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Abstract— This paper presents a decentralized cooperative
motion planning approach for surface inspection of 3D struc-
tures which includes uncertainties like size, number, shape,
position, using multi-robot systems (MRS). Given that most of
existing works mainly focus on surface inspection of single and
fully known 3D structures, our motivation is two-fold: first,
3D structures separately distributed in 3D environments are
complex, therefore the use of MRS intuitively can facilitate an
inspection by fully taking advantage of sensors with different
capabilities. Second, performing the aforementioned tasks when
considering uncertainties is a complicated and time-consuming
process because we need to explore, figure out the size and
shape of 3D structures and then plan surface-inspection path.
To overcome these challenges, we present a meta-learning ap-
proach that provides a decentralized planner for each robot to
improve the exploration and surface inspection capabilities. The
experimental results demonstrate our method can outperform
other methods by approximately 10.5%-27% on success rate
and 70%-75% on inspection speed.

I. INTRODUCTION

The field of cooperative surface inspection investigates
the problem of deploying a team of robots with sensors
to cooperatively inspect the surface of 3D structures [1]. It
plays a crucial role in many applications, such as surveillance
in the disaster [2], automated patrols at sea under safety
requirements [3], wind tunnel inspection [4], bridge surface
reconstruction [5], and thus has attracted a notable volume
of research over the past years. In these applications, a 3D
model with a completely known or partially known geometric
structure is to be inspected with prior knowledge in the form
of meshes or grids. Although many of the existing works only
aim to find a global path that can provide full coverage of
the surface, there exist two disadvantages: i) most methods
inherently assume that they only inspect the surface of a
single complex structure by multi-robot systems (MRS) with
a centralized control structure, thus ignoring potential tasks
of inspecting multiple structures posing a huge challenge to
computation power. ii) most works only focus on planning
global structural coverage path with prior information about
its size, shape, and position, thus they cannot potentially
consider the structural uncertainties.

Early classic work in the task of surface inspection
mainly designs a motion planning algorithm to provide a
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Fig. 1: An example of surface inspection in a 3D environment
for MRS. In this scenario, the red area represents the
inspected parts while the green area is the uninspected parts
of structures.

full coverage plan for non-planar surfaces [6], however,
this work cannot consider exploiting the potential advantage
of MRS, apparently leading to inefficient inspection. To
overcome these issues, some approaches by using MRS
with a centralized control structure to cooperatively inspect
surface are presented in [1], [7]. The aim of these works is
to efficiently inspect a complex structure, such as airplane
model and bridge model by taking full use of a network
of sensors. Unfortunately, when facing multiple structures
randomly distributed on the ground shown in Fig. 1, it tends
to be impractical and time-consuming for the aforementioned
approaches to provide a global and optimal solution because
searching for an efficient solution in an uncertain solver
space is extremely difficult and requires a large computation
power. In contrast to the centralized control of MRS, it is
obvious that developing a decentralized MRS-based inspec-
tion system can take full advantage of different inspection
capabilities, and the computational burden can be greatly
reduced by simply making partial observations based on each
robot’s sensor.

It should be noted that most state-of-the-art approaches
[4], [5] for planning cooperative coverage paths for a large
and complex structure all require full prior knowledge of
inspected structure, such as size, shape, number, and position.
In practical environments, we argue that the most difficult
challenge here is how to inspect multiple uncertain structures
without any prior knowledge. Inspecting unknown structures
is a complex task compared to tasks with completely known
structures because there are three key steps to consider: i)
exploring the whole environment to determine how many
structures there are and where they are located; ii) figuring
out their shape and size during inspection; iii) planning
cooperative coverage path for each robot.

To address the two disadvantages mentioned above, in
this paper, we present a meta multi-agent reinforcement
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Fig. 2: Examples of different environments. We use two
kinds of colored structures, respectively green and gray to
represent two kinds of states. We specifically consider four
types of uncertainty factors, including shape, size, number,
and position.

learning method-based multi-robot scanning system (meta-
MRSS), that can perform inspection tasks without any prior
knowledge. To be specific, we firstly sample the training data
to form multiple tasks through the combination of different
types of uncertainties. Then we apply meta multi-agent rein-
forcement learning methods to train an initial policy network
for each robot to obtain general experience on uncertain
structures. After that, the well-adapted initial policy network
can be further trained in new uncertain structures. Finally,
we can achieve fast inspection of uncertain structures with a
small amount of training. Our method is tested on numerous
types of uncertainties, including number, size, shape, and
position of structures, as shown in Fig. 2. As a result, our
method outperforms existing methods in terms of exploration
efficiency and coverage effectiveness.

Our contributions are summarized as follows:
• We present a meta multi-agent reinforcement learning

based method to handle the challenge when lacking any prior
geometric information of structures. Our approach trains
policies that can quickly adapt to uncertain structures and
efficiently implement surface inspection.
• We propose a decentralized cooperative planning

method for surface inspections of multiple structures by
using MRS with different capabilities of sensors.
• Experimental results show that our method outperforms

other methods including learning based method [8], [9] and
NBVPlanner [10] by approximately 10.5%-27% on success
rate and about 70%-75% on inspection speed.

II. RELATED WORK

A. Surface Inspection of 3D Structures

In the literature on surface inspection, existing works
strongly assume that the prior geometric information about
structures’ surface to be inspected can be easily provided
manually or automatically as a mesh or grid model by
relevant CAD software or previous mapping tasks [10]. One
of the early works including [6] proposes a time-optimal
approach for achieving complete coverage of 3D urban struc-
ture based on full prior features about abstract and simplified
models capturing urban features. Alternatively, an iterative
planning strategy is proposed to provide a complete global

coverage path with the aid of re-meshing techniques in [11],
and to improve computation efficiency, this work models
viewpoints as Traveling Salesman Problem to output fast and
feasible coverage path at each iteration. However, geometric
information about structures in the above two papers are
oversimplified, thus insufficient for planning complex and
feasible coverage path with respect to large and complex
structures. To properly overcome the aforementioned issue,
a real-time coverage path replanning method is proposed
by [12] for inspection of a large 3D underwater structure,
with the assumption of a knowledge of a bathymetric map.
It should be noted that using a single robot to inspect the
surface of large and complex structures tends to be inefficient
and time-consuming. Therefore, there is a growing number
of approaches to improve inspection efficiency by planning
cooperative inspection paths for MRS. In [1], the authors
present a new and decentralized method for planning a
cooperative and safe path for 3D surface surveillance by
taking full account of the requirement of avoiding collision.
Another alternation to solve the same problem of inspecting
complex infrastructures is advanced by [4]. More specifically,
by initially slicing the entire structures into specific branches
and regions, then a cooperative coverage path planning
approach with a centralized control structure is introduced
to provide a separate path for every robot by solving a
global optimization problem. In summary, aforementioned
inspection algorithms proposed in the literature all assume a
fully known environment.

In order to further study the problem of inspecting the
surface of structures without any prior knowledge, a variant
to the notion of the frontier which are the boundaries of
inspected parts of surfaces from an unknown structure is
proposed by [13]. This method allows the inspection of
structural surface without acquiring any prior information.
Similarly, a new path planning approach for robotic explo-
ration and inspection is presented in [10], where the authors
employ a variant of the next-best-view (NBV) planner [14] in
a receding horizon fashion to firstly explore unknown struc-
tures, and then perform inspection task by exploiting just
built occupancy map. However, the above two works only
have a general assumption that they attempt to present path
planning approaches for exploration and surface inspection
with the use of a single robot or assign path by a centralized
planner.

B. Meta-Reinforcement Learning

To adequately cope with the diversity and uncertainty
of the environments, how to fast adapt into unknown en-
vironments outside training sets has aroused tremendous
attention from researchers. It is widely believed that meta-
learning [15]–[17] can be applied to quickly adapt to new
environments while maintaining good performance in uncer-
tain environments. A meta-learning method called MAML is
proposed to quickly solve multi-tasks of cheetah locomotion
in [18]. Inspired by this work, our approach is proposed to
solve the problem of fast exploration and efficient surface
inspection of MRS in the presence of multiple uncertain



Fig. 3: The structure of meta optimizer. The wheeled robots and quadcopters use different sets of policy networks. They
utilize decentralized actor and centralized critic networks. This method is well applicable to MRS.

3D structures. In [19], [20], a meta learning framework is
proposed to extend into a diversity of new scenarios and
applications, like earthquake rescue and traffic light control.
In [21], meta-TD3 is presented to help UAVs quickly adapt
to new target motion patterns and obtain better tracking
effectiveness. In [22], the authors propose a Bayesian meta-
learning method to quickly adapt to different robotics plat-
forms. The key difference between our paper and others
is that previous meta-reinforcement learning approaches are
built on a single robot, while our method is built on MRS.

III. METHODOLOGY

A. Problem Formulation

We consider a group of robots NR = {Rw ∪ Rq}, in
which wheeled robots represented by Rw can only move
on the ground, while quadcopters labeled by Rq could fly
in 3D space to inspect the entire 3D structures Φi around
the whole environment Ω , namely Ω = {Φ1,Φ2, · · · ,Φn}
with uncertainty G. We assume that the uncertainty G as
described in Fig. 2, refers to the position, number, shape and
size of structures Φi. In our task settings, we only focus on
inspecting 3D structures while ignoring the ground. As for
each Φi, building on the surface model approach of [1], [10],
we assume it consists of cells C = {1, 2, · · · ,m}. which
are essentially uniform grids by discretizing each structure
Φi. It is clear that, according to the different sizes of each
structure, these structures will have completely a different
number of cells. The state of the cells is either uninspected
(0) or inspected (1) (Ci ∈ {0, 1}), according to whether the
cell is perceived by sensors. As Fig. 1 shows, the small red
grids essentially represent inspected cells, while green grids
are regarded as uninspected cells. We assume that in these
factors, positions and shape satisfy normal distribution while
size and number obey geometric distribution. Robots NR
move around the environments with states St,R ∈ R3 at
discrete time intervals via the dynamic models

St,R = f(St−1,R, Ut,R). (1)

Specifical ly, the state of the wheeled robots Rw is St,Rw =
[xt,Rw , yt,Rw , 0]. However, the state of the quadcopters Rq
exists in 3D environments St,Rq = [xt,Rq , yt,Rq , zt,Rq ].
Note that although quadcopters can move around the whole

environment, they are not allowed to fly close over the
ground due to the effect of ground effect on smooth flying.
Additionally, Ut,R ∈ U belongs to a finite set of control in-
puts, referring to velocity command in our settings. Because
of safety requirements, MRS must remain a safety scanning
region to avoid colliding with other robots or structures.
Therefore, we should constrain the states of robots into a
safety scale

St,R ∈ Xsafe(Ω). (2)

We consider that robots carry a sensor with fixed front
orientation relative to the camera platform and a limited FoV
of 20◦ with a shape of the square which has the same size
as cells of structures Φi. The main difference of sensors
between quadcopters and wheeled robots is that they have
different sensing ranges, respectively 3.5 meters, and 2 me-
ters. For a square facet on the surface to be considered visible
by the sensors, it should satisfy the following conditions: i)
its center is in the sensors’ FoV; ii) its distance to sensors d is
within a valid range; iii) its angle with respect to the sensors
will be changed in our settings. Assuming that scanning
measurement, including scanning range and viewpoint, is
deterministic without adding Gaussian noise so that robots
could determine definitely whether the cells of structures are
inspected by thresholding effective scanning range via the
object recognition method proposed by [23]. Therefore, when
scanning the cells within effective sensor ranges, robots can
infer the number of inspected cells Θsensor(S,Ω) ⊆ C which
are rewarded as inspected values

yt,R = h(St,R,Φ) = {ci : i ∈ Θsensor(S,Ω)}. (3)

In Eq. (3), reward yt,R is proportional to Θsensor(S,Ω).
The objective is that MRS tries to inspect as many cells
of uncertain structures as possible in a given time horizon:

max
Ω∈G

∑
t′∈{1,2,··· ,t},R∈NR

yt′,R

s.t. St′,R ∈ Xsafe(Ωt′),
St′,R = f(St′,R, Ut′,R),

yt′,R = h(St′,R,Θ),

for all t′ ∈ {1, 2, · · · , t}and R ∈ NR,

(4)



Algorithm 1 meta-MRSS

Input: p(τ ): samples from uncertainty distribution
Input: I: meta-update iterations
Output: θ0: meta policy

1: randomly initialize θj ∈ {θ1 ∪ θ2}
2: for all iteration in I do
3: Sample buffers of tasks τ ∼ p(τ)
4: for τi in τ do
5: Sample K trajectories D using fθj in τi
6: Calculate loss Lτi using D via meta optimizer in

Eq.(6).
7: Compute adapted parameters by optimizer: θ′j,i
8: Sample validation trajectories respectively D′j,i

using fθ′j,i in τi
9: end for

10: Update θj via
∑
τi∼p(τ) Lτi(fθ′j ) using D′i and Lτi

11: end for

As the Eq. (4) describes, under satisfying the kinodynamic
constraints f and collision avoidance Xsafe, we utilize MRS
NR to maximize the inspection efforts yt′,R in terms of
uncertain environments G.

B. meta-MRSS Algorithm

In this section, we will propose a meta multi-agent rein-
forcement learning method to solve optimization problem
presented by Eq. (4). Firstly, due to the dependence of
inspection actions of robots on current robot states, we
model this optimization problem as Markov Decision Process
(MDP). Then, in order to maximize the objective function
represented by Eq. 3, we can regard the objective function
as a reward that can be accumulated to obtain the maximum
expected cumulative return by using multi-agent reinforce-
ment learning algorithms. In addition, we can shape reward
mechanisms to learn collision avoidance strategies. Finally,
in terms of uncertain environment, we propose the meta-
learning method to achieve good inspection performance in
a short time horizon.

Our method as shown in Alg. 1 is divided into two
parts, respectively meta optimizer in the inner loop and meta
learner in the outer loop. For detail, refer to the work [18].
We only clarify required notations in Alg. 1, i.e., θ1 and θ2

respectively represent policy network parameters of wheeled
robots and quadcopters, thus θj is joint policy’s parameters
needed to learn from above these robots. Throughout iterat-
ing over Alg. 1, an initial joint policy can be obtained labeled
by θ0, which can be flexibly extended into unseen tasks in
the sequel.

Firstly, in the inner loop (as seen in lines 4-9), we
make sure that the meta optimizer could cover in specific
environments. Then we sample various training environments
as multiple tasks, by utilizing meta learner we could obtain
good-performance meta policy which can be used to learn a
policy in uncertain environments with little training to realize
fast adaptation.

1) Meta optimizer: To achieve this problem modeling,
we build the model in terms of the aforementioned task in
the simulation through the toolkit called mlagents [24]. As
shown in the Environment part of Fig. 3, we discretize 3D
structures into uniform green grids to simulate cells that will
be inspected by sensors. If the cells are inspected by robots,
they will immediately become red. To maximize optimization
objective proposed by Eq. (4), we model this problem as a
fully cooperative multi-agent task. It is generally accepted
that MDP for multi-agent systems could be defined as:M =
(N ,S,A,O, P,Ω, r, γ), where N ≡ {1, 2, · · · , n} is a set
of agents and S is a finite set of global states. Due to system
heterogeneity in that different types of robots have their own
specific actions and states, we thus adopt a decentralized
control strategy that we assign each policy network to each
robot. At each time step, our system operates in a partially
observable environment, in which each agent i receives a
partial observation oi ∈ Ω by following the observation
probability function O(oi|s, ai). Every agent i ∈ N chooses
the action ai ∈ A based on a partial observation oi, which re-
sults in a collective action space a ≡ {a1, a2, · · · , an} ∈ A.
Therefore we can easily obtain the robots’ kinodynamic state
presenting on the Eq. (1) by using mlagents. We seek the
optimal joint policies π∗ = {π1, π2, · · · , πn} to maximize a
joint value function V π∗(O) = E[

∑∞
t=0 γ

trt|s0 = s, π∗],
where r is the reward function and γ is discount factor.
Besides MDP to be considered, communication mechanisms
should also be most concerned for MRS. Specifically, we
build the models in five aspects:

• Joint action space: To make robots’ motion suitable for
real-world applications, we set joint continuous action space.
Specifically, we set forward-back, the left-right velocity of
wheeled robots with −0.2 ∼ 0.2 m/s and turn velocity of
−1 ∼ 1 rad/s. The main difference between quadcopters
and wheeled robots is that forward-back, left-right, up-down
velocity is −0.3 ∼ 0.3 m/s. Besides, we also set the pitch
and yaw velocity of quadcopters both being −3 ∼ 3 rad/s.
• Global observation space: In the simulation, we deploy

raycast sensors to collect observations. These raycast sensors
emit rays every 5 degrees within a limited scanning range.
When hitting the structures, rays will return the positions and
state of cells. As shown in the Multi agents part of Fig. 3,
to facilitate the learning process, we adopt one-hot ways to
encode the state of the cells into 0 or 1 in our setting. Besides
the observation of sensors, we also collect the positions and
velocity as observation input.
• Communication setting: To achieve good-performance

collaboration for MRS, we also consider the communica-
tion mechanism. We conduct some ablation experiments to
demonstrate a good mechanism in which wheeled robots
could access information of all robots while quadcopters only
send the structure information to wheeled robots. Ablation
study further shows that this mechanism well applies to the
fact that quadcopters that have stronger motion capabilities
can convey more useful information.
• Reward shaping: To avoid restricting solution space by



excessive prior experience, we adopt a relatively simple
reward function. Overall, the reward function Eq. (5) is
defined as follows:

r =


sum(h(St′,R,Φ)) if robots inspect the cells
−1 if robots collide with structures
−1 if robots collide with other robots
−0.05 time penalty at each step

(5)
where we assume when wheeled robots or quadcopters
inspect cells of these structures in a 3D environment they will
be rewarded by sum(·), which refers to the addition of all
elements in the tuple. To avoid obstacles including structures
and other robots, if they collide, they will be punished at
one point. To fully prove how the negative reward works
for collision avoidance, we conduct the ablation study to
analyze the effect. The reward scaling is from parameter
tuning. Note that we set a time penalty at each time step
so that MRS could finish the inspection task as quickly as
possible. To solve the optimization problem, we encode the
objective function as an accumulative reward, meaning that
when we obtain the maximum accumulated reward, then we
directly obtain the optimal solution of the Eq. (4).
• Training method: As shown in Fig. 3, we configure two

sets of policy networks respectively for wheeled robots and
quadcopters. Each network follows the actor-critic structure
with central critics and distributed actors. We combine the
observation vector of raycast sensors and another observation
vector of robots’ position and velocity as a combined obser-
vation vector. To reduce observation dimension and improve
training efficiency, a 3-layer MLP is adopted to encode com-
bined observation vector to output feature observation space,
finally inputting it into the actor and critic network. The
meta optimizer algorithm we are using is called MultiAgent
POsthumous Credit Assignment(MA-POCA) [25]. Then we
calculate the loss Lτi advanced by Eq. (6). For each agent
i, the advantage function that compares the Q-value for the
current action ai to counterfactual baselines that marginalize
out ai can be computed while keeping the other agents’
actions A−i are fixed.

Ai(S,A) = Q(S,A)−
∑

a′iπi(a′i|τ i)Q(S, (A−i, a′i))

Lτi(fθj ,i) = −Eit∼fθj,i [A
i(S,A)]

(6)
where Ai(s, u) represents the counterfactual baseline of the
single agent labeled by i, ai is each agent’s action, τ i refers
to the past action sequence. While A is the joint actions of
all agents, A−i presents the joint actions of other agents,
S represents the global state. Q(S,A) is used to estimate
Q−values for the joint action A concerning the global state
S.

2) Meta learner: As shown in Fig. 4, meta-MRSS utilizes
MAML structure as meta learner (as shown in line 2-11
in Algorithm 1). In the inner loop, in order to simulate
uncertain environments, we randomly sample a large number
of different tasks through domain randomization mechanism
conditioned on different uncertainty factors. As for each

Fig. 4: The structure of meta-MRSS. Firstly, meta policies θ0

are obtained through meta-MRSS. Then the optimal policies
θ∗i for uncertain structures could be learned through little
training of meta policies.

training task, we utilize the copies of meta policy to train
and compute loss. In addition, we use more than one gradient
descent update due to the dynamic and complexity of MRS.
In the outer loop, we further compute the average total
loss to finally update meta policy θj given that the inner
loop provides sufficient loss through training on the buffers
of tasks. The illustration is shown in Algorithm 1. The
advantage of our proposed algorithm is that when updated
meta policies are applied to uncertain tasks, we only train
on a few iterations to obtain optimal policies on new tasks
in order to achieve fast inspection for uncertain structures.

IV. EXPERIMENTS

1) Experimental Setup: As shown in Fig. 2, to fully sim-
ulate the uncertain environments, we randomly sample 1000
environments as a training set, then we sample 5 unknown
environments as the test set to verify the performance of our
method in the test set. To make a fair comparison, we train
these networks under the same hyperparameters by setting
different stochastic seeds to avoid experimental serendipity
and provide distributed policy network for each robot.

2) Baseline Methods: To quantify our method, we provide
a thorough evaluation of our method by comparing it with
existing methods. Specifically, we choose the following four
methods for dealing with the uncertainties as a baseline:
• Standard POCA Since our method is built on POCA,

therefore we conduct experiments to fairly compare our
method with standard POCA. We utilize standard POCA to
obtain the average rewards in the test set.
• Domain Randomization Domain Randomization

mechanism [8] is a common way to improve the general
capability of reinforcement learning. Therefore, we simulate
these uncertainties through mlagents, then use the POCA
algorithm in these stochastic simulation environments to
obtain a model with high generalization capability.
• Transfer Learning Considering that most tasks are

relevant, transfer learning [9] allows sharing the learned
model parameters for new models to accelerate and optimize
the learning efficiency. We first obtain the initial networks on
the training set, and then perform a second training on the
test set to obtain the average rewards.
• Receding Horizon Path Planner (NBVPlanner) NBV-

Planner [10] is presented to provide a global coverage path
for robotic exploration and inspection. This method plans the
path in a geometric random tree, which can be regarded as a



(a) The learning process of the wheeled robots.

(b) The learning process of the quadcopters.

Fig. 5: The comparison results of learning for two kinds of
robots using respectively four methods. The results present
meta-MRSS has better learning efficiency in the face of
uncertain structures.

variant of the rapidly exploring random tree (RRT) method.
Therefore, we can design an objective function enabling
the plan for inspection of the given surface in unknown
structures. Therefore, we utilize NBVPlanner in the test set
to calculate the average success rate of the inspection for
unknown structures.

3) Experimental Results: To compare the performance of
these baseline methods with meta-MRSS, we use the average
reward and inspection success rate in the test set through
three trials as metrics. The evaluation results are respectively
shown in Fig. 5. Note that NBVPlanner is essentially an
optimization solver rather than a learning-based method,
therefore we compare success rate instead of average reward
of this planner. As indicated by the results in Fig. 5 (a)
& (b), our method can converge in nearly 4 million steps,
while other learning-based methods require more than 14
million steps to reach convergence. Statistically, our method
can outperform other baseline methods in terms of inspection
speed by approximately 70%-75%. This proves that our
method quickly provides better cooperative policies for MRS
to inspect uncertain structures. From the result, we can
conclude that, compared with these learning-based meth-
ods, our proposed method can learn a high generalization
capability of initial policy by unifying different uncertainty
factors, and then the initial policies can be quickly adapted
to another optimal policy for uncertain structures with only
little training process when facing uncertain structures.

In terms of inspection success rate, Fig. 6 turns out that our
method can achieve a better inspection performance in the
test set. Statistically, our method can reach an average suc-

cess rate approximately of 87.12%, Domain Randomization-
based POCA can reach 68.54%, Standard POCA’s success
rate is 60.16% and Transfer Learning can reach 71.74%. We
observe that although Transfer Learning has a higher inspec-
tion success rate than other methods at the beginning when
facing uncertain environments, it needs time to fine-tune the
networks which can lead to a steep drop in inspection efforts.
It is obvious that the curves labeled by Standard POCA
slowly increase because POCA has weak generality in un-
certain environments. Domain randomization-based method
efficiently improves the generality of POCA, however, it has
a lower level of inspection success rate by comparing with
our method in given steps. In addition to comparing with
learning-based methods, we further choose NBVPlanner as a
non-learning-based method to demonstrate the performance
of our proposed method. It can be seen that in Fig. 6 the
success rate of initial iterations is close to 0. This is because
NBVPlanner needs to firstly construct the occupancy map
and then plan the global coverage path for surface inspection.
For NBVPlanner the scenarios from the test set are executed
3 times, as the outcome is stochastic due to the use of RRT
algorithms. The final results show the average success rate
using NBVPlanner reaches 76.6%, which is inferior to our
proposed method. This result is basically caused by the fact
that our proposed method obtains general initial experience
in inspecting uncertain structures so that initial policies
can quickly adapt to other uncertain structures. However,
NBVPlanner tends to build a map of uncertain structures by
iterating many times before the inspection. Therefore, our
proposed method has a better inspection success rate for a
given time horizon.

Fig. 6: The success rate of inspection using five methods.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we study the problem of how MRS could
collaborate on the task of surface inspection of 3D uncertain
structures. We attempt to use a decentralized method based
on meta multi-agent reinforcement learning to deal with
the uncertainties that appear in unknown environments. Ex-
perimental results demonstrate that our method outperforms
other state-of-the-art approaches in terms of efficiency and
effectiveness of surface inspection. Future work considers
using above methods in the real multi-robot systems for real
surface inspection application.
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