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Self-supervised Single-line LiDAR Depth
Completion

Junjie Hu, Member, IEEE, Chenyou Fan, Xiyue Guo, Liguang Zhou, and Tin Lun Lam, Senior Member, IEEE

Abstract—Depth completion plays a crucial role in enabling
real-world applications such as obstacle avoidance and SLAM
for robot navigation. This paper focuses on addressing the depth
completion challenge for single-line LiDAR, commonly used in
conjunction with visual cameras. The sparsity of valid depth
points makes supervised methods inadequate, while existing self-
supervised approaches are only applicable to 64-line LiDARs.
In this paper, we propose a novel self-supervised approach
for single-line LiDAR depth completion. Our approach makes
two key contributions. Firstly, we introduce the Relative-to-
Metric (R2M) depth distillation framework, which estimates
a pixel-wise metric depth map using an RGB image and its
corresponding single-line depth map. This is achieved by distilling
relative depth predictions from a monocular depth estimator
trained on RGB images. Secondly, we propose the Line Depth
Prior (LDP), a model-agnostic geometry regularization technique
that promotes depth completion. Through extensive experiments,
we demonstrate that our proposed method can: i) accurately
reconstruct complete depth maps from single-line depth inputs
without requiring additional depth supervision, except for the
observed entries, and ii) facilitate downstream SLAM tasks when
using single-line LiDAR.

Index Terms—Depth completion, single-line lidar depth com-
pletion, self-supervised learning, robot navigation

I. INTRODUCTION

DEPTH sensing with LiDARs plays an essential role in
various real-world applications, such as 3D reconstruc-

tion [8], object tracking [40], smart farming [27], SLAM [39],
robot navigation [34], and autonomous driving [21]. LiDARs
provide reliable depth measurements with absolute scene scale
and thus enable robots to interact and navigate in the real
world. On the other hand, LiDARs do not generate high-
resolution depth maps and need some enhancement and com-
pletion operations in practice. Recently, theory and technique
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for higher scanline LiDAR depth completion using deep learn-
ing have been well established and shown remarkable perfor-
mance [10]. Unfortunately, higher scanline LiDARs are very
costly and can be prohibitive for real-world deployment, e.g.,
in miniaturized robots. For example, the well-known Velodyne
HDL-64E LiDAR is around 75,000 US dollars. Single-line
LiDARs are lighter and significantly cheaper, making them a
more practical option for many applications. However, single-
line LiDAR depth completion (SLDC) remains underexplored
and lacks practically effective methods.

Few existing works [23], [31] have formulated SLDC as a
regression task and tackled it using classical data-driven super-
vised learning approaches with denser annotations. However,
such approaches are impractical as they assume denser anno-
tations are available and point-wise aligned. Moreover, most
previous self-supervised learning approaches for depth com-
pletion [26], [42], [41] require a minimum of 64-line LiDARs,
which limits their applicability. It has been demonstrated in
[26] that the RMSE increases over 1000% for self-supervised
depth completion when replacing 64-line depth input with a
single-line depth map. In this paper, we tackle SLDC under
in situ conditions where we only have a set of single-line
depth maps and their corresponding RGB images collected
by robots. Our goal is to develop an effective algorithm to
generate a dense depth map from extremely sparse single-
line depth inputs. The task is challenging since known depth
measurements are too sparse to be used for supervision.

In this paper, we propose a self-supervised algorithm for
single-line LiDAR depth completion, featuring two novel
proposals. The first proposal is the Relative-to-Metric (R2M)
depth distillation, which bridges the metric depth completion
task with self-supervised monocular depth estimation (MDE).
We observe that MDE methods can accurately estimate relative
depth maps from only RGB images, providing strong super-
vision that depicts relative depths among pixels. Therefore,
we propose to supervise depth completion by distilling the
output of an off-the-shelf MDE model while recovering the
scene scale using known depth measurements captured by
a single-line LiDAR. The second proposal is a geometric
regularization technique called Line Depth Prior (LDP). We
observe that 3D points on a straight line of objects naturally
form a linear depth relationship, providing true relative depth
relations. To promote better depth completion, we impose LDP
as a regularization constraint.

We conduct extensive evaluations on the widely used KITTI
dataset of depth completion to demonstrate the effectiveness of
our proposed method. As a result, our approach can effectively
complete single-line depth maps without requiring supervision
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from denser annotations, even outperforming prior works of
supervised learning. Furthermore, our experiments show that
our method enables downstream SLAM tasks.

In summary, our contributions include the following:
• We introduce a novel self-supervised learning framework

for single-line LiDAR depth completion, which enables
single-line LiDARs to generate dense depth maps.

• We propose the Relative-to-Metric (R2M) depth distil-
lation method that allows training a depth completion
model by distilling from a monocular depth estimator.

• We introduce the Line Depth Prior (LDP), which enforces
the correct depth orders of points on straight lines.

• Our self-supervised approach even outperforms prior
supervised methods, demonstrating its effectiveness on
downstream SLAM tasks.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of related studies in the field. Sec-
tion III presents our proposed self-supervised learning frame-
work for single-line LiDAR depth completion. In Section IV,
we conduct extensive numerical evaluations to demonstrate
the effectiveness of our proposed method and its superior
performance compared to prior supervised methods. Finally,
we conclude our work in Section V.

II. RELATED WORK

We provide an overview of previous studies on depth
prediction, with a focus on monocular depth estimation and
depth completion tasks. Our aim is to familiarize readers
with the key technical components of existing depth sensing
methods, explain why LiDARs are still necessary for real-
world applications, and clarify the challenges of completing
depth maps from single-line LiDARs.

A. Monocular Depth Estimation

Monocular depth estimation (MDE) has gained significant
attention in recent years. MDE models can estimate depth
from a single image, making them a cost-effective alternative
to depth sensors. These models can be learned through data-
driven supervised learning, penalizing pixel-wise differences
between predicted depth maps and ground truth depth maps,
as seen in [5], [19], [14], [13]. Alternatively, self-supervised
learning using monocular or stereo images has also been
employed, as demonstrated in [18] and [6], respectively.

Despite these advances, existing MDE methods have lim-
itations. First, they tend to yield lower accuracy compared
to depth sensors. For example, the advanced MDE method
[32] yielded over 100% increase in root mean square error
compared to the LiDAR completion method [22] on the KITTI
benchmark [36]. Second, MDE methods suffer from poor
generalizability in predicting absolute depth scales across dif-
ferent domains, making them unsuitable for robot applications,
particularly in dynamic and complex unknown environments.

Therefore, obtaining scene depth with depth sensors, such
as LiDARs, remains a practical and effective solution for
robot perception. Compared to MDE methods, completing
depth maps from sparse inputs is easier and more reliable in
recovering scene depth scales.

B. Supervised LiDAR Depth Completion

Early methods treat depth completion as a regression task
and learn by penalizing pixel-wise depth differences, with
around 30% depth measurements required for supervision.
With sufficient supervision, prior works proposed various nu-
merical network architectures such as dual-encoder networks
[38], [17], double encoder-decoder networks [35], [10], and
residual depth networks [48] to improve representation ability.
Co-attention feature interaction [47] and skip connections [20]
are also commonly utilized for promoting multi-modality data
fusion. Some works also integrate additional 3D cues such as
surface normal [30] and 3D convolutions [1] into the networks
to guide completion. To generate high-resolution depth maps,
previous methods proposed a two-stage coarse-to-fine learning
strategy [2] and affinity refinement [15].

The aforementioned studies primarily focus on 64-line Li-
DAR completion tasks, assuming approximately 5% known
depth measurements as inputs, along with the assumptions
of 30% denser annotations and perfect point-wise alignment
between ground truth depth maps and sparse input depth maps.
However, in reality, obtaining denser depth maps and ensuring
perfect point-wise alignment are challenging, rendering previ-
ous supervised learning approaches incompatible with lower
scanline sensors.

C. Self-supervised LiDAR Depth Completion

Self-supervised learning methods [25], [42], [41], [43] have
been explored as an alternative to using denser depth annota-
tions for depth completion, differing from previous supervised
approaches for depth completion in two significant ways.
Firstly, they require an additional network to estimate the
poses between two consecutive frames. Secondly, they use a
photometric loss based on the epipolar geometry constraint for
self-supervised learning. In addition, depth consistency based
on measurements from sparse inputs is used to estimate a
metric depth map.

It should be noted that the prior methods are only suitable
for 64-line LiDARs and their performance degrades exponen-
tially for lower scanlines. We refer the reader to experiments
varying input sparsity to 1, 2, 4, 8, 16, 32, and 64 scanlines
in [25] for further details.

D. Single-line LiDAR Depth Completion

Only a few prior studies have addressed single-line LiDAR
depth completion. Specifically, Lu et al. [23] proposed an
RGB-guided two-branch network that estimates a global and
a local depth map and uses their combination for the final
prediction. Meanwhile, Ryu et al. [31] proposed a depth
consistency loss that ensures a completed depth map from a
low-scanline LiDAR matches that of a high-scanline LiDAR.
However, since both these methods rely on denser annotations
for supervision, they may not be practical for many real-world
robot applications where data collection is challenging. In
[24], a self-supervised approach has been introduced that first
estimates a coarse depth map using stereo images and then
concatenates this with the single-line depth map into a multi-
layer perception for scale refinement. We regard this work as
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Fig. 1. The diagram of the proposed approach for single-line LiDAR depth completion. Our method uses a completion model, taking a single-line depth map
and an RGB image as inputs and predicting a dense depth map. To enable the learning of the completion model, we propose i) distilling from a trained MDE
model and ii) a ranking loss utilizing line depth prior. The MDE trained using monocular images predicts a relative depth map. We use valid depth points
from the single-line depth map to align depth scales yielding a coarse metric depth map.

the first attempt to address SLDC in a self-supervised manner.
Nonetheless, this method requires a stereo camera setup to
obtain the absolute scene scale, and it only achieves a slight
improvement compared to the baseline MDE models.

E. Knowledge Distillation

Knowledge distillation, initially introduced for transferring
knowledge from a fixed teacher model to a student model
in image recognition [9]. It has also been employed in depth
estimation [29], [11], [12] and depth completion [31]. In these
existing works, knowledge distillation penalizes pixel-wise
depth differences between the teacher and student models,
where both models are of the same type. In contrast, our
approach takes a different perspective by proposing the distil-
lation of depth predictions from a monocular depth estimation
(MDE) model to a depth completion model.

III. TECHNICAL APPROACH

In this section, we present our self-supervised approach for
single-line LiDAR depth completion. As illustrated in Fig 1,
our approach utilizes predictions from an off-the-shelf MDE
model, which was also trained in a self-supervised fashion.
Additionally, we propose the line depth prior to ensure correct
depth orders on straight lines.

A. Problem Formulation

Given N monocular images X = {xi}Ni=1 and the corre-
sponding single-line sparse depth maps Y′ = {y′

i}Ni=1 where
xi ∈ X and y′

i ∈ Y′ denotes an RGB image and a sparse
depth map, the depth completion task can be formulated as:

ŷi = FDC (y′
i,xi; θ) . (1)

Here, FDC represents the depth completion model with pa-
rameters θ, and ŷi is a dense depth map completed from xi

and y′
i.

To train FDC , supervised learning methods require a set of
denser annotations Y = {yi}Ni=1 with depth points aligned
with Y′ to penalize the following depth loss:

θ̂ = argmin
θ

L
(
Ŷ,Y; θ

)
, (2)

where L is a loss function that penalizes the difference
between valid depth points.

However, in most practical applications, Y is not available.
Moreover, for our single-line LiDAR completion task, the
known depth points are too sparse, e.g., the observed depth
points are only around 0.1%. Therefore, we seek alternative
depth maps Ỹ = {ỹi}Ni=1 to replace Y in Eq. (2), as follows:

θ̂ = argmin
θ

L
(
Ŷ, Ỹ; θ

)
. (3)

B. Relative-to-Metric depth distillation

According to Eq. (3), obtaining reasonable Ỹ is a necessary
condition for training the completion model. While completion
of single-line LiDAR depth maps is unattainable, accurate
estimation of relative depth maps from monocular images can
still be achieved through:

y∗
i = FMDE (xi; θ

′) , (4)

where FMDE is the trained monocular depth estimation model
with fixed parameters θ′.

Then, we can align y∗
i to the true scene depth scale by

utilizing valid depth points from the single-line depth map y′:

ỹi = y∗
i /median(Mi ⊗ y∗

i ) ∗median(Mi ⊗ y′
i), (5)

where Mi is a binary mask with the same length and width
of y′

i and used to select valid depth points from y′
i. median

is a common operation for depth alignment that selects the
median value from known depth points as a scale. Finally, we
can train the completion model using Eq.(3).

We consider the aligned dense depth map ỹi a coarse metric
depth map and utilize it as a pseudo-label for supervision
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Fig. 2. An example of Line Depth Prior (LDP) where we mark the start and
end points of three different lines with white boxes. pls and ple denote start
and end points on l-th line.

to obtain a better prediction, i.e., ỹi. It is intuitive that the
accuracy of ỹi is directly proportional to the correctness of ŷi.
However, a non-negligible issue arises as ỹi inevitably results
in large errors, particularly in distant areas due to a larger
depth scale, and in object boundaries due to the depth mixing
problem [16]. To address this, we utilize an uncertainty-aware
depth loss [13], [48], [3] to exclude the effects of inaccurate
depth points, as follows:

ℓud =
1

N

N∑
i=1

(exp(−si)(ŷi − ỹi)
2 + si). (6)

Here, si is the uncertainty map for ŷi, which indicates the
depth completion model’s confidence for each pixel. In Eq.
(6), we note that (ŷi− ỹi)

2 and exp(−si) are opposing terms.
During optimization, when the difference between ŷi and
ỹi is large, exp(−si) tends to decrease to balance the joint
loss, leading to larger values of si. Conversely, penalizing the
additional loss term si results in smaller uncertainties when
depth differences are minor.

Besides, we also penalize the absolute depth error for those
valid depth points on single-line depth maps by:

ℓsl =
1

N

N∑
i=1

∥Mi ⊗ (ŷi − y′
i)∥1. (7)

C. Ranking with Line Depth Prior

As we discussed before, the pseudo-labels ỹi obtained from
FMDE after scale alignment provide an approximation to
true depth maps. However, if ỹi miscalculated relative depths
among pixels, FDC is likely to generate wrong depth relations.

We observed that points on straight lines naturally form a
prior regarding relative depths. Let pl

s and pl
e denote the start

and end points of the l-th line segment, with pl
s < pl

e in depth.
An example is shown in Fig. 2, where p0

s and p0
e, p1

s and p1
e,

and p2
s and p2

e are the start and end points of the 0-th, 1-th,
and 2-th lines, respectively. If we have k points p1,p2, . . . ,pk

from pl
s to pl

e, then we must have p1 < p2 < . . . < pk in
depth.

To enforce the consistency of relative depths among pixels
on lines, we propose a ranking loss based on LDP. We first

detect straight lines using the Line Segment Detector [37], and
then locate the start and end points in ascending depth order.
However, there are some challenging cases where the start
and end points have similar depth, such as p2

s and p2
e, which

may lead to errors in their relative depth relation. Furthermore,
as we do not know the true depths, we can only identify this
relation from the coarse depth map ỹi, which may not provide
reliable estimations for some lines.

To robustly distinguish the start and end points, we utilize
20 points around pl

s or pl
e and calculate their mean depth for

comparison. Specifically, let {pj}20j=1 and {p′
j}20j=1 be sets of

20 points around the two endpoints of a line segment (ordered
from bottom to top in the image), and let their depth values
in ỹi be denoted by {dj}20j=1 and {d′

j}20j=1. Then, we can
identify the start and end points, denoted by ps and pe (here
we simplify pl

s and pl
e to ps and pe for clarity), by

{
ps = p0,pe = p′

20, if 1
20

∑20
j=1(dj)<

1
20

∑20
j=1(d

′
j),

ps = p′
20,pe = p0, otherwise.

(8)
Having determined pl

s and pl
e, we construct a set of ground

truth rankings that encode the true relative depths among the
points on the identified straight line. These rankings are then
used to rank the points on the metric depth maps predicted
by our model. Let rj be the rank of pj relative to pj+1 in
depth, where rj = −1 if ps = p0 and rj = 1 if ps = p′

20.
To enforce the consistency of relative depths among the points
on the identified lines, we propose the following ranking loss
based on LDP:

ℓLDP (pj ,pj+1) = log(1 + exp(rj × (dj+1 − dj))). (9)

It is worth noting that only when a straight line is perfectly
captured parallel to an RGB camera in the world coordinate,
ps and pe have the same depth. In reality, almost all lines can
provide priors on relative depth relations.

D. Final Learning Objective

In summary, we optimize the SLDC model using joint loss
terms, including an uncertainty-aware depth loss (Eq. (6)) that
measures the dissimilarity between our completed depth map
and the MDE model’s output, a depth consistency loss (Eq.
(7)) that enforces agreement between predicted and observed
depths on valid points in single-line depth maps, a ranking loss
(Eq. (9)) that encourages the correct depth relations of points
on straight lines. Our final loss function is given as follows:

L = ℓud + αℓsl + βℓLDP . (10)

where α and β are weighting coefficients and are set to 1 and
0.01, respectively, throughout the experiments.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

a) Selection of MDE and SLDC models: Our goal is to
propose a novel approach for SLDC, rather than focusing on
improving the network architecture for depth completion. To
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TABLE I
COMPARISONS OF DIFFERENT METHODS OF SINGLE-LINE LIDAR COMPLETION ON THE KITTI VALIDATION DATASET. THE METHOD OF LU ET AL.[24]

WAS ORIGINALLY EVALUATED ON A DIFFERENT TEST SPLIT; WE MARK IT WITH *.

Method Self-
supervised

Scale-
aware RMSE ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Balanced DC (MDE) [45] ✗ ✓ 3.951 - - - - -
Balanced DC [45] ✗ ✓ 3.921 - - - - -
Ryu et al. (MDE) [31] ✗ ✓ 3.625 - - - - -
Ryu et al. [31] ✗ ✓ 3.616 - - - - -
Lu et al.∗ [24] ✓ ✓ 4.582 0.106 - 0.871 0.951 0.982
MDE model: MonoDepth2 [7] ✓ ✗ 4.198 0.134 0.054 0.854 0.974 0.993
MDE model: CADepth [44] ✓ ✗ 3.914 0.120 0.048 0.877 0.977 0.994
Ours (MonoDepth2 → S2D) ✓ ✓ 3.700 0.100 0.041 0.920 0.983 0.995
Ours (MonoDepth2 → DCVAN) ✓ ✓ 3.723 0.098 0.040 0.920 0.983 0.995
Ours (CADepth → S2D) ✓ ✓ 3.404 0.088 0.036 0.933 0.987 0.996

evaluate the effectiveness of our method, we choose different
models from prior works for both MDE and SLDC. Specif-
ically, we use MonoDepth2 [7] and CADepth [44] for MDE
and S2D [25] and DCVAN [37] for depth completion. We
conduct experiments with three different combinations: Mon-
oDepth2 → S2D, MonoDepth2 → DCVAN, and CADepth →
S2D.

b) Implementation Details: For the S2D, we provide a
Pytorch implementation. As for the DCVAN, we utilize its
original implementation. Additionally, we integrate an uncer-
tainty estimation module consisting of two 5×5 convolutional
layers into both networks for uncertainty estimation. The
resulting S2D and DCVAN models have 30.7M and 2.5M
parameters, respectively. During training, we train S2D for
20 epochs using the Adam optimizer with an initial learning
rate of 0.0001, which is reduced by 50% every five epochs.
For DCVAN, we adopt the original learning strategy, which
involves training for 50 epochs with a batch size of 8.
Regarding evaluation, we employ the six most widely used
measures: RMSE, REL, log10, δ < 1.25, δ < 1.252, and
δ < 1.253. RMSE is a scale-aware measure, while the latter
five are scale-invariant, capturing different aspects of depth
estimation accuracy.

B. Dataset

We evaluate our method on the most popular used KITTI
[36] benchmark dataset, which consists of outdoor scenes cap-
tured by a car-mounted camera and a 64-line LiDAR sensor.
The depth range is from 0 to 80 meters. This dataset has
been extensively used in previous studies on depth completion
and MDE. To synthesize single-line LiDAR depth maps, we
first convert 64-line depth maps to point clouds and extract
single scanline depth maps from the corresponding 3D point
clouds. We use the official KITTI dataset with the official
split of scenes for training and validation, which consisted of
138 and 18 driving sequences, respectively. The resolution of
most images is about 1216 × 352, and following the setting
in [7], [44], we resize all images to 1024 × 320 resolution
for both training and testing. It is important to note that our
method is purely self-supervised, and we only used the denser
annotations provided by the dataset (about 30% valid depth

points) for quantitative comparisons. The valid depth points
from single-line LiDAR depth maps are only around 0.1%.

C. Quantitative Comparisons

We compare our method against baselines of single-line Li-
DAR completion, including Ryu et al. [31], Balanced DC [45],
Lu et al.[24]. The methods of Ryu et al. [31] and Balanced DC
[45] are supervised learning methods evaluated using the same
validation methodology as our method. They only reported the
RMSE results in their papers and have not released the codes;
we could not calculate the results for other metrics. For the
unsupervised method of Lu et al.[24], the results are evaluated
on a different split. Since the code is not publicly available, we
take results from their paper for reference and mark them with
*. We also quantify the performance of the unsupervised MDE
models we employed in our method, namely MonoDepth2 and
CADepth. For evaluation, we align their predictions with scale
using corresponding single-line depth maps (coarse metric
depth in Fig. 1).

The quantitative results are presented in Table I, where Bal-
anced DC (MDE) and Balanced DC denote methods with and
without single-line depth map inputs, respectively. Similarly,
Ryu et al.(MDE) and Ryu et al. are models with and without
single-line depth map inputs. We find that the single-line
depth map inputs contribute little to their performance boost,
which does not demonstrate a clear advantage from MDE.
Specifically, the RMSE is reduced by 0.03 meters and 0.009
meters for Balanced DC and Ryu et al., respectively. Note that
these two methods take a supervised learning approach using
denser depth annotations. In contrast, the method of Lu et
al. shows the worst results than other supervised approaches,
although it enables unsupervised SLDC.

Our self-supervised method achieves the best performance
on all metrics, as shown in Table I. Specifically, for our
Monodepth2 → S2D, Monodepth2 → DCVAN, and CADepth
→ S2D, we reduce RMSE by 0.498, 0.475, and 0.51 meters,
respectively, demonstrating clear superiority against baseline
methods. Furthermore, the results also show that we can boost
the performance of our method by using a better MDE model,
as seen in the improved performance from MonoDepth2 →
S2D to CADepth → S2D, or by using a more discriminative
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Fig. 3. The qualitative comparison between CADepth and our method on the KITTI dataset where RGB images and single-line LiDAR depth maps are
inputs. We also show lines detected from RGB images used only during training. Moreover, we also show uncertainty maps estimated by our method. The
difference maps are the results of absolute depth error between CADepth and our method.

depth completion model, as demonstrated from MonoDepth2
→ DCVAN to MonoDepth2 → S2D.

To visualize the qualitative results of our method (CADepth
→ S2D), Fig. 3 shows depth maps estimated by CADepth and
our method, as well as the difference maps. Notably, line maps
are only used during training. We also provide uncertainty
maps yielded by our method for better analysis of these results.
As seen, CADepth and our method produce similar depth
maps. It is because we distill predicted depth maps from
CADepth. Closer observations reveal that our method captures
higher attention on wrong depths estimated by CADepth in
“sky” and object boundaries. This can also be validated by
the difference maps, in which the highlighted regions are
consistent with the uncertainty maps.

D. Ablation Studies on Loss Functions

The effect of each loss term was evaluated through exper-
iments, using ℓud as the baseline. Results of different loss
functions, including ℓud + αℓsl and ℓud + αℓsl + βℓLDP , are
presented in Table II. Intuitively, penalizing depth differences
on those measured points contribute to performance improve-
ment. Additionally, ℓLDP contributes to a performance boost
for all three different settings. Compared to the results of the
used MDE models, the pixel-wise dense supervision provided
by ℓud plays a crucial role in achieving major improvement
by effectively capturing estimation uncertainty. Conversely,
ℓsl and ℓLDP contribute relatively slight improvements due
to their supervision being limited to specific points or areas.
Specifically, ℓsl penalizes depth differences based on the
sparsely measured points (0.1%) acquired from the single-
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TABLE II
ABLATION STUDIES ON EACH LOSS TERM. WE SHOW RMSE RESULTS FOR

COMPARISON.

MonoDepth2
→ S2D

MonoDepth2
→ DCVAN

CADepth
→ S2D

ℓud 3.809 3.890 3.538
ℓud + αℓsl 3.739 3.886 3.461
ℓud + αℓsl + βℓLDP 3.700 3.723 3.404

TABLE III
RMSE OF DEPTH SCALE ALIGNMENT USING SINGLE-LINE LIDAR DEPTH

AND GROUND TRUTH DEPTH, RESPECTIVELY.

Single-line LiDAR depth Ground truth LiDAR depth
MonoDepth2 CADepth MonoDepth2 CADepth

Median 4.198 3.914 3.995 3.689
Least-squares 4.800 4.617 3.750 3.471

line LiDAR, while ℓLDP applies the ranking loss solely on
straight lines. As acknowledged, these limited supervisions
lead to moderate improvements, which we clearly demonstrate
through the ablation studies. Nevertheless, ℓsl and ℓLDP can
serve as auxiliary regularization to promote depth completion.
We believe such regularization that can be applied in a self-
supervised learning way is important to improve single-line
LiDAR depth completion in practice.

E. Robustness of Scale Alignment

In our method, we use the median value of known depth
points from single-line LiDARs for aligning relative depth
maps estimated by a MDE model to metric depth maps. To
measure the robustness of scale alignment for the single-
line LiDAR depth completion task, we compare the median
operation with another popular operation for scale alignment,
namely, the least-squares fit. To identify the depth scale,
we utilize single-line LiDAR depth data with 0.1% known
points or ground truth depth data with 30% known points,
respectively. The results are shown in Table III. We observe
that 1) the accuracy of depth scale estimation improves
with an increase in the number of known points, 2) the
least-squares method outperforms the median operation when
ground truth depths are available, offering more accurate depth
scale estimation, and 3) the median operation, on the other
hand, exhibits greater robustness when dealing with single-
line LiDAR data. Given the above observations, we can say
that the median operation is better suited for our single-line
LiDAR depth completion task.

F. Application for SLAM

We apply our method to SLAM on the KITTI odometry
dataset. Specifically, we selet sequences 08, 09, and 10 for
comparisons following the common experimental setup. As the
dataset only provides 64-line LiDAR scans, we extract single-
line LiDAR depth maps from these 64-line scans. We compare
our method (CADepth → S2D) with unsupervised monocular
depth methods, including Zhan et al. [46], VISO2-M [33],

TABLE IV
QUANTITATIVE COMPARISON OF TRANSLATION AND ROTATION ERRORS

BETWEEN SEVERAL UNSUPERVISED METHODS AND OUR METHOD.

Method
Sequence 08 Sequence 09 Sequence 10

terr(%) rerr(◦) terr(%) rerr(◦) terr(%) rerr(◦)

Zhan et al. [46] - - 11.92 3.6 12.62 3.43
VISO2-M [33] 13.94 2.03 4.04 1.43 25.20 3.88
SGANVO [4] - - 4.95 2.37 5.89 3.56
CADepth [44] 3.964 0.584 4.132 0.458 5.496 0.818
Ours 2.896 0.554 2.524 0.432 3.462 0.660

SGANVO [4], and CADepth [44]. We use the classical ORB-
SLAM2 [28] framework with estimated depth maps as input
for our method and CADepth, while for other baselines, we
refer to their respective papers. The proposed method provides
absolute depth maps, unlike the baseline methods that align the
depth scale with ground truth depth points or stereo images.

We evaluate the performance using translation error
(terr(%)) and rotation error (rerr(◦)) for every 100 meters, as
shown in Table IV. Our method outperforms other approaches
by a significant margin, surpassing CADepth in both metrics
for all three sequences. Although our method requires addi-
tional single-line LiDAR depth maps, it can still be applied in
unsupervised learning, eliminating the need for denser depth
annotations and providing a practical application for robot
navigation in absolute depth scale using single-line LiDARs.

V. CONCLUSION

In this paper, we presented a novel self-supervised learning
framework for single-line LiDAR depth completion, address-
ing the challenge of generating dense depth maps from highly
sparse single-line depth inputs. Our method comprises two key
contributions: the Relative-to-Metric (R2M) depth distillation
and the Line Depth Prior (LDP). These proposals enable
the training of a depth completion model by distilling from
a monocular depth estimator and enforcing correct depth
orders of points on straight lines. Extensive evaluations on
the KITTI dataset validate the effectiveness of our approach,
surpassing the performance of prior supervised learning meth-
ods. Additionally, we demonstrate the positive impact of our
method on downstream SLAM tasks. The results highlight the
practicality and efficacy of self-supervised single-line LiDAR
depth completion for robot navigation applications.
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