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Abstract— Spherical Modular Self-reconfigurable Robots
(SMSRs) have been popular in recent years. Their Self-
reconfigurable nature allows them to adapt to different en-
vironments and tasks, and achieve what a single module could
not achieve. To collaborate with each other, relative localization
between each module and assembly is crucial. Existing relative
localization methods either have low accuracy, which is unsuit-
able for short-distance collaborations, or are designed for fixed-
shape robots, whose visual features remain static over time.
This paper proposes the first visual relative localization method
for SMSRs. We first detect and identify individual modules of
SMSRs, and adopt visual tracking to improve the detection and
identification robustness. Using an optimization-based method,
tracking result is then fused with odometry to estimate the
relative pose between assemblies. To deal with the non-convexity
of the optimization problem, we adopt semi-definite relaxation
to transform it into a convex form. The proposed method is
validated and analysed in real-world experiments. The overall
localization performance and the performance under time-
varying configuration are evaluated. The result shows that
the relative position estimation accuracy reaches 2%, and the
orientation estimation accuracy reaches 6.64◦, and that our
method surpasses the state-of-the-art methods.

I. INTRODUCTION

SMSRs [1]–[4] have been popular in the field of self-
reconfigurable robots. By leveraging their modular nature,
SMSRs can combine and reconfigure themselves into various
forms, allowing them to adapt to different environments and
tasks. This collaborative behaviour enhances their overall
capabilities beyond what a single module could achieve in-
dependently. To collaborate with each other, the relative pose
between each module and assembly needs to be determined,
thus putting forward the relative localization problem for
SMSRs.

Some recent literature has proposed relative localization
for modular robots. [5] proposed a graph convolutional
network-based configuration detection method for FreeSN
[1], which was later improved by fusing more sensor mea-
surements in [6]. [7] proposed a decentralized localization
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Fig. 1. The overview of our work. The observer detects and identifies
the target assemblies’ modules, whose positions are estimated and fused
with assemblies’ configuration and odometry to formulate the non-convex
optimization problem for relative pose estimation. To deal with the non-
convexity of the original problem, semi-definite relaxation is adopted to
relax the problem into a semi-definite programming (SDP). The solution of
the SDP is then used to recover the relative poses between the observer and
target assemblies.

method based on magnetic measurement for UBot. [8] intro-
duced a 3D coordinate system to handle relative localization
problems when orientation between each module is not
accessible. However, these methods mainly focus on relative
localization within a connected assembly, leaving relative
localization between separate assemblies an open problem.

Many literatures have studied relative localization problem
between separate robots, or robot swarms [9]–[26]. Most
existing relative localization methods can be categorized as
UWB-odometry-based methods and visual-object-detection
methods [27]. For UWB-odometry-based methods [10]–[16],
the distance between two robots measured by UWB is
usually fused with odometry to estimate the relative pose
between two robots. In SMSR applications, a typical scenario
is that a group of SMSRs gradually come together and
connect with each other to form an assembly. In this ap-
plication, the localization accuracy requirement increases as
the modules approach each other. However, UWB-odometry-
based methods only provide decimeter-level accuracy and are
not accurate enough for short-distance collaboration tasks.

Vision-based methods have also been proposed to solve
robot swarm relative localization problems [17]–[26]. A
widely used solution for visual localization was proposed



by Olson et al. [22]–[24]. They designed a square passive
marker called AprilTag that not only encodes identity (ID)
information but also provides pose information. To extract
pose information from AprilTag, morphology features are
used in the algorithm. However, the spherical surface of SM-
SRs brings distortion to those features, leading to estimation
failure. Some other vision-based methods directly estimated
the relative pose of the target robots, instead of markers
on them. [19] detects keypoints on a drone and estimate
its 6-degrees-of-freedom (DoF) pose. [20] applies yolov5
to detect drones at relatively low frequency and utilizes
MOSSE [21] to generalize the low-frequency detection result
to subsequent frames for higher detection frequency. These
methods train neural networks with pictures of fixed-shape
drones. However, the shape of a reconfigurable assembly may
vary over time, which brings challenges to existing practices.
Although the pose of a single module can be estimated
using existing methods, the modules are generally small
targets, so only estimating the pose of individual modules
may produce inaccurate estimation. As a result, multiple
modules’ information should be fused to produce a more
accurate pose estimation for the whole assembly.

In this work, we propose the first visual relative localiza-
tion method for SMSRs.

Our approach leverages a monocular camera to detect each
module’s ID, position, and radius in the image. To handle
cases where certain modules (nodes) fail to be identified,
we employ a tracking algorithm to continuously identify
those nodes. However, the small size of the modules presents
challenges, such as inaccurate pose estimation or localization
failure. To mitigate this, we integrate an optimization-based
method that fuses tracking data from multiple modules with
configuration and odometry information to achieve a more
accurate pose estimation for the entire assembly. To address
the non-convexity of the optimization problem, we adopt
a semi-definite relaxation, transforming the problem into a
convex form for more efficient and precise solving, and the
relaxed solution is then recovered to provide relative pose
estimation. Fig. 1 provides an overview of our proposed
method. The key contributions of this paper are:

1) We develop a detection and identification method to
detect and identify individual modules for SMSRs, so that
our method can adapt to different configurations without the
need of retraining the network.

2) Based on detection, odometry and configuration [6], we
propose an optimization-based relative localization method,
which is validated through real-world experiments.

II. PROBELM STATEMENT

In this work, we use FreeSN (Fig. 2) [6] as a representative
for SMSRs. We define some useful frames and notations
for FreeSN. We define a group of nodes and struts as
an assembly if they are connected by magnetic force. An
assembly i is denoted as Ai. For a node j in assembly
Ai, denoted as Nij , we define a horizontal frame Hij . The
origin of Hij is located at the center of Nij . Its z-axis is
always parallel to gravity, and its rotation motion follows the
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Fig. 2. Notation and frame definition of FreeSN. The observer assembly
is on the left, and the target assembly is on the right.

node module around z-axis of Hij ideally. Each assembly
has a root node, whose horizontal frame is denoted as Hir.
Similarly, a strut l of Ai is denoted as Sil, and Sil is also
used to denote its inertial frame. The node’s radius is r0.

In this paper, we study the relative localization problem
between assemblies. Without loss of generality, we take two
assemblies as an example, namely, an observer A0 and a
target A1. One of the struts S0c in the observer is equipped
with a camera.

We use pF1

F2
and RF1

F2
to represent the position and

orientation of frame F2 w.r.t. frame F1 respectively. We
assume the extrinsic parameter of the camera RS0c

c and pS0c
c ,

representing rotation and translation from frame S0c to the
camera frame c, is known. Moreover, applying our previous
method [6], RH0r

S0c
, pH0r

S0c
, and pH1r

H1j
for all nodes j in A1

can be calculated, i.e., the configuration of each assembly is
available. As a result, if the relative position and orientation
between H0r and H1r are determined, relative poses between
all nodes and struts can be determined.

Moreover, since each strut is equipped with wheels and
encoders, we also assume the odometry of the root node is
available at all time k, denoted as p̂Hir,k−1

Hir,k
and R̂

Hir,k−1

Hir,k
for

i ∈ {0, 1}. The specific method by which the odometry is
computed is beyond the scope of this paper.

Our goal is to estimate the pose of the target assembly’s
root horizontal frame H1r w.r.t. the observer assembly’s
root horizontal frame H0r, given image, configurations, and
odometry measurement. Note that the pose to be estimated is
4-DoFs since the orientation between two horizontal frames
only allows a single DoF. The relative position at time k is
denoted as pH0r,k

H1r,k
, and the relative angle at time k is denoted

as θ
H0r,k

H1r,k
.

III. MODULE DETECTION AND IDENTIFICATION

To estimate the relative pose between two assemblies, we
first detect modules. Although there are two types of modules
in FreeSN, we only detect nodes, since their shape and other
main features are rotation invariant, which makes it easier for
detection and position estimation. In this section, we describe
the detection and identification methods for nodes. We first



modify yolo series to detect nodes and use AprilTag to iden-
tify the detected nodes. However, AprilTag detection fails
occasionally, leaving detected nodes unidentified. To solve
this problem, we adopt a tracking algorithm to associate node
detections across time steps, and to generalize ID information
to frames where AprilTag detection fails.
A. Detection

We adopt yolo series [28], one of the state-of-the-art object
detection methods. Different from general object detection
tasks, we only need to detect nodes, which is a sphere. The
traditional rectangular bounding box has a redundant DoF,
when only 3 parameters are required to specify the location
and size of a circle. So instead of using bounding box, we
adopt bounding circle as the output of the network [29],
[30]. Instead of predicting the center, width and height of
a rectangle, we predict the center and radius of a circle. The
detected bounding circle is denoted as y = [u, v, r]

T , where
u, v and r, represents the x−, y−coordinate and radius in
the image plane.
B. Identification

AprilTag [22], [23] is used for identification in our method.
Each node is allocated a unique ID and this ID is represented
by the AprilTag attached to the node’s surface. When a
bounding circle is given, we run AprilTag detection algo-
rithm in the bounding circle. The AprilTag detection result
is filtered by the decision margin and hamming distance.

In [22], algorithms are developed to enable pose estimation
using AprilTag itself. However, when an AprilTag is attached
to a non-flat surface (e.g. sphere for node), its geometry is
distorted, which leads to inaccurate pose estimation. More-
over, since the tag attached to a node is much smaller than the
node itself, the relative estimation error using the algorithm
in [22] is also larger as shown in section V-D. As a result,
although AprilTag can also be used to estimate pose, we use
it only for identification.
C. Tracking

Although AprilTag detection algorithm is designed to be
robust, in our experiment, there is occasional detection failure
due to low image quality, motion blur or other reasons. When
AprilTag detection fails, the bounding circle in the image is
useless unless it can be associated with a physical node. We
tackle this vulnerability by adopting BoT-SORT [31], one
of the state-of-the-art visual tracking methods, so that IDs
can be assigned to node detections even facing occasional
AprilTag detection failure. We denote the tracking result at
time step k as Tk.

IV. OPTIMIZATION-BASED RELATIVE
LOCALIZATION

In this section, we propose an optimization-based method
to fuse the tracking results with assembly configuration
and odometry to estimate relative poses between the two
assemblies. We first derive the residuals of vision and odom-
etry terms to formulate the optimization problem. Then we
adopt semi-definite relaxation to transform the optimization
problem into a convex form for accurate and accelerated

optimization. Finally, we recover the relative poses from the
optimization result.

A. Visual Factor

According to the previous section, position and ID of
each node in the image plane are obtained. We denote the
position of the detected node with ID i in the image plane as
(ui, vi) and its radius as ri. Since we assume the camera is
perfectly calibrated, the intrinsic parameter K, and the focal
length f are known. Recall that the real radius of a node is
denoted as r0. By the pinhole model of camera, the position
measurement of the node i in c is given by

p̂c
Ni

= K−1 fr0
ri

[ui, vi, 1]
T

, (1)

We further represent the position of node i in c with assembly
configurations and poses to be estimated as

pc
Ni

=RS0c
c

T
(
RH0r

S0c

T
(
RH0r

TRH1r

(
pH1r
Ni

−RH1r

T (pH0r
− pH1r

)
)
− pH0r

S0c

)
− pS0c

c

)
,

(2)

where the omitted superscripts represent some arbitrary but
unified frame and we drop the time index here for simplicity.
The resulting residual is

evi = pc
Ni

− p̂c
Ni

. (3)
Observe from (2) that the rotation and position to be esti-
mated are coupled. To decouple the rotation from position,
we multiply both sides with RH0r

RH0r

S0c
RS0c

c , which gives

RH0r
RH0r

S0c
RS0c

c evi

=RH1rp
H1r

Ni
− (pH0r − pH1r )−RH0r

(
pH0r
c +RH0r

c p̂c
Ni

)
:=RH1rp

H1r

Ni
− (pH0r

− pH1r
)−RH0r

ti
(4)

Using the vectorization trick, at timestep k, define
xk =

[
pH0r,k

T ,pH1r,k
T , vec

(
RH0r,k

)T
, vec

(
RH1r,k

)T ]
.

Applying (4), when |Tk| > 0, the visual cost is defined as
the visual residual norm as

cvk =
∑
i∈Tk

evi,k
Tevi,k := xk

T (Vk ⊗ I3)xk , (5)

where all the measurement-related terms are encoded in
matrix Vk. Although the configurations of the observer and
target assembly may vary with time, (5) encodes the config-
urations along with all the visual measurements in the matrix
Vk and gives a unified representation of the visual cost,
which enables configuration-adaptive relative localization.

B. Odometry Factor

It is assumed that the odometry measurements of both as-
semblies are available, i.e., at time k, for j ∈ {0, 1} odometry
measurements p̂

Hjr,k−1

Hjr,k
and R̂

Hjr,k−1

Hjr,k
are available. We can

derive the corresponding p
Hjr,k−1

Hjr,k
and R

Hjr,k−1

Hjr,k
from poses

to be estimated as

p
Hjr,k−1

Hjr,k
= RHjr,k−1

T
(
pHjr,k

− pHjr,k−1

)
R

Hjr,k−1

Hjr,k
= RHjr,k−1

TRHjr,k

(6)



Similar to (4), we decouple the poses, and the residuals of
position and orientation are given by

RHjr,k−1
e
Hjr,k−1

Hjr,k
:= pHjr,k

− pHjr,k−1
−RHjr,k−1

p̂
Hjr,k−1

Hjr,k

RHjr,k−1
ϵ
Hjr,k−1

Hjr,k
:= RHjr,k

−RHjr,k−1
R̂

Hjr,k−1

Hjr,k

(7)
As a result, the odometry cost is defined by the residual
norms as

cok =
∑

j∈{0,1}

e
Hjr,k−1

Hjr,k

T
e
Hjr,k−1

Hjr,k
+
∥∥∥ϵHjr,k−1

Hjr,k

∥∥∥2
F

=
[
xk−1

T ,xk
T
]
(Ok ⊗ I3)

[
xk−1

xk

] (8)

where ∥·∥F represents the Frobenius norm, and all the
measurement-related terms are encoded in matrix Ok.
C. Problem Formulation and Semi-Definite Relaxation

Based on the visual and odometry cost derived in (5) and
(8), we can formulate the optimization problem for relative
localization. Denote the relative pose of (K + 1) frames as
a vector

xk:k+K =
[
xk

T ,xk+1
T , · · · ,xk+K

T
]T (9)

Utilizing (5) and (8), the sliding-window optimization prob-
lem is defined as follows

P1 : min
xk:k+K

k+K∑
t=k

cvt +

k+K∑
t=k+1

cot ,

s.t. RHjr,t
∈ SO (3) , RHjr,t

ez = ez

∀j ∈ {0, 1} , t = k, k + 1, . . . , k +K,
(10)

where SO(n) represents the n-dimensional special orthogo-
nal group, and ez is the natural basis of z-axis. By utilizing
the measurement matrices Vk and Ok, the objective of (10)
can be written in quadratic form as

k+K∑
t=k

cvt +

k+K∑
t=k+1

cot = xT
k:k+K (Mk:k+K ⊗ I3)xk:k+K ,

(11)
where the Mk:k+K−1 is defined block-wise by Ok and Vk.
We further define the positions and rotations as separate
variables as

p :=
[
pT
H0r,k

,pT
H1r,k

,pT
H0r,k+1

, · · · ,pT
H1r,k+K

]T
∈ R6K

R :=
[
RH0r,k

,RH1r,k
,RH0r,k+1

, · · · ,RH1r,k+K

]
∈ R3×6K

(12)
Then with a proper permutation matrix T , P1 can be re-
written as

P2 : min
p,R

[
p

vec (R)

]T (
TMT T ⊗ I3

) [p
vec (R)

]
s.t. RHjr,t ∈ SO (3) , RHjr,tez = ez

∀j ∈ {0, 1} , t = k, k + 1, . . . , k +K,

(13)

We segment the cost matrix above as

TMT T =

[
Mpp MpR

MT
pR MRR

]
(14)

And define Q = MRR − MT
pRM

†
ppMpR, where ∗† is the

Moore–Penrose inverse. By [32], the position terms and
rotation terms in P2 can be decoupled, and the position
can be estimated in closed form if the optimal rotation is
given. The optimal rotation can be obtained by solving the
following relaxed problem.

P3 : min
Z∈S6K+

tr (QZ) (15a)

s.t.
Z[3l : 3l + 3, 3l : 3l + 3] = I3

l = 1, 2, . . . , 2K
(15b)

Z[3i : 3i+ 3, 3j : 3j + 3] =

∗ ∗ 0

∗ ∗ 0

0 0 1


i, j = 1, 2, . . . , 2K

(15c)

where Z = RTR; Sn+ represents set of n-dimensional
positive semi-definite matrices; tr (·) is the trace of a matrix.
Different from the original relaxation in [32], there is an
additional convex constraint (15c) in P3. As mentioned in
section II, we only consider single rotation DoF along z-
axis, and constraint (15c) ensures the rotation DoF. Although
additional constraints are enforced, P3 is still a SDP problem,
and can be solved accurately and efficiently with numerical
solvers like MOSEK.

D. Relative Pose Recovery
Since we only consider 1-DoF rotation along the z-axis,

any estimated rotation matrix R ∈ SO(3) can be written as

R =

[
R 0
0T 1

]
, (16)

where R ∈ SO(2) is the free parts of R, and other parts are
fixed as constraints as in (15c). After solving P3, we extract
the free parts of Z∗ as Z∗. Since Z = RTR, we have
Z∗ = R∗TR∗, where R∗ ∈ R2×4K . As a result, rank-2
decomposition is performed for Z∗ to obtain Z∗ = Y ∗TY ∗,
where Y ∗ ∈ R2×4K . And each 2-D rotation matrix R∗

Hjr,k
in

R∗ is recovered from the corresponding component Y ∗
Hjr,k

in Y ∗ as

R∗
Hjr,k

= U

[
1 0

0 det
(
UV T

)]V T , (17)

where Y ∗
Hjr,k

= UΣV T is the singular value decomposition
of Y ∗

Hjr,k
. And the original rotation matrices R∗ can be

constructed by (16). By [32], the optimal position estimation
is given by the closed-form solution as

p∗ = −vec
(
R∗MT

pRM
†
pp

)
. (18)

Finally, the relative pose of the two assemblies’ root hori-
zontal frame H0r,K and H1r,K is given by

R
H0r,K

H1r,K

∗
=R∗

H0r,K

TR∗
H1r,K

p
H0r,K

H1r,K

∗
=R∗

H0r,K

T
(
p∗
H1r,K

− p∗
H0r,K

) (19)

The relative angle θ
H0r,k

H1r,k

∗
can be calculated by converting

R
H0r,K

H1r,K

∗
to Euler angle and taking the yaw component.



V. EXPERIMENT

A. Data Collection and Network Training

We assume that nodes appear uniformly and randomly
within the camera’s field of view (FoV). Therefore, a total
of 1568 images are collected according to this distribution,
80% among which are used as training set, and the rest as
test set. As mentioned before, we adopt yolo series as the
detector with our customized bounding circle head. We train
detection network using mmyolo [33] on the dataset, and
use mmdeploy [34] to deploy the model after training for
accelerated inference.
B. Localization Experiment Setup

We use ESP32-CAM as the camera, and it’s also equipped
with a Wi-Fi module. The raw images (1024 pixels × 768
pixels) are sent to a computer at about 5Hz through 2.4G
Wi-Fi. The camera is mounted on one of the struts of the
observer as shown in Fig. 2. The odometry data is obtained
by integrating the velocity measured by encoders of the
differential wheels of struts, and is sent to the computer at
about 10Hz through 2.4G Wi-Fi. All detection, identification,
tracking, and optimization algorithms run on the computer,
whose central processing unit (CPU) is Intel i5-13600KF and
graphics processing unit (GPU) is NVIDIA RTX4070Ti. We
set the optimization window K = 5, and the algorithm runs
at about 27Hz with offline data on the computer. Since the
image transmission frequency is about 5Hz, the algorithm
runs at about 5Hz with online data. A motion capture
(OptiTrack) serves as the experiment’s ground truth system,
and the ground truth’s localization accuracy is about 0.8mm.

C. Baselines

1) AprilTag [22], [23]: AprilTag is a widely used visual
marker that provides both identity and pose information,
and we also use it for identification in our method. In our
experiment, it serves as one of the baselines. We detect
the tag on the target’s root node, and then compute the
root’s center position based on the pose information the tag
provides.

2) Bearing [35]: Bearing-based method is another popu-
lar method that fuses visual detections with odometry. We use
one state-of-the-art method [35] as another baseline. We use
the detection of the target’s root node to compute the bearing
information and then fuse it with odometry to produce the
estimation of the root’s pose.

D. Localization Experiment Result

In this experiment, we evaluate the overall algorithm
performance. As shown in Fig. 3 (a), the target assemblies
have different configurations (robot 1 and robot 2), and
are placed on different terrains (robot 2 and robot 3). And
during the experiment, the observer is placed on a table
about 0.75m high and moves horizontally. We evaluate our
method and the baselines in the described settings. The
qualitative result for position trajectories is shown in Fig.
3 (b), and the orientation trajectories are shown in Fig. 3 (c)
- (e). From the qualitative result, compared with Bearing,

the proposed method demonstrates significant accuracy im-
provement, since unlike bearing-based methods, we are able
to utilize the bounding circle radius as depth measurement,
which provides more information about the target’s pose.
Compared with AprilTag, our method is both more accurate
and provides smoother estimation results, due to the fusion
with odometry and the use of larger visual features.

TABLE I
COMPARISON BETWEEN OUR METHOD AND BASELINES

Method Positional
Error [m] ↓

Relative
Positional

Error [%] ↓
Angular

Error [◦] ↓
FPS [Hz]

↑

AprilTag [22] 0.112 5.384 / 13.92
Bearing [35] 0.304 16.942 22.035 25.53

Ours 0.039 2.092 6.642 27.24

The quantitative result is shown in Table I. We compare
the mean positional error, mean relative positional error,
mean absolute angular error, and the frame per second
(FPS). The relative positional error is computed by dividing
the positional error by the current observer-target distance.
From table I, our method demonstrates significant accuracy
improvements compared to baselines, and reaches 2% in
terms of relative positional error. Apart from accuracy, our
method also demonstrates higher or comparable FPS, which
is more than sufficient in our settings.

For FreeSN, which we use in our experiments, its node’s
radius r0 = 6cm. The experiments show that our visual
localization algorithm reaches a comparable accuracy level
as the module size of our SMSR overall and outperforms
some other vision-based methods. Consequently, our visual
localization method is better suited for SMSRs.
E. Localization for Real-Time Reconfiguration

Our method can adapt to different, and possibly time-
varying, configurations of the target assembly. We use the
same setting as Fig. 3 (a), but keep the observer still and
replace the targets with an assembly shown in Fig. 4 (a).
During the experiment, the target assembly automatically
changes its configuration as shown in Fig. 4 (a)-(f). The
red circles in Fig. 4 represent that the corresponding node
is detected and identified. The localization accuracy is also
shown in Fig. 4. From Fig. 4, we can observe two prime
accuracy improvements, roughly at (b) and (e). Before (b),
there are two nodes used for localization, however, due to
occlusion, the detection accuracy of one of the two nodes is
relatively low. But since (b), another non-occluded node is
detected, leading to localization accuracy improvement. Sim-
ilarly, at (e), three non-occluded nodes are detected, leading
to another accuracy improvement. From the experiment, we
observe that the accuracy of our method is closely related
to the number and quality of node detection of the target
assembly. And most importantly, by fusing the configuration
and visual detections, our method enables localization for
real-time reconfiguration of SMSRs.

VI. CONCLUSIONS AND FUTURE WORK
This paper proposed a visual relative localization method

that can adapt to different configurations of SMSRs. De-
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Fig. 4. Experiment result of the reconfiguration experiment. Down: The relative positional error and angular error in the experiment. (a)-(f): Configuration
of the target assembly at the corresponding time steps, where the red circle represents the node is both detected and identified.

tection, identification, and tracking methods were designed
to acquire module position and ID, which were fused with
odometry and assemblies’ configuration to formulate an
optimization-based localization problem. Semi-definite relax-
ation was adopted to transform the non-convex formulation
into an SDP problem. Finally, the relative poses were re-
covered from the solution of the SDP problem. To analyze
the performance of the proposed algorithm, we conducted
comprehensive experiments and the overall relative position
estimation accuracy reaches 2% and the orientation estima-
tion accuracy reaches 6.642◦, which is superior to baselines.
We also conducted localization experiments for real-time
SMSR reconfiguration, and demonstrated that our method
can adapt to different and time-varying SMSR configura-
tions. Moreover, our method can also be applied to other
SMSRs like Freebot [2] and Snailbot [4] just by slight
modification.

There are also some limitations in our method that can be
improved in the future, including: 1) The current algorithm
only considers a single observer. When multiple assemblies
exist, the visual measurements between each assembly are
not fully exploited. 2) The current algorithm is centralized,
which limits its robustness and scalability. In the future, we
will decentralize our algorithm and consider more observers
to fully utilize all visual measurements for improved robust-
ness and scalability.
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