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Abstract
We address the problem of detecting potential instability in the planned motion of modular self-reconfigurable robots.
Previous research primarily focused on determining the system’s unique physical state but overlooked the mutual
compensation effects of connection constraints. We introduce a linear-time quasi-static stability detection method for
modular self-reconfigurable robots. The internal connections, non-connected contacts, and environmental contacts
are considered, and the problem is modeled as a second-order cone program problem, whose solving time linearly
increases with the number of modules. We aim to determine the critical stable state of the system and that is achieved
by finding the required minimum characteristic connection strength. By analyzing the critical stable state, we can
assess the system’s stability and identify potential broken connection points. Furthermore, the internal stability margin
is defined to evaluate the configuration’s stability level. The suspension and object manipulation configurations are first
demonstrated in simulation to analyze the effectiveness of the proposed algorithm. Subsequently, a series of physical
experiments based on FreeSN were carried out. The calculated stable motion ranges of manipulator configurations are
highly consistent with the actual sampling boundaries. Moreover, the proposed algorithm successfully predicts stability
and identifies broken connections in diverse configurations, encompassing quadruped and closed-chain configurations
on both even and uneven terrains. The load experiment further demonstrates that the impacts from unmodeled factors
and input errors under normal conditions can be on a small scale. By combining the proposed detection method and
stability margin, we open the door to realizing real-time motion planning on modular self-reconfigurable robots.
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1 Introduction

The modular self-reconfigurable robot (MSRR) system
Dokuyucu and Özmen (2023); Seo et al. (2019); Yim et al.
(2007); Alberto et al. (2017) is a type of swarm robot system
composed of many identical robot modules that need to
be physically connected. These modules can realize self-
reconfiguration by attaching and detaching thereby altering
the connection topology, promising to execute challenging
tasks in unknown and unstructured environments. Many
versions of reconfigurable robots, as surveyed in Liang
et al. (2023), have been developed. These robots can
be divided into six categories, lattice type, chain type,
hybrid type, mobile structure, truss structure, and freeform.
These systems have exhibited a wide variety of locomotion
and manipulation, including legged walking Hamlin and
Sanderson (1996), snake gaits Jing et al. (2018), rolling
Sastra et al. (2009); Shen et al. (2006), manipulation of
objects Zhao and Lam (2022); Tu et al. (2022), climbing
Liang et al. (2020), self-reconfiguration between dozens of
shapes Butler and Rus (2003); Suh et al. (2002), and others
Zong et al. (2023).

The diversity and flexibility of MSRR stem from its
creative hardware design, namely the connector and driving
mode between modules. Once the connection relationship is
established, the relative motion between modules through the
driver can be seen as the joint motion process. The change of

connection topology can be realized by the reconfiguration
process, which typically consists of three steps: 1) releasing
some intermodular connections; 2) shifting modules by joint
motion or independent motion; 3) creating new connections
at the new location. The MSRR system must consider
geometric and mechanical constraints during the motion,
whether it performs the self-reconfiguration process or pure
joint motion. If the MSRR system can track the planned
trajectory and maintain kinematic relationships between
modules to form the desired geometric shape, it meets
the geometric constraints. Numerous self-reconfiguration
algorithms exist to handle geometric constraints Luo and
Lam (2023); Yao et al. (2019); Varshavskaya et al. (2008);
Pan et al. (2023); Yoshida et al. (2002). However, algorithms
that address mechanical constraints are relatively rare.
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The connectors must provide sufficient constraints to
limit the relative motion between modules to form a stable
connection. However, when the load carried by the connector
is too large or even exceeds the limits of the connector,
geometric deformation or connection breakage will occur,
which brings severe damage to the mechanism and even
results in mission failure Yim et al. (2001). We regard the
unexpected connection breakage and whole-body instability
as violating the mechanical constraints of MSRR. Real-
time mechanical stability detection, whose invocation times
are similar to obstacle avoidance algorithm and will be
executed by modules using limited computation resources, is
the prerequisite for performing self-reconfiguration and joint
motion. We aim to find an effective modeling method for
the detection of mechanical connection stability, taking into
account the balance between accuracy and computational
efficiency. This problem involves the following aspects: 1)
how to effectively model the connector and account for
its anisotropic strength; 2) how to model the whole-body
stability of the system; 3) how to know the stability of
internal connections given the configuration, external active
forces and environmental information; 4) how to achieve a
balance between model accuracy and computational cost.
We limit the research scope of this paper to the quasi-static
field, which means the motions are slow enough and inertial,
Coriolis and centrifugal effects can be negligible.

1.1 Related Work
If the stiffness of the module body significantly exceeds
the stiffness of the connector, which is often the case,
any configuration of MSRR can be represented as a multi-
body system connected by connectors. By assessing whether
the connector can provide a sufficient reaction force, one
can determine the stability of the connection under quasi-
static conditions. However, determining the required internal
reaction force is challenging due to the presence of redundant
constraints, which originate from two possible sources. One
source comes from external contacts. For example, in a 2D
environment, the presence of more than two environmental
frictional contact points can yield infinite solutions to the
equilibrium equations, resulting in an infinite number of
possible internal stress distributions for MSRR. On the other
hand, a module may be connected to multiple modules or
form non-connected contacts, potentially leading to internal
redundant constraints.

By introducing the flexible model, the reaction force
can be uniquely determined Hiller and Lipson (2014,
2012). However, these results can be recognized as
unique and credible only when the flexibility of the real
system is properly reflected by the model Wojtyra (2017);
Garcı́a de Jalón and Gutiérrez-López (2013). Paul J. White
et al. White et al. (2011) pioneered a detailed analysis of the
mechanical constraints in programmable matter and MSRR,
introducing a general stiffness model to characterize the
strength of the connector. They utilized potential functions in
Zhang and Fasse (2000) to model the wrench on the elastic
connector, and the proposed non-linear model can be solved
in O�n1.4� time complexity as the number of modules
n increases. Their method has been verified on CKBot
Sastra et al. (2009), Rubik’s snake, and RATChET7mm

White et al. (2011). Jakub Lengiewicz et al. proposed a
distributed algorithm based on a linear-elastic finite element
(FE) model to predict the unstable reconfiguration scenarios
of densely MSRR systems and some numerical results
are shown Hołobut et al. (2020); Hołobut and Lengiewicz
(2017). Further, this method was applied to the Blinky
Blocks and experimental results demonstrate this method
can predict the unstable scenarios successfully in some
cases Piranda et al. (2021). However, to facilitate model
simplicity, the prediction accuracy of this method appears to
be relatively low, as demonstrated by a failure case presented
by the authors. Additionally, none of the aforementioned
studies accounted for the influence of friction and diverse
terrains. Fully accounting for the influence of flexibility
on the system will enhance the accuracy of predictions,
yet it will also increment the computational complexity
of the model, which is detrimental for real-time detection.
Conversely, a simplified model may limit accuracy as its
results may not fully capture the system’s state. Besides,
the FE-based methods neglect the mutual complement
effects of connection constraints. This prompts us to explore
alternative approaches to achieve a more optimal balance
between model accuracy and computational cost.

The amplitude of internal reaction forces is significantly
influenced by external forces, including active applied forces
and environmental reaction forces, necessitating concurrent
consideration of whole-body balance and internal connection
stability. The quasi-static whole-body balance algorithms
of multi-body systems have been extensively researched
and these are expected to provide valuable insights for
us. Quasi-static equilibrium postures received considerable
attention in the early multi-legged locomotion literature
Marhefka and Orin (1997); McGhee and Frank (1968); Or
and Várkonyi (2021); Or and Rimon (2010) and humanoid
robots field Khatib et al. (2022). The support polygon
principle is the leading concept to quickly check the stability
of legged robots, which is also utilized to detect the whole-
body stability of MSRR Piranda et al. (2021); Luo and
Lam (2022). However, when the multi-body system is
exploring the unstructured environment, this criterion fails
Bretl and Lall (2008). For a multi-body system with multiple
environmental contact points, if a set of contact forces exists
that meets the equilibrium equations and friction constraints,
this system is said to be weakly stable Pang and Trinkle
(2000), which means the system may lose stability under
minor external disturbances. A contact model considering
the contact surface can assist us in obtaining a more precise
estimation of the system state Rimon et al. (2008); Or and
Rimon (2017). Nevertheless, this also means extra model
complexity. Proving the existence of weakly stable solutions
and calculating the stability margin of the system are more
commonly applied methods Grand et al. (2004); McGhee
(1967); McGhee and Frank (1968); Ju et al. (2024); Park
et al. (2019). A fast algorithm is proposed to test the static
equilibrium of legged robots and deal with the contact error
in Del Prete et al. (2016). Xuan Lin et al. Lin et al. (2019)
planned the contact force of legged robots and used safety
factors to prevent slipping.

The quasi-static stability problem of MSRR can be
regarded as a further development of these problems, with
two main distinctions. Firstly, unlike traditional legged
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robots with only two or three internal joints for each leg,
the internal connections of MSRR can be numerous and
their stability must be assessed. Secondly, two types of
stability margins need to be taken into account: the whole-
body stability margin and the internal stability margin, which
refers to the weakest connection points.

1.2 Contributions
In this paper, a linear-time quasi-static stability detection
method for MSRR is proposed, which can provide stability
detection of any configuration in uneven frictional terrain
under known external wrenches. We consider each module
as an independent entity. As long as each module can
maintain stability, the entire system is stable. Each module
may be subject to three types of interactions: connection,
non-connected contact with neighboring modules, and
environmental frictional contact. The connectors between
modules are modeled to provide complete six-dimensional
constraints, thus rendering the entire system passive under
external wrenches. We aim not only to determine whether
a system is stable, but also to calculate the internal
stability margin for the stable configurations. For unstable
configurations, we seek to ascertain the required minimum
connection constraints to achieve this configuration. This
problem is modeled as a second-order cone program
(SOCP) problem, which can be easily solved by modern
solver, by considering the equilibrium equations of each
module, contact constraints and connector constraints. The
characteristic connection strength is first defined and by
modifying the weight values, the anisotropic stiffness
of connectors can be reflected. We set the minimum
characteristic connection strength as the main optimization
objective to obtain the critical stable state of the system.
This critical stable state reflects the minimum internal
connection wrench required for maintaining system stability,
as well as the contact state and potential broken connection
points. By comparing the maximum connection wrench
of the physical system, we can easily know whether the
system is stable and calculate the internal stability margin.
FreeSN Tu et al. (2022) is used to verify the method
we proposed. We constructed different configurations of
FreeSN and confirmed the performance of the proposed
model through comprehensive simulation and physical
experiments, demonstrating the usability and accuracy of the
method.

The main contributions contain:
1. A linear-time method for detecting the quasi-static sta-

bility of MSRR on uneven terrain is proposed. This method
fully takes into account connector constraints, environmental
frictional contacts, and non-connected contacts. It enables
fast and reliable stability detection and identification of
potential broken connection points.

2. An internal stability margin calculation model for
MSRR is proposed based on the stability detection method,
which serves as a reliable indicator for assessing the stability
level of MSRR configurations.

3.A series of simulation and physical experiments
conducted on FreeSN verified the prediction accuracy and
computation efficiency of our method. These experiments
further demonstrate that the proposed method effectively

accounts for the geometric distribution of the system and
accurately identifies potential broken connection points.

According to the knowledge of the authors, this is the
first paper to propose a non-FE model for the detection
of MSRR stability, while also considering the influence of
uneven frictional terrains. Additionally, the internal stability
margin for MSRR is also the first time to be discussed.

1.3 Structure
The remainder of this paper is organized as follows:
Section 2 models the quasi-static stability constraints for
MSRR, including equilibrium constraints and inequality
constraints. Section 3 introduces the connector constraints
and further systematically proposes the SOCP detection
model and stability theorem for MSRR. The characteristic
connection strength, internal stability margin and potential
broken connection points are also discussed in this part.
Section 4 presents the complete stability algorithm based
on the aforementioned framework, detailing the algorithm’s
execution flow and specifics. In Section 5, we introduce
the connection characteristic of FreeSN and further derive
the stability detection model for FreeSN, considering the
coupling relationships in connector constraints. This section
also includes simulation analysis of two configurations with
numerous modules. Physical experiments and algorithm
computation complexity analysis are detailed in Section 6.
We conclude our work and discuss the future work in Section
7.

2 Quasi-Static Stability Constraints for
MSRR

2.1 Connector Model and Unstable Situations
The entire MSRR system can be seen as the combination
of rigid modules and connectors as shown in Fig. 1(a).
Typically, the module body can be abstracted as a simple
geometry such as a sphere Hołobut and Lengiewicz (2017),
a cube Piranda et al. (2021), or others, depending on its
specific geometrical features. In this paper, we discuss a
general method for detecting the quasi-static stability of
MSRR; therefore, the geometric features of the modules are
expressed abstractly. Numerous connection methods have
been explored for constructing MSRR systems, including
latch, lock, hooks, electrical magnets, permanent magnets,
and others Chennareddy et al. (2017). In general, these
can be divided into two categories: mechanical connections,
which are more rigid, and magnetic connections. During the
reconfiguration process and joint motion, each transient state
of the MSRR system must be statically stable, meaning the
connectors can provide all degrees of freedom constraints to
limit the motion of the module.

Theoretically, any type of connector can be modeled as
a provider of fixed constraints. They provide constraints in
all six dimensions, including displacement in the x, y, z axes
and rotation around these axes. However, their capabilities in
each dimension are different. We further divide the directions
along the x, y, z axes into the tangential direction in the x-
y plane, and the normal direction, corresponding to the z-
axis. The connectors can provide force and torque in both
directions to independently hinder the displacement and
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(a) (b)

Figure 1. (a) The modules in an MSRR system maintain the stability through connections, non-connected contacts, and
environmental contacts under known external wrenches. (b) The coordinate systems of a module i include four types: child
connection coordinate system ΣA, parent connection coordinate system ΣP , non-connected contact coordinate system ΣĈ , and
environmental contact coordinate system ΣC . Among these, the z-axis of ΣP always points to the exterior region, while those of
ΣA, ΣĈ , and ΣC point to the interior region of the module.

rotational motion of the module, corresponding to four types
of unstable situations. Furthermore, considering whole-body
stability, there are a total of five unstable situations.

2.2 Connection and Contact
Each module is seen as an independent rigid body and
can interact with the environment and other modules in
three ways: connection, environmental contact, and non-
connected contact. Among these, the connections are further
divided into child connections and parent connections to
distinguish between the two connected modules, allowing
the z-axis direction of the local coordination system to be
uniquely defined. The z-axis direction of the connection
coordination system always points from the connection point
to the geometric center of the child module. Some modules
contact the external environment, and the z-axis direction of
the contact coordination system also points to the interior
region of the module. Additionally, a module may contact
other modules without being connected, like modules 10 and
14 in Fig. 1(a).

Therefore, four types of coordinate systems may
simultaneously exist for one module in the MSRR system as
shown in Fig. 1(b): child connection, parent connection, non-
connected contact and environmental contact. For the entire
MSRR system to be stable, each module must be stable,
and their connections and contacts must provide sufficient
resultant force and torque to counteract external wrenches.
The effect of external wrenches on a single module is
transmitted to the surrounding modules through connections
and contacts.

2.3 Equilibrium Constraints
We model the stability problem based on the following
assumption:

Assumption 1. The stiffness of the connector is much
weaker than that of the body.

This assumption ensures that the module body will not
be destroyed before instability occurs. In this paper, point
contact is utilized, but the proposed method can be easily

extended to surface contact Bouyarmane et al. (2018);
Nikolić et al. (2018). We first define the notations as shown
in Table 1. Scalars are represented in italic lowercase letters.
Vectors are denoted in lowercase bold characters, matrices in
bold uppercase characters, and coordinate systems in italic
uppercase characters.

As shown in Fig. 1(b), ΣAik represents the coordinate
system of the i-th module’s k-th child connection, and ΣPir

represents the coordinate system of the i-th module’s r-
th parent connection, where k " �1, αi� and r " �1, ρi�,
respectively. Similarly, ΣCij denotes the coordinate system
of the i-th module’s j-th environmental frictional contact,
and Σ Ĉiu denotes the coordinate system of the i-th
module’s u-th non-connected contact, where j " �1, γi�
and u " �1, βi�, respectively. αi is the number of child
connections for the i-th module. Similarly, ρi, γi and βi
denote the number of parent connections, environmental
contacts, and non-connected contacts, respectively. We use
Σ " rA, P, C, Ĉx as the subscript for other variables to
represent the associated coordinate systems, where A, P ,
C, and Ĉ correspond to the child, parent, environmental
contact, and non-connected contact coordinate systems,
respectively. The right subscript of Σ , such as Σih , represents
the corresponding i-th module’s h-th constraint coordinate
system. σi " rαi, ρi, γi, βix represents the maximum
number of the corresponding constraint type on module i,
with h " �1, σi�. fΣih

and mΣih
represent the constraint

force and couple, respectively, in the local coordinate system
Σih . In connection coordinate systems, both the constraint
force and couple exist, while only the constraint force exists
in contact coordinate systems. The z-axis direction of the
parent connection coordinate systems always points to the
exterior region of the module, whereas that of the other
coordinate systems points to the interior region.

Force Equilibrium Based on the above definitions, we can
write down the force equilibrium condition for module i in
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Table 1. Nomenclature.

Notation Description

u
�

Skew-symmetric matrix form of the cross product operation
n Number of modules in a MSRR system
m Number of external contacts for a MSRR system
αi Number of child connections for the i-th module
ρi Number of parent connections for the i-th module
γi Number of environmental contacts for the i-th module
βi Number of non-connected contacts for the i-th module
ϕi Number of external forces acting on the i-th module
ηi Number of external couples acting on the i-th module
ΣI Global coordinate system
ΣAik Coordinate system of the i-th module’s k-th child connection
ΣPir Coordinate system of the i-th module’s r-th parent connection
ΣCij Coordinate system of the i-th module’s j-th environment contact
Σ Ĉiu Coordinate system of the i-th module’s u-th non-connected contact
Σ " rA, P, C, Ĉx, as the subscript of other variables to represent the associated coordinate system
σi " rαi, ρi, γi, βix, number of the corresponding connection or contact constraints on module i
0a�b Zero matrix with a rows and b columns
Ia�a Identity matrix with a dimensions
�

R# " R3�3
, rotation matrix of the coordinate system #, with respect to the coordinate system �

�

��
p# " R3

, position row vector of the coordinate system #, with respect to the coordinate system �, expressed in
the coordinate system ��, unit: m

fΣih
" R3

, constraint force row vector in the associated local coordinate system Σih , unit: N
feig " R3

, g-th external force row vector acting on the i-th module

mΣih
" R3

, constraint couple row vector in the associated local coordinate system Σih , unit: N �m
meiv

" R3
, v-th external couple row vector acting on the i-th module

fΣ " R1�3<n

i�1 σi , constraint force vector for the whole system, defined in equation (8)

fe " R1�3<n

i�1 ϕi , external force vector acting on the whole system, defined in equation (7)

mΣ " R1�3<n

i�1 σi , constraint couple vector for the whole system, composed of mΣi
, which has a similar vector

form to fΣ

me " R1�3<n

i�1 ηi , external couple vector acting on the whole system, composed of mei
, which has a similar

vector form to fe
PRΣih

" R3�3
, moment arm matrix of the h-th constraint force acting on module i, defined in equation (12)

RΣ " R3n�3<n

i�1 σi , diagonal block matrix defined in equation (9)

PRΣ " R3n�3<n

i�1 σi , diagonal block matrix composed of PRΣi
, which has a similar form to RΣ

Pe " R3n�3<n

i�1 ϕi , moment arm matrix of the external forces acting on the whole system, defined in equation
(17)

xRΣ " R3<n

i�1 ϕi�3<n

i�1 ϕi , diagonal block matrix, defined in equation (21)
LAi

Child connection pairs of module i
LPi

Parent connection pairs of module i
Gg Connectivity matrix to record the connection relationship between modules
SP Mapping matrix between child connection constraints and parent connection constraints
SĈ Mapping matrix of non-connected contacts
fsik Normal support force at the k-th connection point of module i, expressed in the local coordinate system
f
z
conik

z-axis adhesion force from the k-th connection of module i, expressed in the local coordinate system

f
z
con " R1�<n

i�1 αi , adhesion force vectors of all connections of the whole system

fs " R1�<n

i�1 αi , normal support force vectors at all connection points of the whole system
Z Equilibrium matrix of the whole system, defined in equation (29)
x Stress state of the whole system, defined in equation (29), including the connection forces and couples, contact

forces and decoupled adhesion forces
b Effect of known external forces and couples, defined in equation (29)
µ
x
�

Friction coefficient along x-axis in the local coordinate system �
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Table 1. (continued)

Notation Description

µ
y
�

Friction coefficient along y-axis in the local coordinate system �

K� Friction cone constraint, defined in the local coordinate system �

f̄cmax
" R6

, maximum connection wrench for a connector
f̄
�

cmax
" R6

, maximum connection wrench along the positive direction of the local coordinate system
f̄
�

cmax
" R6

, maximum connection wrench along the negative direction of the local coordinate system
f̄Amax

" R6
, required minimum connection wrench for a connector to reach a specific stress state x

f̄Aik
" R6

, connection wrench from the k child connector of module i
X Potential stable state set of the configuration
X℧ Feasible stable state set of the configuration
x
�

f Actual physical state of the configuration
w Characteristic connection strength
ω " R6

, weight coefficient of the characteristic connection strength
K " R6�6

, matrix to represent the compliance of each dimensional force and torque
λmax Weight value of the characteristic connection strength term in optimization problem (41)
yW " R6�6

, diagonal matrix to unify the dimensions of forces and couples
x̃ Critical stable state of the configuration
ssm Internal stability margin
ψi,i�1 Kinematic parameter of FreeSN: rotation value around the z-axis of its body coordinate system, ΣBi

θi,i�1 Kinematic parameter of FreeSN: rotation value around the x-axis of its body coordinate system, ΣBi

li�1 Distance from the center of strut to the center node, unit: m
µ " R6

, coefficient vector to reflect the coupling relationship between connector constraints of FreeSN
f̄sik�µ� " R6

, connector constraint vector of FreeSN
Klorentz Six-dimensional Lorentz cone constraints

the global coordinate system ΣI ,

αi

=
k�1

I
RAik

f
T

Aik
�

ρi

=
r�1

I
RPir

f
T

Pir
�

γi

=
j�1

I
RCij

f
T

Cij
�

βi

=
u�1

I
RĈiu

f
T

Ĉiu
�

ϕi

=
g�1

f
T

eig
� 0

, (1)

where
I
RΣih

" R3�3
represents the rotation matrix that

transforms from the local coordinate system, denoted by the
right subscript Σih , to the global coordinate system. feig
is the g-th external force applied to module i. The action
of gravity is also considered one type of external force.
Equation (1) can be written in matrix form,

R
Ai
f
T

Ai
� R

Pi
f
T

Pi
� R

Ci
f
T

Ci
� R

Ĉi
f
T

Ĉi
� Iefif

T

ei
� 0,

(2)

where

R
Σi
� �IRΣi1

,
I
RΣi2

,�,
I
RΣiσi

� " R3�3σi
, (3)

fΣi
� �fΣi1

, fΣi2
,�, fΣiσi

� " R1�3σi
, (4)

fei � �fei1 , fei2 ,�, feiϕi
� " R1�3ϕi

, (5)

and Iefi � �I3�3, I3�3,�, I3�3� " R3�3ϕi . Each mod-
ule i " �1, n� meets equation (2). The system’s force equi-
librium equation can be written as

RAf
T

A � RP f
T

P � RCf
T

C � RĈf
T

Ĉ � Ief f
T

e � 0, (6)

where

fe � �fe1 , fe2 ,�, fen� " R1�3<n

i�1 ϕi
, (7)

fΣ � �fΣ1
, fΣ2

,�, fΣn
� " R1�3<n

i�1 σi
. (8)

RΣ is the diagonal block matrix composed of R
Σi

,

RΣ �

Ẑ̂̂̂
^̂̂̂̂̂
\
R

Σ1
0 0 0

0 R
Σ2

0 0

0 0 � 0
0 0 0 R

Σn

[__________]
" R3n�3<n

i�1 σi
. (9)

Similarly,

Ief �

Ẑ̂̂̂
^̂̂̂̂
\
Ief1 0 0 0
0 Ief2 0 0
0 0 � 0
0 0 0 Iefn

[_________]
" R3n�3<n

i�1 ϕi
. (10)

Torque Equilibrium The torque equilibrium condition for
module i in the global coordinate system ΣI is:

αi

=
k�1

I

Ip
�

Aik

I
RAik

f
T

Aik
�

αi

=
k�1

I
RAik

m
T

Aik
�

ρi

=
r�1

I

Ip
�

Pir

I
RPir

f
T

Pir

�

ρi

=
r�1

I
RPir

m
T

Pir
�

γi

=
j�1

I

Ip
�

Cij

I
RCij

f
T

Cij
�

βi

=
u�1

I

Ip
�

Ĉiu

I
RĈiu

f
T

Ĉiu

�

ϕi

=
g�1

I

Ip
�

eig
f
T

eig
�

ηi

=
v�1

m
T

eiv
�0

,

(11)
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where
I
IpΣih

is the position vector of the coordinate system
Σih with respect to, and expressed in, the global coordinate
system. p

�

is the skew-symmetric matrix form of the cross
product vector p.

I
Ipeig

is the action position vector of the
g-th external force feig , with respect to the global coordinate
system. meiv

is the v-th external couple acting on module i.
We define

PRΣih
�

I

Ip
�

Σih

I
RΣih

, h " �1, σi�. (12)

Thus, we can write the above equation (11) in a more
compact matrix form,

PR
Ai
f
T

Ai
� R

Ai
m

T

Ai
� PR

Pi
f
T

Pi
� R

Pi
m

T

Pi
� PR

Ci
f
T

Ci

�PR
Ĉi
f
T

Ci
� P

ei
f
T

ei
� Iemi

m
T

ei
� 0

,

(13)

where PR
Σi

is composed of PRΣih
and have a same form

to R
Σi

. mΣi
" R1�3σi and mei

" R1�3ηi have the same
form as fΣi

and fei , respectively. Further,

P
ei
� �IIp�ei1 , IIp�ei2 ,�,

I

Ip
�

eiϕi
� " R3�3ϕi

, (14)

and

Iemi
� �I3�3, I3�3,�, I3�3� " R3�3ηi

. (15)

For each module in a MSRR system, we have the equation
(13). Thus, the torque equilibrium equation of the system is:

PRAf
T

A � RAm
T

A � PRP f
T

P � RPm
T

P � PRCf
T

C

�PRĈf
T

Ĉ � Pef
T

e � Iemm
T

e � 0
,

(16)

where mΣ " R1�3<n

i�1 σi and me " R1�3<n

i�1 ηi have the

same form as fΣ and fe. PRΣ " R3n�3<n

i�1 σi and Iem "

R3n�3<n

i�1 ηi share the diagonal block matrix form similar
to that of RΣ and Ief , and

Pe �

Ẑ̂̂̂
^̂̂̂̂̂
\
P

e1
0 0 0

0 P
e2

0 0
0 0 � 0
0 0 0 P

en

[__________]
" R3n�3<n

i�1 ϕi
. (17)

Mutual Action Equilibrium of Connection If one module
exerts a force or a couple on another module, then the
second module exerts an equal and opposite reaction force
or reaction couple on the first one. We construct SP to
describe the relationship between �fA, mA� and �fP , mP �.
Because each child connection corresponds uniquely to a
parent connection, we can traverse each child connection
module and find the corresponding parent connection to
establish an equality relationship.

As shown in Fig. 1(a), each module has a unique ID,
and the connection relationship between all modules in an
MSRR system are recorded by a connectivity graph, which
is expressed as Gg " Rn�n

. In Gg , the i-th row represents
the connections of the i-th module with other modules,

where ’1’ indicates a child connection and ’2’ denotes a
parent connection. The child connection pairs of module
i are denoted as LAi

, and the parent connection pairs are
denoted as LPi

. For example, in Fig. 1(a), the connection
relationship for module ’5’ is represented by the fifth row
vector �0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0� of the
matrix Gg . Thus, LA5

� r$5, 3%x, and LP5
� r$5, 6%

,$5, 17%x. Based on the above definitions, we execute the
following steps to create SP .

Step 1: Let

SP � 03<n

i�1 ρi�3<n

i�1 ρi
,

where SP has the same row size of f
T
A because

n

=
i�1

αi �

n

=
i�1

ρi. (18)

Step 2: For each child connection of module i, the k-th
child connection pair is represented as $ i, lAik

% within
LAi

, where lAik
is the ID number of another module.

Similarly, LPj
lists all parent connection pairs for module

j. Within this list, $ j, lPjr
% represents the r-th parent

connection pair. If the connection between module i and
module j exists, the conditions j � lAik

and i � lPjr
can

always be met by traversing LPj
; accordingly, we record the

indices k, j and r.
Step 3: Letting

SP �3
i�1

=
h�1

αh � 3k � 2 � 3

i�1

=
h�1

αh � 3k, 3

j�1

=
g�1

ρg � 3r � 2

� 3

j�1

=
g�1

ρg � 3r� � I3�3

,

(19)

we establish the equality relationship between the k-th child
connection of module i and the r-th parent connection of
module j. The notation �a � b, c � d� specifies the selection
of a submatrix from rows a to b and columns c to d.

We redo the Step 2 and Step 3 until all equality
relationship are saved in SP .

Step 4: Considering the connection constraints expressed
in the local coordinate system, we can obtain the mutual
action equilibrium of connection as

� xRA 0 SP xRP 0

0 xRA 0 SP xRP

�
Ẑ̂̂̂
^̂̂̂̂̂
^̂\

f
T
A

m
T
A

f
T
P

m
T
P

[____________]
� 0, (20)

where

xRΣ �

Ẑ̂̂̂
^̂̂̂̂̂
\
xRΣi

0 0 0
0 xRΣi

0 0
0 0 � 0
0 0 0 xRΣi

[__________]
" R3<n

i�1 ϕi�3<n

i�1 ϕi
,

(21)

xRΣi
�

Ẑ̂̂̂
^̂̂̂̂
\
RΣi1

0 0 0
0 RΣi2

0 0
0 0 � 0
0 0 0 RΣiϕi

[_________]
" R3σi�3σi

. (22)
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Algorithm 1 SĈ Creation

Output: SĈ

1: SĈ � I3<n

i�1 βi�3<n

i�1 βi

2: for each non-connected contact pair $ i, lĈik
% do

3: j � lĈik

4: Find $ j, lĈjr
% which meets i � lĈjr

5: Record k, j and r
6: t1 � 3<i�1

h�1
βh � 3k � 2

7: t2 � 3<j�1

h�1
βh � 3r � 2

8: SĈ�t1 � t1 � 2, t2 � t2 � 2� � I3�3

9: end for
10: return SĈ

If the child connection and parent connection utilize the same
coordinate system, then the rotation matrices xRA and xRP ,
as shown in equation (20) can be substituted with identity
matrices.

An example can be helpful to digest this process. For
the configuration shown in Fig. 1(a), when we consider the
mutual action effect between module ’5’ and module ’3’,
we have i � 5, lA51

� 3, and LP3
� r$3, 4%,$3, 5%x. Thus, k � 1, j � 3 and r � 2. The forces exerted by

the k-th child connection of module i and the r-th parent
connection of module j are equal in magnitude and opposite
in direction in the global coordinate system. SP represents
the mapping relationship between the child and parent
connections.

Mutual Action Equilibrium of Non-connected Contact A
non-connected contact between modules creates two local
coordinate systems, each pointing from the contact point to
the geometric center of its respective module. A matching
matrix is required to constrain the forces following the
Newton’s laws. Similarly to the connection, we create a
matrix SĈ to map the relationship between contact forces
in different coordinate systems.

The creation algorithm has been shown in the Algorithm
1. For each non-connected contact pair, we locate the order
number of the corresponding module by traversing all non-
connected contact pairs and then adjust the SĈ matrix.
Since the contacts are mutual, the SĈ matrix is symmetric.
The simplest case involves only two non-connected contact
modules. The two contact pairs are $1, 2% and $2, 1%.
We take the two contact pairs into the ’for’ loop in Algorithm
1. The first contact pair $1, 2% makes t1 � 1 and t2 � 4,
while the second contact pair $2, 1% makes t1 � 4 and
t2 � 1. Thus, the SĈ for only two non-connected contact
modules is 2 � 2 block matrix, with each elements being
I3�3.

Considering the transformation of contact forces from the
local coordinate system to the global coordinate system,
we can conclude the mutual action equilibrium of non-
connected contacts as

SĈ xRĈf
T

Ĉ � 0. (23)

Decoupling Equations of Normal Support Force and
Adhesion Force Connectors provide an adhesion force
that prevents the separation of connected modules, while
the normal support force between the modules prevents

their penetration. By decoupling the adhesion force and
normal support force, we can isolate the connection force
exerted solely by the connectors. This isolation is crucial
for analyzing the required minimum connection strength
to maintain configuration stability, as discussed in Section
3. Due to the mutual action equilibrium of connections, it
is sufficient to consider the decoupling equations for child
connections. We decouple the normal support force fsik at
the connection point and z-axis adhesion force f

z
conik

from
the connector in the local coordinate system. We use the
subscript ik to indicate the k-th child connection of module i.
Because the z-axis of the child connection coordinate system
always points to the module’s interior region, fsik is always
non-negative, while f

z
conik

is non-positive. For each child
connection,

f
z

Aik
� fsik � f

z

conik
, (24)

where f
z
Aik

is the connection force along the z-axis direction.
We note

f
z

coni
� �fzconi1

, f
z

coni2
,�, f

z

coniαi
� " R1�αi

, (25)

and

f
z

con � �fzcon1
, f

z

con2
,�, f

z

conn
� " R1�<n

i�1 αi
. (26)

fs have the similar form as f
z
con. For each connection, we

have the equation (24). Thus, the whole decoupling equation
is:

��IC I<N
i�1 αi�<

N
i�1 αi

I<N
i�1 αi�<

N
i�1 αi�

Ẑ
^̂
^̂
^̂
\̂

f
T

A

f
z

con

T

f
T

s

[________]

� 0,

(27)

where

IC �

Ẑ̂̂̂
^̂̂̂̂
\
e001 0 0 0

0 e001 0 0
0 0 � 0
0 0 0 e001

[_________]
" R<

n

i�1 αi�3<n

i�1 αi
,

(28)
and e001 � �0 0 1�. All equilibrium equations have been
considered above and we can conclude equations (6), (16),
(20), (23), and (27) to form the compact matrix form as
shown in equation (29). We use Zx � b to simplify the
expression. It is worth noting that if each module is stable,
the whole body must be stable. Therefore, we do not need to
add extra constraints to ensure whole-body stability.

2.4 Friction Cone Constraints
The point contact model requires the contact forces to satisfy
the friction cone constraints. The environmental contact
friction cone is defined as

ÂÂÂÂÂ�fxCij
, f

y

Cij
�ÂÂÂÂÂ �

ÙÛÛÛÛÛÚ� fxCij

µ
x
Cij

�2 � � fyCij

µ
y

Cij

�2 & f
z

Cij
,

(30)
where f

x
Cij

, f
y

Cij
and f

z
Cij

are the x-axis, y-axis and z-
axis components of fCij

in the local coordinate system

ΣCij , respectively. µ
x
Cij

and µ
y

Cij
are the friction coefficient

along the x-axis and y-axis in the local coordinate system,
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PRA RA PRP RP PRC PRĈ 0 0
xRA 0 SP xRP 0 0 0 0 0
0 xRA 0 SP xRP 0 0 0 0
0 0 0 0 0 SĈ xRĈ 0 0

�IC 0 0 0 0 0 I<n
i�1 αi�<

n
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I<n
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n
i�1 αi
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Ĉ

f
z

con

T

f
T

s

[___________________________]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

x

�

Ẑ
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(29)

respectively. To simplify notation, we use

fCij
" KCij

�µx

Cij
, µ

y

Cij
�, i " �1, n�, j " �1, γi�, (31)

to indicate that all environmental contact forces meets the
friction cone condition. KCij

represents the friction cone
constraint in the coordinate system. Similarly, the non-
connected contacts are also expressed by the point contact
model, the friction cone constraints are

fĈiu
" KĈiu

�µx

Ĉiu
, µ

y

Ĉiu
�, i " �1, n�, u " �1, βi�,

(32)
where KĈiu

is the friction cone constraint in the coordinate
system Σ Ĉiu. µ

x

Ĉiu
and µ

y

Ĉiu
are the corresponding friction

coefficient in local coordinate system. The surface contacts
can also be discretized into finite point contacts, so using the
point contact model has general significance.

3 SOCP Model and Internal Stability Margin
In this section, we analyze the impact of the internal
connector on the stability of MSRR. By formulating the
SOCP problem, the critical stable state and internal stability
margin can be obtained.

3.1 Connector Constraint
In Section 2, we derive the equilibrium equations and
inequalities for the entire MSRR system to maintain
stable. The solutions that satisfy equation (29) and the
friction cone constraints (31)-(32) can ensure the system’s
stability, provided that the internal connection constraints are
sufficient. We first define the potential stable state set X as
follows.

Definition 1. Let an MSRR system composed of n modules
be supported by frictional contacts against gravity and other
known external wrenches in R3

. The potential stable state
set X comprises all solutions that satisfy the equilibrium
equation (29) and friction cone conditions (31) and (32).

Note that x " X encompasses all connection wrenches
and contact forces, as specified in equation (29). X does
not account for connector constraints, implying that all
connection are assumed to be fixed. Under these conditions,
the stability problem of MSRR degenerates into the problem
of whole-body stability. The direct method to address
connector constraints involves comparing whether solutions
within X meet the actual connector constraint range.
We consider that the connector constraints in different

dimensions are relatively uncoupled, as is often the case with
mechanical connectors White et al. (2011); Piranda et al.
(2021). In cases where the coupling of connector constraints
in different dimensions is strong, such as with magnetic
connectors, further modeling of these coupling relationships
can be conducted. The details of this modeling process are
demonstrated in Section 5. We define

f̄cmax
� �fxmax, f

y

max, f
z

max, m
x

max, m
y

max, m
z

max� ' 0
(33)

as the maximum connection wrench for one specific
connector. The six elements in f̄cmax

can be independently
measured by appropriate experimental equipment, as
illustrated in Fig. 4. We further define

f̄Aik
� �fxAik

, f
y

Aik
, f

z

conik
, m

x

Aik
, m

y

Aik
, m

z

Aik
� (34)

as the connection wrench of the k-th connection of module
i. The symbols x, y and z in the top right corner represent
the components of fAik

along different axes. It is worth
noting that the third element in f̄Aik

is the adhesion force
f
z
conik

, rather than f
z
Aik

. Thus, the connector constraint can
be denoted as

f̄
�

cmax
& f̄Aik

& f̄
�

cmax
, ¾i " �1, n�, k " �1, αi�, (35)

where
f̄
�

cmax
� �f̄cmax

& 0 (36)

and

f̄
�

cmax
� �fxmax, f

y

max, 0, m
x

max, m
y

max, m
z

max� ' 0.
(37)�f̄�cmax

, f̄
�

cmax
� is the connection wrench range for one

connector. We follow the definition of the child connection
coordinate system, where the z-axis points to the interior
region of the module. The connector cannot provide a
repulsive force along the z-axis. Thus, the third element of
f̄
�

cmax
is zero, while the third element of f̄

�

cmax
cannot be zero

because the connector can provide a adhesion force. Due
to the mutual action equilibrium of the connection, there is
no need to consider the parent connection. By incorporating
these connector constraints into the original problem in
Definition 1, we obtain the feasible stable state set as follows.

Definition 2. The feasible stable state set X℧ comprises all
potential stable states that satisfy the connector constraints
(37).

Based on the above derivation and definitions, we can
conclude Theorem 1.
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Theorem 1. Let an MSRR system be supported by frictional
contacts against gravity and other known external wrenches
in R3

. If the system is stable, X℧ must not be empty, and the
actual physical stable state x

�

f must be in X℧. Conversely, if
X℧ is empty, the system must be unstable. Under quasi-static
conditions, if X℧ is not empty, the system is stable.

Proof. If the physical system is stable, it must satisfy
the equilibrium equations, friction cone constraints, and
connector constraints. Consequently, its actual physical
stable state, x

�

f , must be an element within X℧. As its
converse proposition, if X℧ is empty, the physical system
must be unstable. Under quasi-static conditions, the passive
connection constraints and contact forces accumulate from
zero. Therefore, the system can maintain an equilibrium state
only if the X℧ is not empty.

Each feasible stable state xf " X℧ is regarded as a weakly
stable state in Pang and Trinkle (2000), because this state
may be easily affected by minor external disturbances. For
MSRR systems, since the recoverable nature of connector
deformation, the connections between modules do not
increase the system’s weak stability property; instead, the
weak stability property still primarily depends on the
external contact environment. A simple example is a sphere
placed directly above a fixed sphere. Initially, the system is
stable; however a minor external disturbance can cause the
upper sphere to move. If the upper sphere is connected to the
lower sphere by a connector, the system will remain stable
under limited external forces due to the recoverability of the
connection. Considerable research has been conducted on
the stability of legged robots, including studies on contact
surfaces Rimon et al. (2008); Or and Rimon (2017) and
stability margin methods Park et al. (2019). These research
methods can be directly applied to the whole-body stability
analysis of MSRR systems, as internal connections do not
introduce additional weak stability property.

3.2 SOCP Model
In the following part, we analyze how to evaluate the stability
level of internal connections for MSRR systems, referred
to as the internal stability margin. During this process, a
systematic approach for stability detection of MSRR systems
is proposed. We aim to achieve the following two goals by
further analyzing the internal stability problem:

1. For stable configurations, we aim to maintain the system
with strong internal stability to resist disturbances.

2. For unstable configurations, we can determine the
required minimum connection wrench to maintain stability,
allowing us to specifically enhance the connector’s capability
or strengthen the structural rigidity at weak points.

Without loss of generality, we assume that the modules
in the MSRR system are all isomorphic, so the maximum
connection wrench of the connectors is the same. We denote

f
x

Amax
� max

n"�1,n�
k"�1,αi�

¶fxAik
¶ (38)

as the maximum value of force along x-axis direction at all
connection points. Similarly, the maximum values of forces
or couples in other dimensions can also been obtained. Those

values determine the minimum connection wrench required
for the connector to reach the system’s state. Those values
can be summarized as

f̄Amax
� �f

x

Amax
, f

y

Amax
, f

z

conmax
, m

x

Amax
, m

y

Amax
, m

z

Amax
�.

(39)
For each x " X, f̄Amax

exists. Note that f̄cmax
in equation

(33) is the actual values to express the maximum connection
wrench for one specific connector, while f̄Amax

is the
abstract mathematical concept to express the required
minimum connection wrench to reach this state. If the
actual connection wrench from the connector cannot exceed
the required minimum connection wrench, the state cannot
reach. The reachable state in X for the specific connector
forms the feasible stable state set X℧. We can plot the
distribution of the required minimum connection wrench of
each state x in a figure, using six dimensions of f̄Amax

as the
coordinate. A two-dimensional case is shown in Fig. 2, and
we set f

x
Amax

and m
y

Amax
as variables. The red point in the

Fig. 2(a) represents the maximum connection wrench of the
actual physical system. If the required minimum connection
wrench of x exceed the red point at any dimension, this state
is unreachable; otherwise, the state is reachable.

We move the red points and observe changes of X℧.
When the red point moves toward the upper right corner,
the number of elements in X℧ increases. Conversely, when
it moves towards the lower left corner, its number decreases
rapidly. We use the black curve to denote the boundary where
X℧ will be empty if the red point falls below it. Due to
the multidimensional nature of connector constraints, the
curve is actually the Pareto frontier. When the system state
moves on the boundary from left to right, the internal stress
distribution within the system is also adjusting. The high
requirement of f

x
Amax

gradually decreases, shifting towards
the demands on m

y

Amax
, which demonstrates the mutual

compensation effects of connections. It should be noted
that when the red point is on the boundary, the number of
elements in X℧ can still be infinite if a null space exists for
internal stress adjustments. All elements in the null spaces
share the same values of f̄Amax

.
If an MSRR system is stable in the absence of external

disturbances, the actual state of the system, x
�

f , is one
element belonging to a corresponding feasible stable state set
on the boundary. When external disturbances are present, the
system deviates from the boundary state, requiring greater
constraints to maintain stability. Thus, the distance form the
boundary to the red point determines the anti-disturbance
ability of the configuration. However, determining the
shortest distance from the boundary to the red points is
cumbersome and time-consuming, which is not conducive to
the rapid calculation of internal stability margin.

In fact, physical systems in the real world converge
towards a unique stable state, which is realized by
harmonizing the displacements and deformations. When the
constraints imposed by the connectors approach infinity,
the actual state of the system is governed by the stiffness
matrix of the connectors, placing the system in an optimally
balanced load distribution state. Conversely, when the
constraints of the connectors are insufficient, the system
achieves the most balanced load distribution within the limits
permitted by the connectors. We refer to this state as the
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Figure 2. The illustration of the internal stability margin.

critical stability state, which serves as our estimation of the
system’s actual state. We define characteristic connection
strength to evaluate the load distribution level of the system
state.

Definition 3. The characteristic connection strength of a
connection is given by

w � ½ωKf̄A½2 , (40)

where f̄A " R6
is the 6-DOF connection wrench defined

in equation (34), K " R6�6
is the matrix to represent the

compliance of each dimensional force and torque. ω " R6

is the weight coefficient to unify the dimension.

Note that ω and K are constant to represent the
characteristics of a specific connector. The modeling method
of ωK is not unique, as long as it can reflect the coupling
relationship between connector constraints. For mechanical
connectors, a typical choice of K is using the compliant
matrix, which can be estimated by using the method in
White et al. (2011). Thus, Kf̄A is the minor deformation
of the connector under the connection wrench. ω can be set
as the vector to unify the dimensions of displacement and
rotation. For example, we can set ω � �1, 1, 1, ω4, ω5, ω6�
and the last three values equal to the moment arm to resist
rotation along different axes.w represents the resultant minor
displacements. In Section 5, we demonstrate another method
to determine ωK for magnetic connectors. Combing all we
have defined and analyzed, we model the second-order cone
program problem (41) to find the critical stable state.

min λmaxw
max

A � λ1

n

=
i�1

αi

=
k�1

w
max

Aik
� λ2

n

=
i�1

βi

=
u�1

f
z

Ĉij

� λ3

n

=
i�1

γi

=
j�1

f
z

Cij

s.t. Zx� b,

�f
T
s & 0,

f̄Aik
& f̄

�

cmax
,

�f̄Aik
& �f̄

�

cmax
,

w
max
Aik

& w
max
A ,½ωKf̄Aik

½2 & w
max
Aik

,

fCij
" KCij

�µx
Cij
, µ

y

Cij
�,

fĈiu
" KĈiu

�µx

Ĉiu
, µ

y

Ĉiu
�,

¾i " �1, n�, j " �1, γi�, u " �1, βi�, k " �1, αi�.
(41)

The first term in the optimization objective is to minimize
the maximum characteristic connection strength of all
connections, fundamentally aiming to obtain the required
minimum connection wrench to keep connection stable.
The weight value of the first term, λmax, is significantly
larger than the other weights λ1, λ2 and λ3. The second,
third, and fourth terms in the objective function aim to
minimize the sum of all characteristic connection strength,
the sum of the non-connected contact forces along normal
direction, and the sum of the environmental contact forces
along normal direction, respectively. The last three terms are
used for optimization within the null space of the vector
space determined by the first term. The objective function
can effectively eliminate the meaningless loss of internal
constraints in the critical stable state, which is helpful
to obtain the accurate potential broken connection points.
The equilibrium equations, friction cone constraints and
connector constraints are all incorporated in the optimization
problem (41). The first inequality ensures all support forces
are greater than zero, while the second and third inequalities
form the connector constraints.

We denote x̃ to represent the critical stable state of the
MSRR system. If the optimization problem (41) is solvable,
x̃ is the optimal solution of it. Otherwise, x̃ is the optimal
solution of the original optimization problem (41) removing
the connector constraints. Based on x̃, we can calculate the
internal stability margin of the system and predict the broken
connection points. The problem (41) can be quickly solved
by modern solvers. Some specific adjustments of solvers can
accelerate this process Boyd and Wegbreit (2007). Based on
this, we can conclude Theorem 2.

Theorem 2. If an optimal solution for optimization problem
(41) exists, the configuration of the MSRR system is stable. If
the original optimization problem is infeasible and remains
infeasible after removing the connector constraints, the
configuration exhibits whole-body instability. Otherwise, the
configuration exhibits internal instability.

Proof. If X℧ is not empty, an optimal solution for problem
(41) must exist. Using the Theorem 1, the system is stable. If
we remove the connector constraints from the optimization
problem (41), the search space is the potential stable state
set X. If the new problem is infeasible, the whole-body is
unstable because the connection wrench is assumed to be
infinitely rigid. Otherwise, the maximum connection wrench
provided by the connector is insufficient to maintain the
internal stability.
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3.3 Internal Stability Margin
Once the critical stable state of the MSRR system is obtained,
we can define the internal stability margin:

Definition 4. The internal stability margin for an MSRR
system is given by

ssm � minryWf̄cmax
� yWf̃Amax

x, (42)

where f̄cmax
is the maximum connection wrench for the

specific connector and f̃Amax
is the minimum connection

wrench to reach the critical stable state x̃. yW is the diagonal
matrix to unify the dimensions of forces and couples.

The internal stability margin is defined conservatively,
which can ensure the effectiveness of indicators. We further
illustrate the definition of internal stability margin combining
Fig. 2. Because only two variables are considered in Fig. 2,
the first term of optimization objective in problem (41) is:

min ω1m
y

Amax
� ω2f

x

Amax
, (43)

where ω1 and ω2 are the weight values corresponding
to m

y

Amax
and f

x
Amax

in ωK. Formula (43) essentially
represents the inner product of two vectors, specifically
the projection of the minimum connection wrench vector
onto the weight vector. In Fig. 2, the weight vector is
depicted with a green line. Consequently, the point on the
boundary line that has the shortest projection onto the weight
vector, measured from the origin, corresponds to the solution
set with the minimal maximum characteristic connection
strength. If X℧ has unique solution, this state is the critical
stable state. Otherwise, the critical stable state is determined
by optimizing the last three terms in problem (41). When
the connector constraints are not considered, the optimal
solution takes into account the whole-body stability of the
system and optimizes the load distribution based on the
deformation characteristics of the connectors, as indicated
by the purple point in Fig. 2. When the actual connector
constraints are considered, the optimal solution is marked
with green points. It is evident that the green points are
strictly confined within the region of X℧.

In Fig. 2(a), the green and purple points coincide, and
according to Definition 4, the internal stability margin is
the shorter of the two orange dashed lines. In Fig. 2(b),
the purple point does not lie within X℧, indicating that
the state represented by the purple point is unreachable. In
this case, the green point corresponds to the solution set
that is closest to the purple point within X℧. The internal
stability margin is defined as zero because the constraints
in certain dimensions are at their limits. In Fig. 2(c), we
consider the case where the actual connection constraints
are insufficient, resulting in X℧ � o. If the configuration
is whole-body stable, we can obtain the critical stable state
without considering the connector constraints. The internal
stability margin can be obtained by measuring the maximum
difference between the red and purple points in all constraint
dimensions, and its value is negative. In Definition 4, yW
is used to unify the dimensions of forces and couples; its
diagonal elements can be set to [1, 1, 1, 1©ω4, 1©ω5, 1©ω6]
for mechanical connectors, where the last three values are
the reciprocals of the moment arm of couples. To discuss the

internal stability margin more intuitively, the influence of the
weight is not shown in Fig. 2. Further, we define potential
broken connection points as follows.

Definition 5. For each connection in the critical stable state
x̃, if

w
max

A � ½ωKf̄Aik
½2 & ϵ, i " �1, n�, k " �1, αi�,

(44)
where ϵ is positive and close to 0, this connection is the
potential broken connection point.

4 Quasi-Static Stability Algorithm
The general quasi-static stability detection algorithm is
proposed here in order to completely present how to use the
above model to realize fast stability detection. The algorithm
is concluded in Algorithm 2.

4.1 Model Construction and Algorithm Input
The core of the detection algorithm proposed in this paper
is to construct the SOCP problem (41). This optimization
problem can be quickly solved by modern solvers, as
demonstrated in section 6.4. Therefore, we do not engage
in extensive discussion regarding the problem solving. The
SOCP problem (41) involves a considerable number of
parameters, but fortunately, most of the information can be
obtained in advance. In this subsection, the inputs required
for the algorithm are first discussed.

We first observe the equation (29). The constant matrix
Z on the left side of the equation includes the position and
orientation information of the body coordinate system, the
connection coordinate system, and the contact coordinate
system. The constant vector b on the right side of
the equation describes the external wrenches acting on
each module, including gravitational forces and torques.
Additional required parameters include the maximum
connection wrench range f̄cmax

for the specific connector
and the coefficient vector ωK for characteristic connection
strength. The values of f̄cmax

can be determined using
instruments similar to those shown in Fig. 4, while ωK can
obtained through experimental methods as shown in White
et al. (2011) or other method as if it can reflect the coupling
relationships between connector constraints. Therefore, the
reminder problem is how to construct Z and b. We introduce
the steps involved in constructing the equation (29) and
discuss the relevant algorithm inputs during this process.

Step 1: Define the body coordinate system and the
connection coordinate system of two connected module.
Typically, the body coordinate system is positioned at
the geometric center of the module, while the connection
coordinate system is established at the connection point.

Step 2: Allocate IDs to the modules and construct
a connection relationship matrix Gg to represent the
connectivity topology. The value in the i-th row and j-th
column of the matrix represents the relationship between
module i and module j. For module i, the parent connection
of module j is marked as ’2’, and the child connection as ’1’.

Step 3: Based on the localization algorithm or forward
kinematic model, obtain the transformation matrix of
the module body coordinate system and the connection
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Algorithm 2 General quasi-static stability detection algo-
rithm
Input:

1: B: individual information of the modular robot,
including the weight Bweight, the center of mass
BCM , the maximum connection wrench f̄cmax

, and
the characteristic connection strength coefficient vector
ωK;

2: Gg: matrix to indicate the connection topology;
3: I: position and orientation information of all modules

from localization algorithm;
4: E: contact information from collision detection algo-

rithm;
5: W: external wrenches represented in the global

coordinate, including gravity and other known external
active wrenches;

Output: s: the configuration is stable or not; ssm: the
internal stability margin.

6: Obtain all body coordinates ΣB, and create the
connection coordinate ΣA and ΣP according to I and
Gg

7: Create contact coordinate systems ΣC and Σ Ĉ by E
8: while exist illegal coordinate systems do
9: Adjust the corresponding coordinate systems

10: end while
11: Generate the equality coefficient matrix Z
12: Calculate the external wrench vector b by W
13: Add inequality conditions and generate the optimization

problem (41)
14: Solve the optimization problem
15: if no solution then
16: Remove inequalities (35) and resolve the problem
17: if no solution then
18: return whole-body is unstable
19: else
20: Calculate ssm using equation (42)
21: return s � unstable and ssm
22: end if
23: else
24: Calculate ssm using equation (42)
25: return s � stable and ssm
26: end if

coordinate system in the global coordinate system for the
configuration.

Step 4: Based on collision detection method to generate
the corresponding contact coordinate systems.

Step 5: Check that all connection and contact coordinate
systems conform to the direction definitions provided in
Section 2 and create the matrix Z.

Step 6: Consider known external forces, such as gravity, to
construct vector b.

As shown in Algorithm 2, although the input includes
multiple types, the quasi-static stability detection algorithm,
which runs subsequent to the localization and collision
detection algorithms, can easily obtain the necessary
kinematic and contact relationships. Even for modular robots
with complex, irregular shapes, the positions of contact
points can be identified through effective collision detection
algorithms. Therefore, it does not require excessive effort to

implement this algorithm. Furthermore, inaccuracies in the
positioning and orientation of coordinate systems can lead to
deviations in the acting positions of constraints, which in turn
can result in shifts in the predicted outcomes. Additionally,
imprecise measurements of connector constraints may also
yield inaccurate results. Therefore, configurations with a
larger stability margin are preferred, as they enhance
the system’s ability to tolerate input errors and external
disturbances.

Note that the system’s interactions with different objects
are distinct in the model, and here we make specific
distinctions. The first type involves interactions with
the environment, including the ground and walls. These
interactions are represented through environmental friction
cones. The second type involves interactions with objects
subjected to gravity, where such objects can be considered
as one type of module, maintained in stability solely through
non-connected contacts, such as the box in Fig. 6(b). The
third type involves interactions with targets that actively
exert wrenches. The wrench source could be the weight of
a point mass or a device capable of applying a constant
wrench. Gravity is considered a typical known external force,
whereas forces exerted by human fingers or other mechanical
manipulators are difficult to predict. An effective approach
is to assume an external force at a certain point in the
configuration and repeatedly solve optimization problems
using a method similar to binary search to determine the
acceptable range of external forces at that point.

4.2 Algorithm Output
The optimization problem (41) can be easily solved using a
commercial solver. If the solution exists, the internal stability
margin is not negative and the configuration is stable. We
can get all connection wrenches at each connection point.
Otherwise, the configuration is unstable, and we can remove
the connector constraints to further determine the unstable
reasons. If the solution also does not exist, the whole-body
is unstable. Otherwise, the maximum connection wrench
provided by the connector is not enough and we can know
the internal stress distribution of the configuration based on
the critical stable state, which can guide us in designing the
hardware and choosing suitable configurations.

5 Algorithm Application
The quasi-static stability detection algorithm we proposed is
applied to the FreeSN system. We introduce the hardware
platform utilized in our experiments and further address the
coupling relationships among FreeSN connector constraints.
Simulation analysis of two configurations composed of
numerous FreeSN modules are also carried out in this
section.

5.1 FreeSN Mechanism and Forward
Kinematics

The modular reconfigurable robot, FreeSN, depicted in Fig.
3, consists of two main components: node and strut. The
node is an iron spherical shell equipped with a magnetic
sensor array, while the strut, a two-wheeled vehicle, connects
to the node via bottom magnets Tu et al. (2022). Unlike
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the node, which cannot move by itself, the strut can attach
to any point on the node and move across its surface by
controlling an internal motor. Additionally, the strut features
a magnet lifting mechanism that facilitates the attachment
and detachment of the node. Collectively, the FreeSN system
can configure into various serial or parallel mechanical
structures, supporting multiple locomotion types.

We develop the forward kinematic model for FreeSN
in the position domain, which facilitates the generation of
coordinate systems and form different MSRR configurations.
Specifically, we consider a configuration where one node is
connected to a strut. As depicted in Fig. 3, ΣBi and ΣBi�1

represent the coordinate systems attached to module i and
module i � 1, respectively. The z-axis of ΣBi consistently
points from the geometric center of module i � 1 to the
geometric center of module i. The initial rotation matrix of
the coordinate system ΣBi with respect to ΣBi�1 is denoted
as

Bi�1RBi
. The strut can realize the rotation around the zBi

direction by the differential wheels and rotate around the xBi

direction. The new orientation and position of the strut can be
calculated by the equations (45-46):

Bi�1 xRBi
�

Bi�1
RBi

Rz�ψi,i�1�Rx�θi,i�1�, (45)

Bi�1

Bi�1
xpBi

� li�1z̃Bi
, (46)

where
Bi�1 xRBi

represents the rotation matrix of ΣBi with
respect to ΣBi�1 after movement. The strut first rotates
ψi,i�1 around the z-axis of the coordinate system ΣBi,
followed by a rotation of θi,i�1 around the x-axis of the
new coordinate system. Rz and Rx denote the elementary
rotation matrices about the z-axis and x-axis of the frame,
respectively. The new position of ΣBi, denoted by

Bi�1

Bi�1
xpBi

,
is uniquely determined by its rotation matrix, where z̃Bi

is

the third column of
Bi�1 xRBi

and li�1 represents the distance
from the center of the node to the center of the strut.

5.2 Connection Mode and Model Construction
For connectors with relatively decoupling relationship
between constraints, the connector constraints are repre-
sented as in inequality (35), which actually defines a six-
dimensional cube. For connectors like FreeSN, complex

Figure 3. The coordinate system of FreeSN

coupling relationship exists between connector constraints.
Further modeling and analysis of its connectors are required.
The strut and node are connected by magnets. The magnetic
force strengthens the attachment along the z-axis in the
local coordinate system, providing powerful constraints to
impede the position and rotation of modules. Therefore,
the connection method of FreeSN can be seen as a mag-
netically enhanced contact model, and we can model the
coupling relationships between its constraints based on a six-
dimensional Lorentz cone. The definition of the Lorentz cone
is as follows,

Klorentz �

~��������y " R6
� y3 ' 0, y

2

3 ' =
i�r1,2,4,5,6x

y
2

i

��������� ,
(47)

where y represents a parameter vector, and the subscript
denotes the element’s position within the vector. For each
connection of FreeSN, the inequality (47) holds and can be
written as

f̄sik�µ� " Klorentz, ¾i " �1, n�, k " �1, αi�, (48)

where

f̄sik�µ� � �fxAik

µ1
,
f
y

Aik

µ2
, fsik ,

m
x
Aik

µ4
,
m

y

Aik

µ5
,
m

z
Aik

µ6
�
(49)

is the connector constraint vector of FreeSN, and µ ��µ1, µ2, µ4, µ5, µ6� is the coefficient vector to reflect
the coupling relationship between connector constraints of
FreeSN. It is worth noting that the third element in f̄sik
is the normal support force fsik . The connector constraints
of FreeSN can be represented by inequalities (48). We set
ωK � �1©µ1, 1©µ2, 1, 1©µ4, 1©µ5, 1©µ6�. According to
formula (24) and (48), we obtain

¾ωKf̄Aik
¾2

2
& �fzAik

� f
z

conik
�2 � �fzconik

�2, (50)

where f
z
conik

is negative and f
z
Aik

is the value determined by
the external wrenches. Thus, the inequality (50) shows that
minimizing w

max
A in problem (41) is same as minimizing

�f
z
conik

for FreeSN. The minimum characteristic connection
strength optimization problem for FreeSN can be reorga-
nized as (51)

min λmaxfmax � λ1

n

=
i�1

αi

=
k�1

��fzconik
� � λ2

n

=
i�1

βi

=
u�1

f
z

Ĉij

� λ3

n

=
i�1

γi

=
j�1

f
z

Cij

s.t. Zx� b,

�f
z
conik

& fmax,

f̄sik�µ�" Klorentz,

fCij
" KCij

�µx
Cij
, µ

y

Cij
�,

fĈiu
" KĈiu

�µx

Ĉiu
, µ

y

Ĉiu
�,

¾ i " �1, n�, j " �1, γi�, u " �1, βi�, k " �1, αi�.
(51)

Note that the value of λmax is significantly larger than other
weights. The internal stability margin equation is

ssm � f
z

max � f
�

max, (52)
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Figure 4. Experimental equipment to obtain f̄cmax
of FreeSN.

(A) normal force measurement, corresponding variable f
z

max in
equation (33); (B) shear force measurement, corresponding
variables f

x

max and f
y

max; (C) bending moment measurement,
corresponding variables m

x

max and m
y

max; (D) torsional
moment measurement, corresponding variable m

z

max.

where f
z
max is maximum connection force from FreeSN

connectors and f
�

max is the minimum value of fmax in
problem (51).

5.3 Experimental Devices and Parameter
Measurement

We demonstrate the method we used to measure the
connector parameters. The platform to measure related
parameters is shown in Fig. 4. A white shell is installed on
a strut module. Some drawstrings can through the shell to
apply external force. A hemisphere base is the node module
and the strut is connected with it. The location of the strut
and node is varied according to the parameter we want to
measure. A force gauge is fixed on the slide rail, which is
controlled by a handle.

In Fig. 4(A), the maximum connection force along the
z-axis, f

z
max, can be measured by rotating the handle and

recording the value on the screen when the connection
breaks. The height of the base node is different in the
Fig. 4(B) and (C). We test the shear force along different
directions in the tangential plane in (B) and test the bending
torque in (C). Thus, the values, f

x
max, f

y
max, m

x
max and

m
y
max, can be obtained. Extra pulley blocks are utilized in

(D) to calculate the value of m
z
max which represents the

resistance capacity of the connector when a pure torsional
moment is applied. Thus, the maximum connection wrench
of FreeSN, f̄cmax

, is obtained and the coefficient vector µ of
the Lorentz cone can be obtained as

µ � �fxmax

fzmax

,
f
y
max

fzmax

,
m

x
max

fzmax

,
m

y
max

fzmax

,
m

z
max

fzmax

�. (53)

5.4 Simulation Analysis
In this section, we conduct the simulation analysis of
the algorithm. The MSRR system, constituted by FreeSN,
forms suspension and object manipulation configurations.
We use the parameters from the actual physical system in
the simulation process. The weight and height of a strut

module are 492 g and 87 mm, respectively. The weight
and radius of a node module are 361 g and 60 mm.
The parameter of the characteristic connection strength for
FreeSN, as shown in equation (53), can be measured by
the equipment in Fig. 4. Each strut is the same with µ ��0.2838, 0.2483, 0.0071, 0.0083, 0.0043�. We set λmax �

10000 and λ1 � λ2 � λ3 � 1 in optimization problem (51).
FreeSN achieves connection through pure magnetic forces.
The optimization of characteristic connection strength of
FreeSN is equivalent to minimize the magnetic force, as
shown in formula (50). In the following part, we use
’connection force’ to represent the required magnetic forces
at connection points. As shown in Fig. 5 and Fig. 6, the
algorithm proposed in this paper is applied to analyze two
configurations: suspension and object manipulation. The
internal stress distribution depicted in the figures represents
the system’s critical stable state obtained by solving the
optimization problem (51). We use different colors to
illustrate the required connection force at each connection
point. All optimization problems are solved using the CVX
solver CVX Research (2012).

Fig. 5 shows a suspension configuration composed of 76
FreeSN modules under gravity, with the top struts fixedly
connected to the wall. By solving the optimization problem
(51), the critical stable state of the system can be obtained,
and the required connection force at each connection point
can be obtained. In Fig. 5(a), the gravity of the modules
is uniformly distributed, and the entire configuration can
be stable with just 76.5 N of connection force. In Fig.
5(b), after disconnecting the two connection points, the
modules in the lower left corner are required to provide
substantial shear forces and rotational torques to resist the
gravity. The required minimum connection force increases to
948.4 N . The red connections in Fig. 5(b) indicate potential
broken connection points. In Fig. 5(c), we illustrate the
magnitude of the normal forces at each connection point.
Notably, the column that includes the connection point ’C48’
demands a significantly higher normal force, in contrast to
the relatively lower requirement at connection point ’46’.
The normal forces at these two connection points are in
opposite directions, providing a couple to resist the rotation
of the rest modules. In Fig. 5(d), the modules in the lower left
corner needs to exert a substantial shear force to counteract
the gravity of the modules on the right.

Fig. 6 illustrates a object manipulation configuration
consisting of 73 FreeSN modules, where the bottom
layer’s nodes are fixed. This configuration facilitates the
manipulation of a external object via a supporting platform
at the top. During the modeling process, the load box
is considered as one of the modules comprising the
configuration, with considerations for force equilibrium,
torque equilibrium, friction cone constraints, unconnected
contacts and minimization of contact forces. This approach
enables the configuration to interact with static external
objects. We also demonstrate the effects of external active
forces applied to the system. The action points, directions,
and magnitudes of the active external forces are given and
are incorporated into vector b of equation (29). Fig. 6(a)
displays the system configuration and the distribution of
required connection forces under conditions without load
and external forces. The system requires a minimum of
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Figure 5. The stress distribution at the connection points of a suspension configuration composed of 76 FreeSN modules. (a)
Before the disconnection, the configuration is uniformly stressed under gravity and requires a maximum of only 76.5 N of magnetic
force to maintain stability. (b) After the disconnection, at least 948.4 N magnetic forces are required to maintain stability. (c) Normal
force distribution after the disconnection. (d) Shear force distribution after the disconnection.

171.48 N of magnetic force to maintain stability. In Fig.
6(b), an 8 kg box is placed on top of the system, and
it can be observed that the gravitational force of the load
is evenly distributed to the internal connections, with the
largest compression occurring at the four connection corners.
The system requires a minimum 355.1 N magnetic force to
maintain the connections. In Fig. 6(c), we assume the box
is light enough to be negligible; applying external force at a
point on the box shows that the internal stress is more heavily
loaded on the side closer to the action point of the external
force. The required minimum connection force is 425.39 N .

Figure 6. The stress distribution at the connection points in a
object manipulator configuration, which is composed of 73
FreeSN modules, under the influence of load gravity and
external force.

In Fig. 6(d), the box gravity and external force are the same,
and the required minimum connection force is 364.01 N .

The simulation experiments presented above demonstrate
the application and effectiveness of the algorithm in complex
scenarios. The critical stable states achieved are consistent
with the natural properties of load distribution.

6 Experiments
We carried out comprehensive physical experiments to test
the modeling accuracy and algorithm usability, including
motion range comparison, configuration experiments, and a
load experiment. We also analyze the calculation efficiency
of our method in this section. We use the same parameters
of FreeSN as introduced in Section 5.4, unless otherwise
specified.

6.1 Motion Range Comparison
A series of FreeSN modules compose a manipulator as
shown in Fig. 7. By moving the bottom strut on the node,
we can obtain the stable motion range of the bottom strut.
Comparing it with our numerical results, we can know the
accuracy of our modeling. The coefficients µ varies with the
change of the height of magnets. We tested the connection
strengths of the bottom strut, and then obtained µ ��0.2413, 0.2201, 0.0054, 0.0064, 0.0023�. The maximum
magnetic force is 104.5 N .

As shown in Fig. 7, a base node was connected by two
struts and one node. We fixed the top strut and its angles
related to its connected node were set as 0

`

, 30
`

, and 90
`

,
respectively. We controlled the bottom strut moving on the
node and kept its y-axis of the contact coordinate system
aligned with its original direction. The numerical prediction
results obtained from the proposed model are represented by
bright blue and gray points in Fig. 7. The bright blue point
indicates stable configurations, while the gray points denote
instability. In Fig. 7(a), the blue region is elliptical because
the rubber tires in the x direction have a higher coefficient of
friction compared to the universal wheels in the y direction,
which have a lower friction coefficient. In Fig. 7(b-c), the
shape of the bright blue region becomes irregular due to the
positional change of the top strut. The region to the right of
the base node is prone to falling.
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Figure 7. (a), (b), and (c) show the motion range comparisons between the numerical results and the physical samples for different
manipulator configurations. The bright blue region represents the calculated stable region, while the gray region indicates instability.
Blue triangles denote stable samples, and red triangles represent unstable samples in physical systems.

We sampled many points by keeping the top strut fixed and
moving the bottom strut randomly. The connection positions
of the bottom strut in the polar coordinate system were
recorded using the localization method introduced in Tu
and Lam (2023). The orientation error of this method is
approximately 1

`

. If the system was unstable, we recorded
it as 0; if stable, it was recorded as 1. In Fig. 7, the
blue triangles represent stable samples, and the red triangles
indicate unstable ones. Theoretically, the blue triangles
should be located within the bright blue region, while the
red triangles lie within the gray region. We sampled a total
of 1128, 867, and 880 points for three different manipulator
configurations, respectively. We found that the boundaries
between the red and blue sampling points are close to the
numerical calculation boundaries. Few outliers exist around
the boundary, resulting from localization errors and possible
wear of the rubber tires. Although this is the simplest
configuration, we can conclude that the point contact model,
Lorentz cone model, and other settings are sufficiently
accurate, and our modeling and algorithm process have been
effectively verified.

6.2 Configuration Experiments
A series of physical experiments utilizing FreeSN were
conducted to demonstrate the usability of the method
proposed in this paper. The MSRR system, constructed by
FreeSN, formed different configurations, including open-
chain and closed-chain types on both even and uneven floors.
By analyzing those experiments, we find that although the
method proposed in this paper is based on simple criteria,
it still provides sufficient prediction accuracy and instability
information. Details of the dynamic process involved in the
configuration experiments are available in the supplemental
video.

As shown in Fig. 8, six different configurations were con-
structed using FreeSN, and our method was utilized to pre-
dict the stability of each configuration and identify the unsta-
ble connection points. By adjusting the height of magnets, we
ensured that the connection strength of each strut was uni-
form, with µ � �0.2838, 0.2483, 0.0071, 0.0083, 0.0043�,
and the maximum magnetic force was 109.2 N . The fric-
tion coefficient of the ground and steps are 0.8 and 0.26,
respectively. Those parameters were also used in Section 6.3.
The position and orientation of all modules were recorded

by a motion capture system, and the relative motion between
modules can help us analyze the real unstable connections.
The mean error of the motion capture system is 0.312
mm during the calibration, which decides the measure-
ment uncertainty. In Fig. 8, column (a) illustrates the initial
configuration. The color of each connection point, labeled
as ’C#’, represents the degree of stress. By solving the
optimization problem (51), we can obtain the required min-
imum connection force (f

�

max) of this configuration, and
obtain the required connection wrench at each connection
point. We can determine whether the configuration is stable
by using ssm or Theorem 2. The external contact friction
margins were also calculated by subtracting the left side of
inequality (30) from its right side, which is labeled as ’S#’
in Fig. 8. Column (b) shows the stress distribution of the
configuration after adding the new module or loads. If the
required minimum connection force exceeds the connection
force provided by the struts, the configuration is unstable,
and the overstressed connection points are marked by colors
ranging from purple to red. Column (c) shows the outcomes
of the physical experiments, and the entire motion process
was recorded by the motion capture system. We obtained the
relative motion of the modules, allowing us to identify which
connection points were broken. We extracted the motion
at one instantaneous moment. The relative motion between
modules is shown in column (d) of Fig. 8 and is marked using
orange bars. Since the accelerations at the broken points
are very small, the breaking process is relatively slow. The
light blue bars and dark blue bars represent the required
connection wrench at each connection point before and after
adding loads, respectively. The orange line represents the
physical connection force from the connector. We can find
the required minimum connection force is always higher than
the physical connection force after adding the new module
or loads, indicating that the configuration is unstable. We
summarize the comparison results between predictions and
experiments in Table 2.

The initial configuration 1 was stable with a small stability
margin. After adding the extra node, we can observe the
instability of the configuration in Fig. 8-#1c. We use Fig.
8-#1c to represent the first row of column (c) and #1 is
the abbreviation of Configuration#1. We follow this rule to
refer to the specific figure. The relative motion in Fig. 8-
#1d points out that the connections ’C8’ and ’C10’ are
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Figure 8. Six configuration experiments on FreeSN. (a) The theoretical results calculated using the proposed method before
adding loads are shown. Colors at connection points represent the required connection forces. (b) The theoretically calculated
results using our method after adding loads. (c) The states of the physical system after adding loads. (d) The required connection
force at each connection point obtained from our model and the relative motion between modules after adding loads, as captured
by a motion capture system.

Table 2. The numerical results and stability state of different configurations in Fig. 8

Add loads Theoretical Results Experimental Results
Status MCF ssm Unstable Point Status Unstable Point

Con.#1 Before Stable 105.228 N 3.972 N \ Stable \
After Unstable 122.357 N -13.157 N C8, C10, C11 Unstable C8, C10

Con.#2 Before Stable 88.4167 N 20.7833 N \ Stable \
After Unstable 124.619 N -15.419 N C8, C10, C11 Unstable C8, C10

Con.#3 Before Stable 104.886 N 4.314 N \ Stable \
After Unstable 134.753 N -25.553 N C3, C4, C7, C8, C12, C15 Unstable C4, C7

Con.#4 Before Stable 104.568 N 4.632 N \ Stable \
After Unstable 137.1 N -27.9 N C5, C7, C11 Unstable C5, C11

Con.#5 Before Stable 91.9152 N 17.2848 N \ Stable \
After Unstable 114.062 N -4.862 N C4, C8, C9,C12, C13 Unstable C8, C12

Con.#6 Before Stable 104.689 N 4.511 N \ Stable \
After Unstable 111.8591 N -2.6591 N C20, C22 Unstable C20, C22

Con.# is consistent with the configuration in Fig. 8. MCF means the required minimum connection force to maintain stability.
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first broken. In Fig. 8-#1b, the connection ’C8’, ’C10’, and
’C11’ are predicted to be the most vulnerable broken points,
consistent with the physical system. The potential broken
connection points for Configuration#1 do not change before
and after adding the new module as shown in Fig. 8-#1d.
Configuration#2 is similar to Configuration#1 and only the
position of the added module is different. Before adding the
extra module, Configuration#2 is stable, with 88.4167 N
required minimum connection force, as shown in Fig. 8-#2a.
After adding one module, several overstressed connection
points are shown in Fig. 8-#2b. ’C8’, ’C10’, and ’C11’ are
the easiest broken connection points and this can be verified
from the orange bar in Fig. 8-#2d, where the relative motion
’C9’ was caused by the motion of ’C8’ and ’C10’. The
real broken points observed by the motion capture are always
included in the predicted potential broken points which can
be observed in Table 2.

Compared the Configuration#1 and Configuration#2, we
can find that the position of the extra module can greatly
affect the distribution of internal stress. In Configuration#1,
the extra module is added along the gravity direction which
requires the bending torque. But in Configuration#2, the
torsional constraint is required due to the positional change
of the added module. Even though only one extra module is
added in Configuration#2, the required minimum connection
force increases from 88.4167 N to 124.619 N , and the
required connection forces at ’C1’ and ’C2’ also greatly
increase. It shows that the position of added modules has a
large effect on configuration.

Configuration#3 is a closed-loop configuration and has
a similar topology with the Test#6 in Piranda et al.
(2021), where their proposed method failed to predict the
broken connection points. Before adding the new module,
Configuration#3 was predicted to be stable with the required
minimum connection force 104.886 N . The addition of the
new module caused the configuration instability because the
required minimum connection force 134.753 N is greater
than the connection force 109.2 N provided by the physical
system. The experimental outcomes in Fig. 8-#3c verified
the result. In Fig. 8-#3b, the connection points ’C3’, ’C4’,
’C7’, ’C8’, ’C12’ and ’C15’ have close stress levels, and
connection points ’C4’ and ’C7’ are the real broken points
according to Fig. 8-#3d. Besides, we can also observe the
’Unstable Point’ columns in Table 2. This demonstrates
that the theoretical results always contain more overstressed
connection points compared with the real broken points.
This can be seen as one feature of our method. The
optimization objective aims to fully utilize the redundant
constraints to reduce the required connection force. Thus
multiple overstressed points may exist, especially in closed-
loop configurations. The real broken connection points are
always included in the theoretical results and that can show
the effectiveness of our method. In fact, adding the new
module causes more weight on ’C4’ and ’C7’ first. If the
connection force is not enough, then ’C4’ and ’C7’ are
broken as shown in Fig. 6-#3d. However, if the connection
forces at ’C4’ and ’C7’ are enough, ’C3’ and ’C8’ are
easy to be broken. Also, if ’C3’, ’C4’, ’C7’, and ’C8’
are all stable, ’C12’ and ’C15’ are the weakest connection
points. From this point, theoretically, ’C4’ and ’C7’ are the
weakest connection points in all warning positions. However,

this corollary is based on that each module is identical.
Considering the installation deviations of each module, each
overstressed connection point is possible to be broken in
the physical system and reminds us to strengthen those
connection points. This feature is one of the good properties
of our method.

An interesting phenomenon is that when the critical
stable state is achieved, the stress distribution is symmetric
if the configuration is geometrically symmetric, like
Configurations#1 and Configurations#3. This shows that the
optimization goal to minimize the maximum connection
force is essentially a uniform distribution of external pressure
globally, so its solution automatically takes into account the
geometric distribution of the configuration. This can be seen
as another good property of our method.

We further explore the effectiveness of our method on
uneven planes as Configuration#4 and Configuration#5. In
Fig. 8-#4b, the friction coefficient of ’S3’ is 0.26 while
others are 0.8. Before adding the new module, the required
minimum connection force is 104.568 N and the external
contact point ’S1’ is nearly overstressed in Fig. 8-#4a. Then,
in Fig. 8-#4b, the new module was added under the same
contact conditions and the required minimum connection
force is 137.1 N , which means the configuration is predicted
to be unstable. The instability can be observed in Fig. 8-
#4c and the relative rotations of connection points are shown
in Fig. 8-#4d. In Fig. 8-#4b, ’C5’, ’C7’, and ’C11’ are
overstressed and this is consistent with the orange bar in
Fig. 8-#4d. Further, the external contact point ’S3’ is also
overstressed. ’S1’, ’S2’, and ’S3’ rotated a lot due to
the weak friction coefficient of ’S3’ in Fig. 8-#4c. That
demonstrates our proposed method is also effective on steps
and the model can reflect the effects of the environment.
From this case, we can find that external friction can help
to maintain the stability of the configuration. If the external
friction forces are not sufficient, higher connection force is
required to keep the system stable, like people standing on
an ice plane.

In Fig. 6-#5a, the four legs of the configuration stood
on slopes. Before adding the new module, the required
minimum connection force is 91.9152 N . When the extra
module is added, the required minimum connection force
rises to 114.062 N , which shows the configuration is
unstable. This prediction is verified in Fig. 8-#5c. ’C4’,
’C8’, ’C9’, ’C12’ and ’C13’ are the predicted broken
connection points, and ’C8’ and ’C12’ are the real
broken connection points. The above five experiments in
Fig. 8 contain different configurations and environmental
conditions. Our model is successful in predicting all
configurations and pointing out the broken connection
points, which demonstrates the effectiveness of our method.
Further, by analyzing those configurations, we find that
our proposed model can provide more possible broken
connection points and consider the geometric distribution of
the configuration, which are two good features.

6.3 Load Experiment
The proposed method can provide the lower bound of the
required connection force to maintain system’s stability,
which is guaranteed by the convex form of the optimization
problem (51). However, the unmodeled factors and input
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Figure 9. The prediction results of the proposed method on
Configuration#6. The dark blue line is the calculated required
minimum connection force under different weights. The system
is predicted to be unstable when the weight exceeds 863 g. The
gray region and the yellow region illustrate the physical
experiment results.

error can greatly affect the prediction results, including
the material wear, the localization error of modules and
environmental contacts, the measurement error of friction
coefficient, and so on. In Section 6.2, we have shown
that under normal conditions, our method is effective on
various configurations. In this part, the load experiment was
carried out to further quantify the possible impacts from
the unmodeled factors and input errors under the same
conditions. Configuration#6 was constructed as shown in
Fig. 8 and the weights were hung under the end module.
We gradually added weights from 0 g to 900 g. Each time
we only added extra 100 g weight. When the load was 800 g,
the physical system was stable with limited deformations and
the configuration was close to be unstable. We observed the
continuous sliding at ’C20’ and ’C22’ when a 900 g weight
was loaded as shown in Fig. 8-#6c. Thus, we can concluded
the instability happened when the load was in [800, 900] g.

We calculated the required minimum connection force
under different loads using our method, from 0 g to 1000
g, as the blue line shown in Fig. 9. The configuration
was predicted to be overstressed at ’C20’ and ’C22’
when the load was 863 g, which was the same with real
broken connection points in Fig. 8-#6d. Because the broken
conditions of this configuration are simple. The broken
connection points are always ’C20’ and ’C22’, and thus
the minimum connection force linearly increases with the
weights. The ground truth of critical instability loads are
between 800 g and 900 g. We can conclude that the
maximum value of prediction derivation can be lower than
63 g under the localization and measurement conditions used
in this paper for Configuration#6.

The impacts of unmodeled factors and input errors are
varied for different configurations. The Configuration#1-5
have proved that the prediction derivation caused by the
input is small enough to realize self-reconfiguration stability
prediction. The load experiment further quantified the scale
of this value.

6.4 Performance Analysis
The quasi-static stability detection algorithm is anticipated
to be executed on the module, with its invocation frequency

Figure 10. The average computation time of our proposed
method for configurations with different number of modules.

being comparable to that of the obstacle avoidance
algorithm. In previous research, taking into account the
small deformations of the system, FE-based method are
often utilized. A general stiffness model is proposed in
Rimon et al. (2008) and the nonlinear equation solver was
used. The computation complexity of this method for n
modules is about O�n1.4� without collision detection. A
linear-elastic FE model is used in Hołobut et al. (2020)
and the computation cost is further decreased. However, the
simplified model caused lower accuracy. The computation
cost will further increase if friction and uneven planes are
included in their model. We model the quasi-static stability
problem of MSRR as a SOCP problem, which can be quickly
solved using the interior point method. Frictional contact
conditions and uneven terrains are also included in our
model. We consider more factors, and the form of models
is conducive to real-time computation.

For MSRR, the specific solving time depends on
the system’s configuration, and the number of modules
and contacts. We used FreeSN to randomly construct
configurations with different number of modules. The
proposed method was used to compute the minimum
connection force. As shown in Fig. 10, the average solution
time of the algorithm linearly increases with the increase
in the number of modules. The computation complexity of
our method is about O�n � m�, where n is the number
of modules and m is the number of contacts. The proposed
method greatly reduces the impact of the number of modules
and is promising to be used in the real system to realize
online planning.

7 Conclusion
MSRR can form different configurations to perform tasks.
They have strong task versatility, functionality, and self-
repair ability. However, the mechanical connection stability
between modules restricts their applications. In this paper,
we model the mechanical stability problem as a SOCP prob-
lem. By minimizing the characteristic connection strength,
we can obtain the critical stable state and potential broken
connection points. By comparing the required minimum
connection wrench with the physical connector constraints,
we can detect this configuration’s stability under given
external wrenches, including internal stability and whole-
body stability. We also demonstrate two methods to deter-
mine the weight of the characteristic connection strength,
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for mechanical connection and magnetic connection respec-
tively. However, obviously, the guaranteed stability does not
exist. A system will be unstable as long as the external
disturbances are strong enough. Therefore, a stability margin
to evaluate the system’s anti-disturbance ability is important.
Previous research has extensively discussed the whole-body
stability margin Bretl and Lall (2008). Those research can
directly be used for an MSRR system. In this paper, we
propose the internal stability margin to evaluate the internal
connection, which can be set as the indicator to realize robust
reconfiguration and joint motion process.

We applied our method to the FreeSN system and
did a series of simulation and physical experiments to
test the accuracy and usability of this method, including
two simulation analysis, one motion range experiment,
5 configuration experiments, one load experiment, and
one time complexity experiment. The two simulation
configurations show the effectiveness and applications of our
method. The motion range experiment demonstrates that the
point contact assumption and Lorentz cone are sufficient
to model the connection coupling relationship of FreeSN.
Configuration experiments show the proposed method can
successfully predict the stability state of the system and can
accurately point out the potential broken connection points.
The load experiment further confirms the high prediction
accuracy. Finally, we show that the solving time of the
optimization problem increases linearly with the increase
in the number of modules and contacts. In general, the
model proposed in this paper is lightweight and can be
solved quickly. We have reduced the impact of the number
of modules to the greatest extent while algorithms can also
provide accurate prediction results.

In the future, this detection method can be further
improved by considering the influence of dynamic factors in
MSRR.
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