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A B S T R A C T

We study data-free knowledge distillation (KD) for monocular depth estimation (MDE), which learns
a lightweight model for real-world depth perception tasks by compressing it from a trained teacher
model while lacking training data in the target domain. Owing to the essential difference between
image classification and dense regression, previous methods of data-free KD are not applicable to
MDE. To strengthen its applicability in real-world tasks, in this paper, we propose to apply KD
with out-of-distribution simulated images. The major challenges to be resolved are i) lacking prior
information about scene configurations of real-world training data and ii) domain shift between
simulated and real-world images. To cope with these difficulties, we propose a tailored framework
for depth distillation. The framework generates new training samples for embracing a multitude of
possible object arrangements in the target domain and utilizes a transformation network to efficiently
adapt them to the feature statistics preserved in the teacher model. Through extensive experiments on
various depth estimation models and two different datasets, we show that our method outperforms the
baseline KD by a good margin and even achieves slightly better performance with as few as 1∕6 of
training images, demonstrating a clear superiority.

1. Introduction
As a cost-effective alternative solution to depth sensors,

monocular depth estimation (MDE) predicts scene depth
from only RGB images and has wide applications in various
tasks, such as scene understanding [27], autonomous driving
[49], 3D reconstruction [14], and augmented reality [9].
In recent years, the accuracy of MDE methods has been
significantly boosted and dominated by deep learning based
approaches [13, 21, 28], where the advances are attributed
to modeling and estimating depth by complex nonlinear
functions using large-scale deep neural networks.

On the other hand, many practical applications, e.g.,
robot navigation, demand a lightweight model due to the
hardware limitations and requirement for computationally
efficient inference. In these cases, we can either perform
model compression on a well-trained large network [54]
or apply supervised learning to directly train a compact
network [38]. These solutions assume that the original train-
ing data of the target domain is known and can be freely
accessed. However, since data privacy and security are in-
variably a severe concern in the real world, the training
data is routinely unknown in practice, especially for indus-
trial applications. A potential solution under this practical
constraint is to distill preserved knowledge from a well-
trained and publicly available model without accessing the
original training data. The task is called data-free knowledge
distillation (KD) [35] and has been shown to be effective for
image classification.
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Figure 1: A visualization of the problem of data-free depth dis-
tillation. We propose to use simulated images as an alternative
solution to the challenges of applying knowledge distillation for
monocular depth estimation when original training data is not
available.

Most existing methods of data-free KD proposed to
synthesize training images from random noise [12, 57].
Specifically, assuming that 𝑦 is a target object attribute,
it is an element that inherently exists in the last layer of
a classifier and is easily pre-specified, such that we can
enforce a classifier to produce the desired output by grad-
ually optimizing its input data. We refer to this property
as the inherent constraint of classification. Unfortunately,
in the case of MDE, the output is a high-resolution two-
dimensional map with interrelated objects, not a score for
a category; the inherent constraint does not hold for MDE,
making most existing data-free approaches incompatible.
More formal analyses are given in Sec. 3.

Given the above challenges, in this paper, we propose to
leverage out-of-distribution (OOD) images as an alternative
solution for applying KD. For the MDE task, intuitively, we
consider three critical elements for choosing the alternative
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Figure 2: A flowchart of the proposed approach for distilling a trained model in the real world with simulated images. We firstly
mix two images 𝑥′

𝑖 and 𝑥′
𝑗 sampled from the simulated dataset  ′ to generate a new sample �̂�′, and use a transformation network

to fit �̂�′ to the feature distribution provided by the trained teacher model. The distillation is applied from the teacher 𝑡 to the
target student 𝑠 with the new input 𝐺(�̂�′) and the original simulated data 𝑥′ where the latter ensures a lower bound performance.
The transformation and the student network are trained jointly.

set: i) the similarity in scene structures between the original
scenarios and the OOD set, ii) the number of training images
of the OOD set, and iii) domain gap between the original
domain and the OOD domain. We analyze the effect of the
above three factors on the accuracy of KD through quan-
titative experiments. Unsurprisingly, high scene similarity,
sufficient data, and a small domain gap contribute to better
accuracy. Another valuable observation is that the teacher
still estimates meaningful depth maps correctly representing
relative depths among objects, even from simulated im-
ages. It reveals that DNNs may utilize some geometric cues
[23, 20, 8], or can learn some domain-invariant features [4]
for inferring depths rather than the straightforward fitting.
Therefore, it is still possible to perform KD even though the
predicted depth maps are completely wrong in scales.

The effective yet impractical solution is to collect a
dataset similar to the original training data. In reality, data
collection is always costly and time-consuming. Besides,
due to the lack of prior information about scene structures
of the original training data, we have no sufficient clues
to guide this data collection process. For these reasons, we
prefer using synthetic images collected from simulators, as
visualized in Figure 1. In this way, we can handily collect
enough images to ensure the multitude of data for distilla-
tion. However, we need to overcome the significant domain
gap between simulated and real-world data.

In general, the difficulties of depth distillation utiliz-
ing simulated data are two-fold. The first is the unknown
scene/object configurations in the target domain. The second
is the unavoidable domain discrepancy between the sim-
ulated and original (real-world) training sets. Our distilla-
tion framework is composed of two sub-branches. The first
branch applies the plain KD using initial simulated images
to ensure a lower-bound performance. The second branch
expands our training set by generating additional training
samples to tackle the above challenges. Specifically, we first
generate new images that aim to encompass a diverse array
of scene configurations in the target domain by applying

random object-wise mixing between two simulated images.
Then, we propose to regularize the mixed images to fit
the target domain by tackling an efficient image-to-feature
adaption problem with a transformation network. Figure 2
shows the diagram of the proposed distillation framework
where we learn the transformation network 𝐺 and the target
student network 𝑠 simultaneously.

To the best of our knowledge, we are the first to distill
knowledge for MDE in data-free scenarios. We extensively
evaluate the proposed method on different depth estimation
models and two indoor datasets, including NYU-v2 and
ScanNet. In all datasets, our approach demonstrates the best
performance. It outperforms the baseline KD by a good
margin, e.g., gaining 0.05 and 0.08 average improvements
in RMSE (meters) on NYU-v2 and ScanNet, respectively,
and shows slightly better performance with as few as 1∕6 of
the image dataset.

In summary, our contributions include:

1. The first attempt performing data-free KD for monoc-
ular depth estimation using OOD simulated images
with quantitative studies to ascertain the essential
requirements for selecting the OOD data.

2. A specialized framework for efficient depth distilla-
tion by learning image-to-feature adaption. We pro-
pose to use a transformation network for fast distilla-
tion.

3. We validate the proposed method for different depth
estimation models on multiple datasets. As a result,
our method outperforms the baseline methods by a
good margin.

The rest of the paper is organized as follows. In Sec-
tion. 2, we introduce the related works. In Section. 3, we
give formal analyses regarding the difficulties of applying
data-free KD for MDE. Section. 4 presents our method in
detail. Section 5 shows detailed experimental settings and
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results to verify the effectiveness of our method. Section. 6
concludes the paper.

2. Related Work
2.1. Monocular Depth Estimation

Monocular depth estimation (MDE) aims to predict
scene depths from only a single image. Deep learning-
based approaches have dominated recent progress [26, 36,
13, 25, 28, 59, 58, 62, 17] in which the advanced perfor-
mances are attributed to modeling and estimating depth
using large and complex networks with data-driven super-
vised/unsupervised learning.

On the other hand, deploying MDE algorithms into real-
world applications often faces practical challenges, such
as limited hardware resources and inefficient computation.
Therefore, an emerging requirement of MDE is to develop
lightweight models to meet the above demands. This prob-
lem has been specifically considered in previous studies
[38, 42, 54, 18] where several different lightweight networks
have been designed.

However, lightweight networks inevitably degrade their
MDE performance due to the trade-off between model com-
plexity and accuracy. Hence, it remains an open question:
how can the model complexity be reduced while maintaining
high accuracy? One potential solution to this problem is KD,
which transfers the knowledge from a cumbersome teacher
network to a compact student network with decent accuracy
improvement. However, KD requires the original training
dataset for implementation. Currently, there are no existing
solutions in data-free scenarios for MDE.

2.2. Knowledge Distillation
Knowledge distillation (KD) [16] was initially intro-

duced in image classification, where either the soft label or
the one-hot label predicted by the teacher is used to supervise
student training. Existing methods can be generally catego-
rized into two groups depending on whether they can access
the original training set: 1) standard data-aware KD and 2)
data-free KD.

The effectiveness of data-aware KD has been demon-
strated for various vision tasks, such as image classification
[16], semantic segmentation [19, 34], object detection [1],
and depth estimation [45, 53], etc. In addition to the con-
ventional setup, researchers have proposed to improve KD
via distilling intermediate features [24, 34], distilling from
multiple teachers [50, 33], employing an additional assistant
network [40], and adversarial distillation [5, 47].

For data-free KD, researchers resorted to synthesizing
training sets from random noise [35, 57, 12, 11, 60] or
employed other large-scale data from different domains [2,
55, 10, 41]. However, existing methods are only effective for
classification tasks and cannot be applied to MDE. In this
paper, we propose the first method of data-free distillation
for MDE. Our method leverages data from simulated envi-
ronments to distill a model trained on a real-world dataset.

We would like to emphasize the distinctions between
knowledge distillation (KD) and domain adaptation (DA), as

there may be some potential misunderstandings. Primarily,
Domain Adaptation (DA) entails the transfer of a model from
its original domain (source domain) to a novel and distinct
domain (target domain). In contrast, Knowledge Distillation
(KD) pertains to a single domain context, concentrating on
upholding the model’s accuracy within the original domain.
The scenario shifts when training images from the original
domain remain undisclosed and inaccessible, leading KD
and DA to manifest as specific instances of data-free KD and
source data-free DA [29, 56], correspondingly. Nevertheless,
it remains noteworthy that DA necessitates access to data
from the target domain.

3. Preliminary Analyses
Our target is to perform data-free KD for MDE tasks,

facilitating the development of a lightweight MDE model.
We commence by delineating the challenges inherent in this
task through meticulous analysis and elucidate why existing
methods are unsuitable for MDE. Subsequently, we endeavor
to leverage OOD data, supported by quantitative analyses,
to discern the critical requisites for effectively incorporating
OOD data into the KD framework.

3.1. Difficulty of Data-Free Depth Distillation
Suppose that 𝑡 is a model trained using data from the

target domain  = { ,} where  and  denote input data
(i.e., image) and label space, respectively. For any 𝑥 ∈  , its
corresponding label is estimated by 𝑦 = 𝑡(𝑥).

KD aims at learning a smaller network 𝑠 with the
supervision from 𝑡. Usually, 𝑡 is called the teacher
network and 𝑠 is called the student network, respectively.
Then, the learning is formulated as:

min
𝑠

∑

𝑥∈ ,𝑦∈
𝜆

(

𝑡(𝑥),𝑠(𝑥)
)

+(1−𝜆)
(

𝑦,𝑠(𝑥)
)

, (1)

where  is a loss function, 𝜆 > 0 is a weighting coeffi-
cient and usually is a relatively large number, e.g., 0.9, for
giving more weights to the teacher predictions than ground
truths. In practice, the second term of Eq. (1) is sometimes
discarded. In these cases, Eq. (1) is simplified using 𝜆 = 1
by

min
𝑠

∑

𝑥∈


(

𝑡(𝑥),𝑠(𝑥)
)

. (2)

As shown above, the standard KD requires accessing the
original training data sampled from  . Contrarily, data-free
KD attempts to train the student model without being aware
of  . It is formulated by

min
𝑠

∑

𝑥′∈ ′


(

𝑡(𝑥′),𝑠(𝑥′)
)

, (3)

where  ′ is a proxy to  and can be either i) a set of images
synthesized from 𝑡, or ii) other alternative OOD datasets.
Then, Eq. (3) can be solved by searching for the optimal  ′.

For image classification, the success is attributed to an
inherent constraint for identifying  ′. As 𝑦 denotes an object
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Table 1
Accuracy of the student model employed on the NYU-v2 test set. The student model is trained via knowledge distillation with
different OOD data. Except for (g), all datasets have approximately 50K images.

Dataset Scene Domain Data 𝛿1
(a) NYU-v2 [48] indoor scene real world 50K 0.808
(b) ImageNet [7] single object real wrold 50K 0.685
(c) Random noises - - 50K 0.194
(d) ScanNet [6] indoor scene real world 50K 0.787
(e) KITTI [51] outdoor scene real world 50K 0.705
(f) SceneNet [39] indoor scene simulation 50K 0.712
(g) SceneNet [39] indoor scene simulation 300K 0.742

Figure 3: Visualization of the simulated images and the depth maps estimated by the teacher model.

category, it corresponds to an index of the SoftMax outputs
from the last fully convolutional layer of the model and thus
provides prior information about the desired model output.
Then,  ′ is constructed by

argmin
𝑥′

∑

𝑥′∈ ′
(𝑡(𝑥′), 𝑦) +(𝑥′), (4)

where  denotes regularization terms.

Remark 1. The first term of Eq. (4) is an inherently strong
constraint of image classification that enforces the out-
put consistency such that two posterior probabilities satisfy
(𝑦|𝑥) ≈ (𝑦|𝑥′).

We can specify any category corresponding to an actual
label of  and generate sufficient images from random
noises. Besides, in some works, this inherent constraint is
used to transform the OOD data to the target distribution
[10] or identify the most relevant data with low entropy from
a large-scale dataset to the distribution of the target domain
for efficient KD [2].

Based on the above discussions, existing approaches of
data-free KD on image classification cannot be deployed into
our depth estimation task, as predicted depth maps are 2D
high-resolution maps with interrelated objects but not score
values, invalidating the strong constraint used in Eq. (4).
Since directly synthesizing data from noise is intractable, we
have to seek alternative data to perform KD.

3.2. Depth Distillation with OOD Data
According to Remark 1, data-free KD for MDE can be

intractable. A plausible way is to use some OOD data if
we can decipher the essential requirements for  ′. Here, we
consider that three factors are essential for selecting  ′: i)
scene structure similarity to  , ii) data-scale for performing
KD, and iii) domain gap between  ′ and  .

We conducted preliminary experiments to analyze how
a depth estimation model reacts to different types of OOD
data. We employ a model trained on the NYU-v2 [48] dataset
as the teacher model and apply KD using different OOD
datasets with the same number of randomly sampled images.

We observed that the depth range of the depth maps
predicted from different types of OOD data still fits into
the target domain. However, this constraint is insufficient to
ensure KD, as shown in Table 1, where random Gaussian
noises led to the lowest performance even though they yield
a similar depth range to other types of OOD data.

Then, we analyze the effect of the above three factors
by comparing scene similarity, data scale, and data domain.
Except for (𝑔), all datasets have 50,000 (50K) images. By
closely comparing (d) and (e), (d) and (f), and (f) and
(g), with (a), not surprisingly, we observe that high scene
similarity, small domain gaps in images, and large-scale
training datasets are beneficial for the performance boost.
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However, it is challenging to satisfy all these three condi-
tions simultaneously. Considering the difficulties of data col-
lection in real-world applications, we propose to apply data-
free KD for MDE with simulated images. Figure 3 shows
depth maps estimated from simulated images. It is observed
that the inferred depth maps are perceptually correct despite
being wrong in absolute depth scales, providing a strong
prior of data-free distillation for MDE with simulated data.
We posit that this property is pivotal to the success of depth
distillation utilizing simulated data.

4. Framework for Dense Depth Distillation
with Simulated Data
Our distillation framework consists of three models: the

fixed teacher, the target student, and a data transformation
model, where the latter two models are jointly trained. We
present the learning objectives of the transformation model
and the student model as follows.

4.1. Training the Transformation Model
We have shown that the trained model would estimate

reasonable depth maps with correct relative distances among
objects from the OOD simulated data. However, due to the
domain gap, there is a significant discrepancy between 
and  ′. Thus, we wish to mitigate this domain gap and
accordingly improve KD.

Since we have no clues about the original training data,
such as identities or representations of objects, we naturally
consider applying data augmentation to maximally encom-
pass the configurations of scenarios in the target domain.
Inspired by ClassMix [43], we randomly change half of
objects between two simulated images to obtain a new image
with the help of semantic maps collected from the simulator.
More formally, for two images 𝑥′𝑖 and 𝑥′𝑗 where 𝑥′𝑖 ∈  ′,
𝑥′𝑗 ∈  ′, we generate a new mixed image �̂�′ by

�̂�′ = 𝑚 ⊙ 𝑥′𝑖 + (1 − 𝑚)⊙ 𝑥′𝑗 , (5)

where 𝑚 is a binary mask obtained from the semantic map
of 𝑥′𝑖, and randomly selects half of the classes observed in
𝑥′𝑖.

We leverage the running average statistics captured in-
side neural networks as DeepInversion [57] to regularize
�̂�′. Specifically, assuming that feature statistics follow the
Gaussian distribution and can be defined by mean 𝜇 and
variance 𝜎2, then, �̂�′ is optimized through the following loss

𝓁𝐵𝑁 =
∑

𝑙∈[𝐿]
‖𝑢𝑙(�̂�′) − 𝑢𝑙‖2 +

∑

𝑙∈[𝐿]
‖𝜎2𝑙 (�̂�

′) − 𝜎2𝑙 ‖2, (6)

where 𝑢𝑙(�̂�′) and 𝜎2𝑙 (�̂�
′) are the batch-wise mean and vari-

ance of feature maps of the 𝑙-th convolutional layer of 𝑡,
respectively. 𝑢𝑙 and 𝜎2𝑙 are the running mean and variance
of the 𝑙-th BN layer of 𝑡, respectively. Eq.(6) allows
regularizing �̂�′ to fit the feature distribution provided by

Algorithm 1 Depth Distillation Algorithm.
Input:  ′: OOD images collected from a simulator; 𝑡:

The teacher model trained on a target domain; 𝛼, 𝛽:
Weighting coefficients used for defining loss in training
𝐺; 𝑇 : Number of iterations;

Output: 𝑠: The student model; 𝐺: The transformation
model.

1: Freeze 𝑡;
2: Initialize 𝑠 and 𝐺;
3: for 𝑗 = 1 to 𝑇 do
4: Set gradients of 𝑠 and 𝐺 to 0;
5: Select a batch 𝑥′ from  ′;
6: Let 𝑥′𝑖 = 𝑥′ and 𝑥′𝑗 = random_shuffle(𝑥′);
7: Generate mixed images �̂�′ by Eq. (5);

⊳ % Updating the student model %
8: Calculate 𝑡(𝑥′), 𝑠(𝑥′), 𝑡(𝐺(�̂�′)), 𝑠(𝐺(�̂�′));
9: Calculate the depth loss by Eq. (9);

10: Update 𝑠;
⊳ % Updating the transformation network %

11: Calculate the loss for training 𝐺 by Eq. (8);
12: Update 𝐺;
13: end for

the teacher model. However, this optimization requires thou-
sands of iterations1 for a single batch and is highly time
consuming. To tackle this problem, we propose to turn the
optimization process for estimating �̂�′ into a representation
learning problem by training an additional model 𝐺 for data
transformation. Then, Eq.(6) can be rewritten by

𝓁𝐵𝑁 =
∑

𝑙∈[𝐿]
‖𝑢𝑙(𝐺(�̂�′))−𝑢𝑙‖2+

∑

𝑙∈[𝐿]
‖𝜎2𝑙 (𝐺(�̂�′))−𝜎2𝑙 ‖2. (7)

It is essential to ensure the fidelity of the original scenes
to keep the geometry structure. Thus, we adopt an image
reconstruction loss. Finally, the loss function for training the
transformation network is defined by

𝐺 =
∑

�̂�′∈ ′

(

𝛼𝓁𝐵𝑁 + 𝛽𝓁𝑟𝑒𝑐
)

, (8)

where 𝓁𝑟𝑒𝑐 = ‖�̂�′ − 𝐺(�̂�′)‖1 is the reconstruction error that
penalizes the 𝓁1 norm of image difference, and 𝛼 and 𝛽 are
weighting coefficients.

4.2. Training the Student Model
We formally describe the distillation framework to en-

able data-free student training. We amalgamate the predic-
tion loss from both the teacher and student models using the
initial simulated images 𝑥′ without amalgamation and the
transformed images 𝐺(�̂�′) derived from the mixed images
�̂�′. The former adopts plain distillation to ensure a lower
bound performance, and the latter contributes to further
performance improvement.

The optimization objective of depth distillation from the
teacher model to the student model is defined by

13000 iterations are used for DeepInversion.
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Table 2
Details of the RGBD datasets used in the experiments.

Dataset
Training Test

scenarios /
images

scenarios /
images

Target domain
NYU-v2

249 /
50688

215 /
614

ScanNet 1513 /
50473

100 /
17607

Simulated data
SceneNet  ′

1

1000 /
50K -

SceneNet  ′
2

1000 /
300K

-

𝑠
=

∑

𝑥′∈ ′


(

𝑡(𝑥′),𝑠(𝑥′)
)

+

∑

�̂�′∈̂ ′


(

𝑡(𝐺(�̂�′)),𝑠(𝐺(�̂�′))
)

,
(9)

where  is a function used for measuring the depth errors.
We employ the function proposed in [21] that penalizes
losses of depth, gradient, and normal.

To facilitate efficient learning, the transformation model
and the student model are trained jointly by solving the
following optimization problem

min
𝐺,𝑠

(𝐺 + 𝑠
). (10)

The details of our method are given in Algorithm 1 where
random_shuffle denotes the operation of randomizing im-
ages.

5. Experimental Analyses
5.1. Experimental Settings
5.1.1. Implementation Details

Our learning framework includes three models: (1) a
teacher model 𝑡 trained on a given target domain and is
fixed while training a student model; (2) a student model
𝑠, which we aim to train; and (3) a transformation network
𝐺 which will also be optimized during training. We train
𝑠 and 𝐺 for 20 epochs using the Adam optimizer [30].
The learning rate begins at 0.0001 and is halved every five
epochs. The hyper-parameters 𝛼 and 𝛽 controlling the data
transformation are set to 0.001 for all experiments through-
out the paper. We trained models with a batch size of 8 in all
the experiments and developed the code-base using PyTorch
[44].

5.1.2. Datasets
NYU-v2 [48] The NYU-v2 dataset is the benchmark most
commonly used for depth estimation. The depth range is 0 to
10 meters. It is captured by Microsoft Kinect with an original
resolution of 640 × 480, and contains 464 indoor scenes.
Among them, 249 scenes are chosen for training, and 215

scenes are used for testing. We use the pre-processed data
by Hu et al. [21, 20] with approximately 50,000 unique pairs
of an image and a depth map with a resolution of 640×480.
Following most previous studies, we resize the images to
320×240 pixels and then crop their central parts of 304×228
pixels as inputs. For testing, we use the official small subset
of 654 RGBD pairs.

ScanNet [6] ScanNet is a large-scale RGBD dataset that
contains 2.5 million RGBD images. The depth range is 0
to 6 meters. We randomly and uniformly select a subset of
approximately 50,000 samples from the training splits of
1513 scenes for training and evaluate the models on the test
set of another 100 scenes with 17K RGB pairs. We apply the
same image pre-processing methods, such as image resizing
and cropping, as utilized on the NYU-v2 dataset.

SceneNet [39] SceneNet is a large-scale synthesized dataset
that contains 5 Million RGBD indoor images from over
15,000 synthetic trajectories. Each trajectory has 300 ren-
dered frames. The original image resolution is 320×240.
Thus, we only apply the center crop to yield an image
resolution of 304×228.

We sample two subsets from 1000 indoor scenes of the
official validation set. The two subsets have 50,000 and
300,000 images, respectively, and are denoted by  ′

1 and  ′
2

in the following texts. Detailed information on the datasets
used in the experiments is given in Table 2.

5.1.3. Models of the Teacher and the Student
We choose multiple combinations of the teacher and stu-

dent models to extensively evaluate our models and methods.
For the first combination, we let the teacher and student
models have the same lightweight depth estimation network
(LDEN) proposed in [18] built on ResNet-34 [15] to in-
vestigate the performance without model compression. For
the second combination, we use the above ResNet-34 based
(LDEN) as the teacher model and the MobileNet-v2 [46]
based network as the student model in [18]. For the next two
combinations, the teacher models are implemented using a
ResNet-50 [15] based encoder-decoder network (EDN) [26]
and multi-branch feature fusion network (FFN) [21], respec-
tively. Networks of the student models are modified from
the teacher networks by replacing ResNet-50 with ResNet-
18. For the last combination, the teacher model is a SeNet-
154 [22] based structure-aware residual pyramid network
((SARPN) [3]. Similarly, the student model is derived from
the teacher model by replacing the backbone with a smaller
ResNet-34.

To implement the network of the transformation model,
we use the dilated convolution [61] based encoder-decoder
network modified from the saliency prediction network [23,
20] by adding symmetric skip connections between the
encoder and the decoder.

5.1.4. Baselines
As discussed in Sec. 3, most of the previous data-free KD

methods cannot be applied to depth regression tasks. Thus,
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Table 3
Quantitative results on the NYU-v2 dataset. We use two popular measures including the root mean squared error (RMSE) and
thresholding accuracy 𝛿1.

Model LDEN [18] LDEN [18] EDN [26] FFN [21] SARPN [3]
Teacher (Backbone)

→ Student (Backbone)
ResNet-34

→ ResNet-34
ResNet-34

→ MobileNet-v2
ResNet-50

→ ResNet-18
ResNet-50

→ ResNet-18
SeNet-154

→ ResNet-34
Parameter Reduction None 21.9M → 1.7M 63.6M → 13.7M 67.6M → 14.9M 258.4M → 38.7M

Method Data RMSE 𝛿1 RMSE 𝛿1 RMSE 𝛿1 RMSE 𝛿1 RMSE 𝛿1
Teacher

NYU-v2
0.481 0.829 0.481 0.829 0.497 0.824 0.465 0.843 0.418 0.878

Student 0.481 0.829 0.518 0.802 0.522 0.805 0.494 0.826 0.459 0.843

Random noises
None

1.673 0.193 1.702 0.194 1.935 0.102 1.934 0.112 1.953 0.107

DFAD 0.958 0.402 1.090 0.329 1.004 0.382 1.163 0.338 1.208 0.278

KD-OOD
SceneNet  ′

1
0.596 0.753 0.648 0.712 0.729 0.660 0.660 0.710 0.665 0.695

Ours 0.555 0.774 0.600 0.742 0.676 0.701 0.639 0.722 0.581 0.759

KD-OOD
SceneNet  ′

2
0.590 0.761 0.611 0.742 0.705 0.676 0.663 0.713 0.605 0.738

Ours 0.537 0.789 0.558 0.778 0.648 0.726 0.584 0.760 0.569 0.776

(a) RGB
images.

(b) Ground
truth.

(c) Random
noise.

(d) DFAD. (e) KD-OOD
with  ′

1.
(f) Our

results with
 ′
1.

(g) KD-OOD
with  ′

2.
(h) Our

results with
 ′
2.

Figure 4: Qualitative comparison of depth maps predicted by different methods on the NYU-v2 test set.

we choose DFAD [12] as a baseline since this method does
not apply the inherent constraint for synthesizing images.
Overall, we consider the following methods as baselines for
comparison.

Teacher: The teacher model trained on the target dataset.
Student: The student model trained on the target dataset.

KD-OOD: For the sake of comparison, we take KD [16]
using the OOD simulated data as the strong baseline of our
method. It is the first loss term of Eq. (9).

Random noise: The student model is trained via KD
with random Gaussian noise. It is also a baseline commonly
used for image classification.

Junjie Hu et al.: Preprint submitted to Elsevier Page 7 of 11



Dense Depth Distillation with Out-of-Distribution Simulated Images

DFAD: The student model is trained with data-free
adversarial distillation [12] that synthesizes images from
random noise with adversarial training.

5.2. Quantitative Comparisons
5.2.1. NYU-v2 Dataset

We first thoroughly evaluate the proposed method on
the NYU-v2 dataset. We measure depth maps using the
root mean squared error (RMSE) and the thresholding 𝛿1
accuracy. Table 3 shows the quantitative results of different
methods for various teacher-student combinations where the
performance of the student (trained in supervised learning)
exhibits an upper bound that we aim to reach. As seen, dis-
tillation with random noise yields the lowest performance,
although they are shown to be effective for some toy datasets,
e.g., MNIST [32] and CIFAR-10 [31], for image classifica-
tion. Moreover, DFAD has also failed on the task.

Compared to the above methods, KD-OOD demon-
strates much better results, showing the advancement of
our route that utilizes OOD simulated images. In the case
of using the smaller set  ′

1, it provides 0.165 mean in-
crease in RMSE (meters) and 0.115 decrease in 𝛿1 over
the five different model combinations. Most importantly,
the proposed method outperforms all baselines and at-
tains consistent performance improvement for all different
teacher-student combinations. It yielded 0.115 and 0.081
performance degradation in RMSE (meters) and 𝛿1. Com-
pared to KD-OOD, it achieves 0.05 meters and 4.0% mean
improvement in RMSE and 𝛿1, respectively.

We then analyze the effect of utilizing the larger set  ′
2.

As a result, we found a performance boost for both KD-OOD
and our method in all experiments when using a larger scale
set. Our method consistently outperforms KD-OOD by 0.06
meters and 4.9% in RMSE and 𝛿1, respectively. Besides, our
method using  ′

1 even outperforms KD-OOD using  ′
2.

Another observation is that the first two teacher-student
model combinations outperform the latter three. The results
agree well with previous studies [52], which verified that the
performance of the student model degrades when the gap in
model capacity between them is significant. This problem
can be well handled by using an additional assistant model
[40], distilling intermediate features [34], multiple teacher
models [50], and the ensemble of distributions [37]. Since it
is a common challenge, we leave it as future work.

Figure 4 visualizes a qualitative comparison of different
methods. It is seen that random noises produce meaningless
predictions, and DFAD estimates coarse depth maps. A
closer observation of maps predicted by KD-OOD and our
method shows that our proposed method can more accurately
estimate depth in local regions. Overall, the quantitative and
qualitative results verified the effectiveness of our approach.

5.2.2. ScanNet Dataset
To fully evaluate our method, we also test methods using

the ScanNet dataset. We use the teacher and student models
proposed in [18]. The results are given in Table 4. The
final results are highly consistent with those obtained using

Table 4
The results provided by the models on the ScanNet dataset.

Method Data RMSE 𝛿1
Teacher Model

ScanNet
0.333 0.790

Student Model 0.357 0.764
Random noise

None
1.265 0.079

DFAD 0.725 0.368
KD-OOD

SceneNet  ′
1

0.542 0.541
Ours 0.453 0.646

KD-OOD
SceneNet  ′

2
0.477 0.618

Ours 0.412 0.693

NYU-v2. Both random noises and DFAD show extremely
low accuracy. The proposed method outperforms KD-OOD
even using the smaller set. We obtained 10.5% and 7.5%
improvement in 𝛿1 and, 0.089 meters and 0.065 meters
improvement in RMSE for  ′

1 and  ′
2, respectively.

5.3. Analyses for the Transformation Model
Figure 5 shows some examples of the input and out-

put images of the transformation network as well as their
corresponding predictions. In the figure, 𝑥′𝑖 and 𝑥′𝑗 denote
two images randomly selected from the simulated set, and
�̂�′ is the image generated by applying object-wise mixing
between 𝑥′𝑖 and 𝑥′𝑗 . 𝐺(�̂�′) denotes the transformed image,
i.e., the output of 𝐺. We marked some regions of images in
Figure 5 (c) and (d) with red boxes for better visualization.
By visually comparing �̂�′ and 𝐺(�̂�′), we observe that 𝐺
tends to reduce noises and alleviate artifacts around object
boundaries such that 𝐺 can produce more realistic images,
mitigating domain gap from the real-world scenarios. It can
be validated by ||�̂�′ − 𝐺(�̂�′)||1 where || ⋅ ||1 is the 𝓁1 norm
(Figure 5. (g)) where differences at object boundaries are
highlighted. Furthermore, Figure 5. (d) and (f) show the
predicted depth maps for �̂�′ and 𝐺(�̂�′), respectively. They
demonstrate a clear difference, as observed in Figure 5.
(h). We quantify these differences by evaluating the whole
set  ′

1. As a result, the 𝓁1-norm of the image and depth
difference is 0.156 and 0.227, respectively.

5.4. Ablation Studies
We conduct several ablation studies to analyze our

approach and provide additional results on the NYU-v2
dataset. Table 5 gives the results. Specifically, we perform
several experiments as follows:

Without using 𝓁𝑟𝑒𝑐: In our original method, we impose
the reconstruction consistency between �̂�′ and 𝐺(�̂�′) to sup-
press undesirable noises while training the transformation
model. We relax this constraint and observe that the RMSE
and 𝛿1 dropped to 0.612 and 0.735, respectively.

Without using 𝐺: We also test the performance while
removing the transformation model in the pipeline. We
directly perform distillation using 𝑥′ and mixed images �̂�′.
As a result, the RMSE and 𝛿1 dropped to 0.635 and 0.722,
respectively.
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(a) 𝑥′
𝑖. (b) 𝑥′

𝑗 . (c) �̂�′. (d) 𝑡(�̂�′). (e) 𝐺(�̂�′). (f)
𝑡(𝐺(�̂�′)).

(g) 𝑑𝐼 . (h) 𝑑𝐷.

Figure 5: Visual comparisons of images and depth maps where (a) and (b) are original images from the simulated set, (c) and
(d) are mixed images and estimated depth maps, (e) and (f) denote transformed images of (c) and estimated depth maps,
(g) 𝑑𝐼 ≜ ||�̂�′ − 𝐺(�̂�′)||1 and (h) 𝑑𝐷 ≜ ||𝑡(�̂�′) − 𝑡(𝐺(�̂�′))||1 are used to compute image discrepancy and depth discrepancy,
respectively.

Table 5
Results for ablation studies.

RMSE 𝛿1
Original 0.600 0.742
Without using 𝓁𝑟𝑒𝑐 0.612 0.735
Without using 𝐺 0.635 0.722
Without using image mixing 0.635 0.724

Without using image mixing: We evaluate the effect
without utilizing object-wise image mixing. We feed the
images 𝑥′ to 𝐺 and apply distillation with both 𝑥′ and 𝐺(𝑥′).
We find that the RMSE and 𝛿1 dropped to 0.635 and 0.724,
respectively.

6. Conclusion
We have studied knowledge distillation for monocular

depth estimation in data-free scenarios. By first thoroughly
analyzing the challenges of the task, we showed that a
promising approach to address the challenges is to utilize
out-of-distribution (OOD) images as an alternative solution.
We then empirically and quantitatively verified that i) a high
degree of scene similarity, ii) the large-scale size of datasets,

and iii) the small magnitude of domain gap contribute to the
performance boost of depth distillation methods through de-
tailed experimental analyses with different OOD data. Given
the difficulty of data collection in practice, we proposed to
utilize simulated images to strengthen the applicability of
KD. We further presented a novel framework to perform
data-free depth distillation with simulated data. As a practi-
cal solution to the task, we have evaluated the effectiveness
of the proposed distillation framework on various depth
estimation models and two real-world benchmark datasets.
We consider that our framework and results can further
inspire future explorations, shedding light on this unexplored
problem.
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