a, c2a, c3a) measure the actual positions of the actively
driving magnet, while the kinematic model is used to calculate
the target encoder counts (c1t, c2t, c3t) corresponding to the
target configurations (ψt, θt, ϕt). Two PID controllers are used
for closed-loop position control of the RC joint and the addi-
tional revolute joint, respectively, based on the target inputs
from the kinematics (c1t, c2t, c3t) and the actual positions
feedback from the encoders (c1a, c2a, c3a). The controllers’
PWM outputs are directly applied to drive the three DC
motors.

Motion capture is used to measure the end pose of the
proposed wrist, and several reference configurations are se-
quentially passed through, where only one Euler angle is
changed in each configuration transformation, which are
C1[30, 90,−30]◦, C2[−60, 90,−30]◦, C3[−60, 90,−180]◦,
C4[−150, 90,−180]◦, and C5[−150, 180,−180]◦. Fig. 21(a)
shows some motion frames captured at key moments during
the 3-DoF wrist sequence through the reference configuration.
Fig. 21(b) displays the orientation of the end, including
that measured by motion capture and calculated based on
the kinematic model. The small error between the measured
trajectory and the kinematic-based calculations again validates
the correctness of the kinematic model. The experimental
error observed in Fig. 21(b) is similar to that of previous
experiments, with the primary factor being the cumulative
error resulting from slight but uncontrollable slippage on the
friction wheel. The results of the experiment indicate that the
robotic wrist proposed is capable of independent movement
in 3-DoF, whereby altering one Euler angle does not impact
the other two. Moreover, the robotic wrist boasts a significant

range of motion, encompassing the entire 3-DoF workspace.

E. DISG Control with Payload

The previous control approaches, which relied on kinematic
models, predominantly focused on unloaded DISG. However,
it has been observed that when subjected to both inertia
and load, these methods exhibit inaccuracies arising from the
intricate interplay among magnetic coupling pairs due to gravi-
tational effects and dynamic factors in different configurations.
To demonstrate the controllability of DISG performance in the
presence of gravity and dynamics, an additional closed-loop
control experiment was conducted using a loaded DISG with
motion capture system.

In this experiment, a weight was attached to the end of the
DISG. To mitigate the interference caused by reflected light
during the motion capture process, the weight was covered
with anti-reflective tape. Furthermore, several infrared reflec-
tive markers were affixed to the output link. These markers
facilitated real-time measurement of the DISG’s configuration
by the motion capture system, providing accurate configuration
regarding the effects of gravity and dynamics. Several ref-
erence configurations, specifically C1[10, 45]

◦, C2[−90, 45]◦,
and C3[30, 150]

◦, were established and sequentially traversed
during the experiment. By utilizing the target configuration and
real-time DISG configuration feedback obtained from motion
capture, a closed-loop position control method employing a
PID controller was utilized. The output from this controller
was then used to actuate the actively driving magnet. For
comparison purposes, an open-loop control case based on a
kinematic model was also presented. Fig. 22 demonstrates the
error, as measured by motion capture, between the real-time
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Fig. 22: The loaded DISG has undergone a series of predetermined reference configurations. The visual illustrations portray
the errors observed in the Euler angle throughout the experimental tests. More precisely, the ψc and θc values represent the
outcomes of closed-loop control, which were achieved by utilizing sensory feedback from the motion capture system. On the
other hand, the corresponding ψo and θo values indicate the results of open-loop control, relying on the kinematic model.

Euler angles and the target Euler angles when the prototype
passes through the reference configurations. The ψc and θc
values represent the outcomes of closed-loop control, which
were achieved by utilizing sensory feedback from the motion
capture system. On the other hand, the corresponding ψo and
θo values indicate the results of open-loop control, relying on
the kinematic model. The images and videos clearly depict
that, in the presence of a load, the movement of the DISG is
noticeably less smooth compared to the unloaded scenario.
Furthermore, significant control errors are observed when
relying on open-loop control based on kinematics. In contrast,
in the case of closed-loop control based on sensing feedback,
although the motion exhibits fluctuations, the Euler angle error
for each reference configuration tends to converge towards
zero. The experimental results demonstrate the effectiveness
of controlling a loaded DISG.

VI. DISCUSSION

A. Comparison among representative joints

Table II and Fig. 23 were presented to compare several
representative robotic wrists. The results indicate that our
proposed DISG-based joint provides advantages in terms of
motion range, dexterity, compactness, and lightweight when
compared to other existing robotic wrists. Particularly, our
proposed design surpasses all the existing wrists in terms
of motion range, making it highly attractive for applications
requiring a large workspace. One potential drawback of our
proposed DISG-based joint is its low torque transfer capacity.
However, this limitation can be addressed by incorporating
enhanced passively following magnet, which can augment the
joint’s force and torque output.

B. Drive characteristics of DISG

The DISG exhibits distinct driving characteristics from
conventional joints, as its joint configuration is determined
by the interplay between the drive and load. In the DISG
system, the magnet pair configuration governs the torque. Fig.
13 shows the relationship between the magnetic torque and
configuration, where it is evident that the magnet pair of
coaxial relative position does not generate torque, while the
magnet pair with non-coaxial state generates torque. When
there is no load, no extra magnetic torque is needed to
counteract the load torque, resulting in a magnet coaxial pair
configuration that represents a state of balance. Conversely,
when a load is present, the magnet pair must generate magnetic
torque via orientation error to balance the load torque, making
a noncoaxial magnet pair configuration the state of balance.
Considering this trait, the present study employs an external
motion capture system to achieve closed-loop position control
of the loaded DISG prototype. To augment the manipulation
potential of DISG, our forthcoming investigations will center
around creating a self-reliant attitude and heading reference
system (AHRS) for DISG, thereby removing the need for the
motion capture system. Additionally, we plan to embrace a
more intricate control approach based on AHRS to amplify
the performance of DISG even further.

C. Manufacturing of DISG

In this article, we are making the one-piece 3D tooth struc-
ture of DISG by 3D printing processing method. Specifically,
we utilized 3D printing resin material to produce a spherical
gear prototype. As it is well-known, 3D printing technology
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TABLE II: COMPARISON AMONG REPRESENTATIVE WRISTS

Name DoF Wrist
Configur.

Motion Range Weight
(gram)

Torque
(N · m)ψ(◦) θ(◦) ϕ(◦)

Ours 2 RC 360 180 - 287.5 0.39
Kim [28] 2 RC 360 90 - - 12.5

Sensinger [36] 2 R-R 360 90 - 619 2.2

Ours 3 RC-R 360 180 360 312.8 0.39
Kim [28] 3 RC-R 360 90 360 - 12.5
Abe [7] 3 S 270 90 360 - 0.4

Hess [37] 3 R-R-R 140 140 360 - -
Bai [6] 3 S 60 30 360 1860 1.5

Gosselin [38] 3 R-R-R 140 140 30 - 0.42
Birglen [39] 3 R-R-R 90 45 90 6510 0.16
Kaneko [40] 3 S 30 30 360 4900 0.6

Yano [41] 3 S 90 90 360 - 2.06

R - revolute joint, S - spherical joint, RC - rolling contact joint.

offers advantages such as accuracy, affordability, rapidity, and
the ability to produce complex structures in one piece. These
features make it especially suited for manufacturing intricate
3D tooth structures in DISG. Notably, the machining accuracy
of the tooth shape is crucial to ensure perfect meshing between
two spherical gears. Otherwise, discontinuous transmission
and jerky motion may result.

Furthermore, we enhanced the performance of DISG by
treating the inner wall. On the side where the passively
following magnet is located, we applied lubricant to minimize
friction between the passively following magnet caster and the
inner wall, enabling the passive magnet to follow the motion
of the actively driving magnet smoothly. On the other side,
where the actively driving magnet is located, we added a layer
of non-slip tape to maximize the friction between the friction
wheel and the inner wall, preventing the trolley from slipping
inside the sphere.

However, current 3D printing technology has limitations
such as weak strength and easy deformation. Although the
prototype spherical gears made of resin were in good condition
for the corresponding experiments, as mentioned earlier, there
was minor slippage and wear between the two spherical gears
in DISG, and the resin’s strength deficiencies may become
apparent after prolonged use. To expand DISG to a broader
range of industrial applications, metal 3D printing, stamping,
and casting methods could be considered, as they have the
potential to create a stronger and more durable spherical gear
structure.

VII. CONCLUSION

Dexterous joints have attracted the interest in the field of
robotics. This paper presents a design for driving-integrated
spherical gears that enables global meshing and active drive
between two spherical gears, resulting in a dexterous mul-
tiDoF rolling contact joint. The kinematics of this design
is thoroughly analyzed, and it is proven that the proposed
DISG-based dexterous joint has good kinematic characteris-
tics, including singularity-free and full-range workspace. To
verify the characteristics of DISG, a series of experiments are
conducted. The comparison results with other joint actuators
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Fig. 23: Motion range of representative wrists

show that the DISG-based joints provides advantages in terms
of motion range, dexterity, compactness, and lightweight.

In the forthcoming study, we intend to investigate the
utilization of the AHRS within the context of DISG, aiming to
eliminate reliance on motion capture systems for accurate joint
localization. Building upon our prior work with configuration
detection[42] on the modular robot FreeBOT[43, 44], integrat-
ing 3D Hall-effect sensors within the sphere holds promise for
realizing real-time orientation tracking of passive magnets¡ªa
key solution for the envisioned DISG AHRS. We aspire to
enhance processing technology through improved materials
and manufacturing, resulting in better motion performance.
Our aspiration is for DISG to evolve into an integrated
dexterous joint, incorporated into an array of robotic systems
and smart devices in the times ahead.

APPENDIX A
DERIVATIONS OF VARYING CROSSING ANGLE BEVEL GEAR

MATHMATICAL MODEL

In this section, we derive the mathematical model for bevel
gears with varying crossing angles. To begin, we reference
[35] and derive the mathematical model for bevel gears with
constant crossing angles. In Fig. 24, the great circle remains
in constant tangential contact with a base cone while rolling
purely on it. The trajectory of point P on the great circle
follows an involute curve represented by P̂Q. ΣS0 is in the
great circle, ΣS1 is obtained by rotating ΣS0 around the y0
axis by an angle φ, ΣS2 is obtained by rotating ΣS1 around
the x1 axis by an angle γ, and ΣS3 is on the base cone.

The point P in ΣS0 is represented as

r
(p)
0 =


0
0
r0
1

 . (26)
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Fig. 24: Schematic representation of the generation of the
involute profile using the coordinate transformation method.

The transformation matrix of ΣS0 to ΣS3 can be calculated
as Eq. (27).

The point P expressed in ΣS3 is the involute equation of
the bevel gear with constant base cone angle (γ is a constant):

r(p)s = T · r(p)0 =


r0 (cos η sinφ− sin η cosφ sin γ)
r0 (sin η sinφ+ cos η cosφ sin γ)

r0 cosφ cos γ
1

 ,
(28)

where r0 is the radius of the great circle and also the radius
of the base sphere of the spherical gear, η is the involute roll
angle, and γ is the base cone angle.

By adjusting the angle at which two spherical bevel gears
intersect (base cone angle γ), the rolling motion that occurs in
the latitudinal direction can be seen as a pure rolling motion
between a pair of pitch cones with changes in the cone angle,
as depicted in Fig. 3(c). In this figure, OA denotes the polar
axis of the spherical gear and has a length of L. AB represents
the generatrix of both the base cone and the pitch cone, with a
length of ρ. OB is the radius of the pitch sphere of the bevel
spherical gear and has a length of rb. The pitch cone angle is
denoted by γ, which is the angle between OA and AB, while
β is the angle between OA and OB, representing the latitude
of the spherical bevel gear.

In Fig. 3(c), according to the Pythagorean theorem, we can
see that in the △OAB,

γ + β = π
2

ρ(β) = rb tanβ
L(β) =

rb
sin γ = rb

cos β

. (29)

Then the parametric equation of the involute of the spherical
bevel gear is the representation of the point P expressed in
ΣS4:

r(s)(β, η) =

 Roty(π)Rotz(−π
2 )

0
0

L(β)

0 0 0 1

 · r(p)s

=


ρ(β) (sin η sinφ+ cos η cosφ sin γ)
ρ(β) (cos η sinφ− sin η cosφ sin γ)

−ρ(β) cosφ cos γ + L(β)

1

 .
(30)

Therefore, for the structure of a spherical bevel gear with
variable crossing angle, the involute can be rewritten as a two-
parameter vector (β and η) with the equation as

r(s) = r(s)(β, η) = x(β, η)i+ y(β, η)j+ z(β, η)k. (31)
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