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Abstract— Room segmentation plays a significant role in
scene understanding, semantic mapping, and scene coverage for
robots navigating in real-world indoor environments. However,
most previous works take a passive segmentation that requires
a complete and uncluttered grid map as input, often resulting
in lower segmentation accuracy and cannot be deployed in
unknown environments. In this paper, we propose an active
room segmentation framework that can enable a robot to
incrementally and autonomously perform room segmentation
in cluttered indoor environments. Our framework consists of
three key components: i) a door extraction module where a
visual semantic feature, specifically, door, is extracted to better
identify rooms in cluttered environments, ii) a within-room
exploration module that detects frontiers within the currently
exploring room, and iii) a topological module that represents
connectivity between rooms and determines next room for
exploration. We show through experiments that the proposed
method depicts two distinct advantages against existing methods
in segmentation accuracy and autonomy. The code is available
at https://github.com/FreeformRobotics/Active_
room_segmentation.

I. INTRODUCTION

For robots working indoors, occupancy grid map is one of
the most widely used representations of the environment. It
discretizes the continuous environment into plenty of square
cells (cubical volumes in 3D case) of the same size. Each
cell stores a probability indicating how likely the cell is free,
occupied, or unknown. The occupancy grid map is quite
straightforward for human users but not for robots. Thus,
a further process is required to make it easier for robots to
utilize in downstream tasks like human-robot interaction or
cleaning [1], [2]. In indoor environments, this process can
be specified as room segmentation.

Room segmentation serves as a critical process that fur-
nishes higher-level information by dividing the occupancy
grid map into semantically meaningful segments. In previous
research, this segmentation can be broadly categorized into:
offline and incremental, both typically reliant on a prior
knowledge regarding the indoor building structure. Offline
segmentation techniques, for instance, are predicated on the
identification of specific architectural features, like narrow
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(a) Ours (b) Voronoi graph-based method

Fig. 1: Comparison between our active method and the
widely used Voronoi graph-based offline segmentation
method [3].

passages [3], [4] or potential door locations [2], [5], to
divide contiguous regions into distinct rooms. In contrast,
incremental methods, as exemplified by DUDE [6] and the
work of Choi et al. [7], assume that rooms extracted from
the maps exhibit convex shapes. They propose incremental
methodologies that assess the convexity of newly scanned
areas to determine if further decomposition is warranted.

Existing room segmentation methods exhibit two primary
limitations. Firstly, they often disregard valuable visual cues
and rely solely on occupancy maps as input. These maps
offer only limited geometric information, such as convexity
or size. These constraints prove insufficient when confronted
with cluttered indoor environments, where substantial furni-
ture pieces like tables, sofas, or beds can mislead algorithms
into fragmenting a single room into multiple segments. Sec-
ondly, prior methodologies lack an autonomous exploration
strategy. Offline methods assume the availability of high-
quality, complete occupancy grid maps as input. Conversely,
most incremental approaches necessitate human intervention
to update these occupancy grid maps. The former issue
adversely impacts room segmentation accuracy, while the
latter impedes the autonomy of robotic systems. Despite
the feasibility of simply concatenating a room segmenta-
tion module to an active exploration module directly for
autonomy, it leads to inefficiency as each module works
independently towards its own goal. The exploration tends to
prioritize larger unexplored areas without thoroughly explor-
ing the current room, impeding the room segmentation from
swiftly getting the final result. Additionally, most previous
off-the-shelf room segmentation methods typically return a
segmented grid map, which is challenging to effectively
utilize within the context of the exploration task.

This paper presents an active room segmentation frame-
work integrating both exploration and segmentation in a
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complementary way. It ensures a room-by-room exploration
strategy for better segmentation results while the room seg-
mentation results are generated in the form of a topology
map to facilitate the exploration process. To maintain seg-
mentation performance and construct grid maps in cluttered
environments, the framework takes the RGBD images as its
input and returns a topology map and action instructions for
active exploration. Our approach can be distilled into three
key modules: i) a two-stage door extraction module that
can identify doors from cluttered indoor environments, ii)
a within-room exploration module that enables the robot to
fully explore a single room, and iii) a topological module that
updates a topology map based on the detected door locations
and tells the robot the next room to visit once it completes
its exploration of the current one. Through a repetitive cycle
of these modules, our method autonomously conducts online
room-by-room segmentation, enabling maximal exploration
of unfamiliar environments.

To validate the effectiveness of our method, we conducted
extensive experiments using the real-world Gibson dataset
[8]. Our results demonstrate that our method consistently
outperforms the previous state-of-the-art approach, exhibit-
ing a 3.9% improvement in recall and a substantial 10.2%
increase in precision for segmentation, while striking a
balance between exploration completeness and efficiency. A
visual comparison between our method and the widely used
Voronoi graph-based method for offline segmentation [3] is
illustrated in Fig. 1. As seen, our method yields distinct
advantages in segmentation accuracy and autonomy.

In summary, our contributions include:
• We propose a novel active room segmentation frame-

work that undertakes room segmentation and explo-
ration in a complementary way.

• The framework efficiently reuses the RGBD images
required by the SLAM module to maintain a robust seg-
mentation performance under cluttered environments.

• We introduce a topology map construction module
to represent the segmentation results, modeling the
connectivity relations between rooms to facilitate the
exploration.

II. RELATED WORK

A. Offline Segmentation

Offline segmentation methods typically operate on com-
plete scene maps and extract features from these maps for
segmentation. For example, regions of narrow passages are
one of the most intuitive and popular features. Thrun et al.
[9] first attempted to utilize the Voronoi graph to locate
the narrow passages, referred to as critical points in their
work. Later, Voronoi graph-based methods [3] have become
the predominant approach for generating floor plans. Other
technologies like morphology operation [1], [4] or distance
transformation [3], [10], [11] have also been used for locating
narrow passages in the scene. The virtual door is a more
specific instance for narrow passages. It was first proposed
by Myung et al. [2], indicating possible positions of doors
derived from the grid map. This concept is also used in [5].

Luperto et al. [12] proposed to extract the main directions
from cluttered scenes by Discrete Fourier Transform and
use heuristics to do segmentation on each direction. Besides
finding those semantic meaningful features, other researchers
also resort to spectral clustering [13], [14], [15] or deep
learning methods [16], [17] to utilize more implicit features
for segmenting the map.

However, offline methods are limited by their need for
a complete map as input, making them unsuitable for
deployment on robots navigating unknown environments.
Furthermore, these methods often struggle to effectively
incorporate visual cues, such as RGB images, which results
in lower segmentation accuracy, particularly in complex real-
world scenarios. For instance, virtual door-based methods
rely solely on geometric cues extracted from input grid maps
to identify doors. In contrast, our approach leverages both
visual (RGB) and geometric (depth) cues for door detection,
enhancing its performance.

B. Incremental Segmentation

Incremental segmentation methods, on the other hand, rely
on information obtained from new areas. Buschka et al. [18]
designed a morphology-based room detection sensor that
exclusively segments the newly scanned area and discards the
older information. Another viable approach for incremental
segmentation is through convexity [6], [7], which assumes
that rooms in the scene are all convex in shape. Learning
methods [19], [20] are also highly suitable for incremental
segmentation, as the network can efficiently classify grid
cells in real-time using sensor inputs like Lidar scans or
RGB images. However, all of the aforementioned methods
require human intervention to update the occupancy grid
map. Although a few studies [21], [22] have attempted to
integrate the segmentation task with the exploration task,
they still rely on simple geometric features extracted from
the occupancy maps, resulting in suboptimal accuracy.

The most related work to ours is [23], which is the first and
only existing method enabling autonomous robot exploration
and scene segmentation with door detection. However, our
approach diverges in two crucial aspects. Firstly, while [23]
uses a basic Hough line detector on depth images for door
detection, we employ a deep learning-based door detection
module working on RGBD inputs, enhancing accuracy. Sec-
ondly, our method excels at ensuring completeness during
room exploration while [23] often fails in confined spaces.
Consequently, [23] only demonstrated its effectiveness in
simple and textureless scenarios. On the contrary, the pro-
posed approach can yield superior performance in more
complex scenarios.

C. Active Exploration
Active exploration enables the robots to gather re-

quired information (e.g., map) in unknown environments
autonomously. The concept of “frontier” [24] delineates the
boundary between known and unknown areas and serves as
a widely adopted Region of Interest (RoI) for active explo-
ration strategies. The Wavefront Frontier Detector (WFD)
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Fig. 2: Overview of the proposed framework, including illustration of door representation on the top-right and topology
map on the bottom-right. To represent the door, a pair of points, e.g., P1 and P2, is used to represent a door, and similarly,
two points, e.g., W1 and W2, are used to represent waypoints for passing through the door. In the topology map, different
attributes are stored in each node and edge to help the robot better understand the scene.

[25] identifies frontiers through the implementation of a
breadth-first search (BFS) across all unoccupied cells. How-
ever, it’s worth noting that the processing time of WFD
tends to increase as the map expands. To mitigate this, the
Fast Frontier Detector (FFD) [25] expedites the process by
exclusively searching within the most recent laser scans. In
a similar vein, Sun et al. [26] restrict their frontier detection
to specific sub-maps. Another innovative approach presented
in [27] introduces a novel detection method based on the
random sampling of sparse frontier points using Rapidly-
exploring Randomized Trees (RRT) [28]. In recent years,
there has been a growing interest in utilizing reinforcement
learning techniques to identify RoIs [29], [30], [31]. How-
ever, learning-based methods require significant scenarios for
training to ensure good generalizability and currently, it is
still difficult for real-world deployment.

III. METHODOLOGY

This section presents details of the proposed active room
segmentation framework in Fig. 2.

A. Door Extraction Module

For door extraction, we identify two points representing
the location of each door (red points in Fig. 2). As door
extraction in cluttered scenarios is difficult, we propose a
two-stage method to extract doors accurately. We generate
potential door candidates in the first stage and refine them
in the next stage through a visual door detection network.

1) Identifying Door Candidates from Occupancy Map:
We first adopt a ray-casting method inspired by [32] to
identify N potential points P1st = {Pj}Nj=1 that are likely
to be points representing door locations. This method casts
rays that start from the robot’s current location on the
occupancy map and stop when intersecting with obstacles or
reaching the length limit. Candidates can be easily detected
by comparing gaps between lengths of adjacent rays.

2) Refinement with Visual Door Detection: The ray-
casting method usually leads to many false results, as features
from occupancy grid maps are insufficient to distinguish gaps
caused by doors or large obstacles. Therefore, in the second
stage, we leverage a deep neural network (DNN) to predict
doors’ bounding boxes from RGB images to filter out those
false results. It can be represented as:

bi = F (xi; θ) , (1)

where xi denotes a RGB image, F is the trained model with
fixed parameters θ for door detection.

The above door detection is conducted repeatedly from 12
different views across 360 degrees once a robot reaches its
target point during exploration. To align the bounding boxes
with the door candidates, we project the bounding boxes into
the occupancy map to generate points of door locations as
follows:

P2nd =

i=12⋃
i=1

ψ(mi ⊗ yi), (2)

where mi denotes a binarized bounding box and yi is the
corresponding depth map. ⊗ and ψ denote the element-
wise multiplication and the operation for projection to the
occupancy map, respectively. Then, more accurate door
locations can be identified by computing the joint set of
P1st and P2nd. After visual refinement, we extract pairs
of location points according to the distance and surrounding
obstacles. To complete the door representation shown in Fig.
2, waypoints are obtained by choosing two near and free cells
on each side of the door.

B. Within-room Exploration Module

To confine the searching area within the currently explor-
ing room, the Wavefront Frontier Detector (WFD) [25] is
slightly modified to make the iterative searching process



stop at occupied cells or cells outside the current room.
As a result, all free cells searched during this process are
stored in the Map Close List (MCL), forming the explored
area of the current room. For selecting the most informative
frontier, we cluster all detected frontiers into groups by
DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) after the searching process is done and assess
each group based on their size and distance to the robot’s
current position using the cost function given in [33]. The
above process will be repeated until no free cells are left in
the exploring room.

C. Topology Map Construction Module

To aid in exploration, we construct and continuously
update a topology map, as depicted in Figure 2. This map
comprises individual nodes that correspond to distinct rooms
in the scene, each possessing three crucial attributes: i) Room
Status: Take on one of three exclusive states: “Explored”,
“Exploring”, or “Unexplored”. ii) Room Entry Waypoint:
Help the robot locate the entry point of the respective room,
aiding navigation. iii) Room MCL: Indicate the extent of
exploration within a room, offering insights into the explored
area’s coverage. Additionally, adjacent nodes in the topology
map are linked by oppositely directed edges, representing
connecting doors between rooms. Each edge includes a
single waypoint to guide the robot to its destination node.

1) Loop/Escape Check: When the robot detects a door
either after passing through it (referred to as an “escape”)
or when there exists more than one door connecting two
rooms (referred to as a “loop”), the simple connection of
an ’Unexplored’ node to the ’Exploring’ node can yield
incorrect outcomes. To avoid this, it’s crucial to verify for
loops or escapes before updating the map with the help of
MCL information provided by the within-room exploration
module. If the entry points to rooms linked to the ’Exploring’
node cannot be found in the MCL, it means the robot is in
an escape scenario. Conversely, if entry points of other nodes
can be found in the MCL, it indicates a loop situation.

2) Topology Map Update: When a new door becomes
perceptible, the conventional procedure entails the creation
of a novel “Unexplored” node, establishing connections to
the “Exploring” node via two oppositely directed edges. In
this process, the two waypoints associated with the door are
allocated distinctively to the freshly introduced node, the
“Exploring” node, and the corresponding edges as Fig. 2
shows.

However, when the robot confronts an escape situation, a
reversal in waypoint assignment is necessitated. If the robot
also identifies other doors, then these nodes are linked to
the “Unexplored” node to which the robot is escaping, as
opposed to the “Exploring” node. When the robot encounters
a loop scenario, nodes whose room entry points are included
by the MCL of the “Exploring” node undergo removal
from the topology map. Subsequently, the attributes and
edges belonging to these eliminated nodes are seamlessly
integrated into the “Exploring” node, facilitating a coherent
representation of the map’s structure.

D. Overall Active Exploration Policy

Utilizing the meticulously constructed topology map as a
critical resource, the robot adeptly determines its forthcom-
ing objectives, guided by the following set of principles:

• Escape situation: When escaping the current room, the
robot’s next destination is determined by the nearest
waypoint affiliated with the original node.

• Keep exploring: In cases where the current room re-
mains incompletely explored, the robot designates a
”frontier” within the room as its next objective.

• Head for the next room: When the robot ascertains
that the current room has been entirely explored, it
strategically designates the waypoint of the nearest
’Unexplored’ node as its subsequent goal.

• Completion of exploration: The termination of the active
room segmentation process occurs when all nodes have
been categorized as ’Explored’, signifying comprehen-
sive scene exploration.

The distance between the robot and the node is estimated by
calculating a path from the ’Exploring’ node to the ’Unex-
plored’ node, followed by summing the distances between
adjacent waypoints stored within the connecting edges along
the selected path.

IV. EXPERIMENT

A. Implementation Details

For quantitative comparisons, we follow existing methods
[34], [35] that conduct experiments on the real-world Gibson
dataset [8] driven by the Habitat Simulator [36]. The robot in
Habitat is equipped with an odometry sensor and an RGBD
camera whose detection range is configured to 3 meters.
To drive the robot towards goal points, the Fast Marching
Method [37] will first calculate the shortest path towards goal
points, and action is then generated in the same way as [38].
The robot’s movement is governed by three fundamental
actions: i)move forward by 25cm, ii) turn left by 30 degrees,
and iii) turn right by 30 degrees. For map construction, the
SLAM module employs the map builder1 provided by ANS
[39]. For the door extraction module, a transformer-based
door detection network [40] is utilized to predict bounding
boxes of doors from RGB images.

B. Segmentation Performance

1) Test Scenes: To quantify the performance of room
segmentation, ten complex real-world scenes, as shown in
Table. I, are chosen from the Gibson dataset. We manually
annotate each room to generate ground truths for quantitative
comparisons.

2) Baselines: We compare our method with all existing
representative offline and incremental approaches. Among
the offline methods, we include: ROSE2 [12], the Morpho-
logical method [3], Distance method [3], Voronoi method
[3], and the offline DUDE [6]. For incremental methods,
we compare with the incremental DUDE [6] and Gomez

1https://github.com/devendrachaplot/Neural-SLAM/
blob/master/env/utils/map_builder.py
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TABLE I
AVERAGE RECALL AND PRECISION WITH RESPECTIVE STANDARD DEVIATION OF EACH SCENE

Our method
(Incremental)

DUDE[6]
(Incremental)

Gomez et al.[23]
(Incremental)

DUDE[6]
(Offline)

ROSE[12]
(Offline)

Morph[3]
(Offline)

Distance[3]
(Offline)

Voronoi[3]
(Offline)

R(%) 93.6(1.1) 61.2(4.5) 60.1(19.7) 61.5(2.2) 63.7(8.4) 80.6(2.2) 78.9(6.1) 58.1(6.8)Cantwell(N=7) P(%) 96.3(1.6) 85.6(5.3) 62.9(10.2) 84.5(4.9) 66.8(6.6) 80.6(3.2) 79.0(3.3) 71.8(5.6)
R(%) 92.9(6.7) 62.7(9.5) 72.4(28.0) 62.7(11.4) 44.2(3.8) 82.0(6.9) 84.2(0.7) 43.0(3.9)Swromville(N=6) P(%) 94.3(3.7) 80.5(4.3) 66.9(8.5) 80.5(1.7) 60.4(4.1) 73.9(1.2) 67.8(1.0) 73.9(3.1)
R(%) 90.0(4.3) 73.7(2.4) 69.0(13.8) 75.7(3.8) 76.3(5.3) 93.5(0.8) 94.8(1.5) 80.7(4.2)Scioto(N=8) P(%) 95.6(5.4) 81.0(8.4) 37.9(5.5) 81.3(5.3) 75.8(3.8) 82.9(3.8) 83.1(3.2) 81.2(3.0)
R(%) 94.7(2.1) 64.7(0.6) 89.3(8.9) 61.1(2.3) 62.2(9.1) 72.7(0.7) 89.6(0.1) 66.4(8.6)Eastville(N=6) P(%) 81.0(2.5) 76.3(1.7) 62.0(8.5) 77.0(3.8) 67.9(5.4) 76.8(1.6) 64.1(6.1) 77.0(2.5)
R(%) 99.0(0.7) 74.9(5.3) 53.4(27.5) 75.6(1.0) 71.4(9.7) 83.9(0.2) 99.3(0.6) 79.7(5.0)Dunmor(N=6) P(%) 92.2(9.2) 87.4(5.5) 66.9(11.9) 84.2(1.8) 70.4(4.6) 75.6(0.5) 81.3(0.6) 78.7(1.6)
R(%) 97.1(0.8) 89.5(0.6) 88.3(10.2) 92.5(0.9) 89.3(3.8) 94.1(0.6) 99.2(0.4) 93.7(1.0)Colebrook(N=6) P(%) 95.9(3.2) 87.7(2.8) 69.2(9.5) 90.1(0.8) 78.9(2.2) 84.3(2.1) 86.7(0.1) 89.4(1.2)
R(%) 95.9(3.2) 72.3(4.9) 91.8(3.4) 73.9(3.8) 56.7(6.1) 95.8(1.1) 98.6(0.7) 65.6(7.0)Nicut(N=6) P(%) 98.9(0.5) 85.2(2.9) 61.9(9.3) 91.0(0.4) 73.1(3.3) 83.2(0.8) 84.2(2.6) 76.4(4.0)
R(%) 96.7(1.0) 76.9(1.4) 81.8(13.0) 78.6(1.1) 59.1(5.5) 85.5(2.4) 89.5(0.5) 52.6(4.7)Quantico(N=6) P(%) 94.5(3.5) 77.7(3.3) 58.2(12.5) 78.1(3.1) 69.7(4.1) 81.8(1.5) 79.9(0.8) 77.7(3.2)
R(%) 98.5(0.8) 58.4(9.8) 86.8(5.4) 56.4(1.4) 77.1(10.9) 76.9(0.2) 90.6(3.4) 62.6(3.6)Oyens(N=5) P(%) 98.2(1.0) 92.7(2.2) 76.3(12.6) 91.8(0.8) 73.6(4.8) 70.0(0.5) 79.8(3.7) 81.8(1.5)
R(%) 98.9(0.8) 78.3(0.8) 93.8(2.8) 80.7(0.2) 59.5(11.6) 86.5(0.4) 90.7(0.4) 49.8(5.5)Hambleton(N=5) P(%) 98.7(1.0) 90.0(0.6) 75.7(3.4) 87.6(0.3) 70.1(2.5) 70.5(0.4) 76.1(0.5) 78.2(1.6)
R(%) 95.4(4.0) 71.3(10.1) 77.6(20.1) 71.9(11.2) 66.2(14.1) 85.5(7.7) 91.5(6.9) 65.9(15.8)Average P(%) 94.5(6.2) 84.1(6.5) 62.5(14.1) 84.3(5.8) 70.7(6.4) 78.4(5.3) 78.4(7.3) 78.5(5.5)

et al.’s method [23] we reproduced on Habitat [36] due
to source code unavailability. For the remaining methods,
we conduct validation using the source code provided by
their respective papers. Considering that most of these prior
methods necessitate complete maps as inputs, we preserved
the maps generated by our approach and employed them
as inputs for these methods. Additionally, we ensured that
within each room of the scene, we selected a starting point
that guaranteed coverage rates exceeding 99%.

3) Results: We employ precision and recall as the evalua-
tion metrics for room segmentation. Quantitative comparison
results can be found in Table. I, where N represents the
number of rooms in each scene and the best and second-
best are marked in bold and blue respectively. Our method
significantly outperforms other approaches by achieving bet-
ter performance in six scenes out of ten in both recall
and precision. We achieved 95.4% in recall and 94.5%
in precision on average, leading existing approaches by
10.2% to 32% in precision and 3.9% to 29.5% in recall.
Additionally, our method demonstrated a minor difference of
only 0.9% between precision and recall. In contrast, ROSE2

[12] exhibited a 4.5% difference, and the Morphological-
based method [3] had a 7.1% difference. This observation
highlights that our method strikes a superior balance between
over-segmentation and under-segmentation, in accordance
with findings in [3]. This result can also be observed in
the visualization result demonstrated in Fig. 3. Among ten
selected scenes, “Colebrook” is the only scene devoid of
furniture. Thus, by comparing the results obtained from
“Colebrook” with those from other scenes, we can clearly
observe the performance degradation experienced by previ-
ous methods in cluttered environments. It is shown in Table.
I, precision and recall of previous methods drop from nearly
90% to less than 80% in cluttered settings, while our method
exhibits stable performance across both non-cluttered and
cluttered environments.

C. Exploration Performance

1) Test Scenes: To quantify the performance of explo-
ration, following ANS [29], we evaluate all methods on 14
scenes from the Gibson validation set.

2) Baselines: To validate the exploration efficiency of our
active room segmentation framework, we compare it against
existing indoor exploration methods, including the original
WFD [25], FFD [25], Gomez et al.’s method [23], and the
learning-based ANS [29].

3) Results: We run experiments on a computer with
Intel® CoreTM i9-12900K CPU for each method with 50
different starting points in each scene. The averaged results
are presented in Table. II. It is shown that Gomez et al.’s
method [23] demonstrates the worst performance across all
test scenes and WFD yields the best and the second-best per-
formance in coverage area and ratio, respectively. Learning-
based ANS shows superior efficiency compared to non-
learning methods thanks to its short and consistent running
time. Our method strikes a balance between the exploration
completeness and efficiency, costing 100 seconds less com-
pared to the original WFD whilst achieving a competitive
coverage area of 31.33 m2. It underscores the efficiency
of the within-room exploration module and the constructed
topology map in guiding the exploration process. The within-
room exploration module enhances the efficiency of the fron-
tier searching process by confining the searching area within
one single room rather than the entire map. For the topology
map, by breaking down the robot’s trajectories into shorter
segments with multiple waypoints, the framework reduces
the likelihood of the robot becoming trapped in complex
scenes, a common issue when navigating to distant goals
in cluttered environments, and thus improves exploration
efficiency and overall system robustness. Another interesting
fact is that ANS achieves the highest coverage ratio among
all comparing methods, but its corresponding coverage area
is not the highest, suggesting that the exploration perfor-
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Fig. 3: Qualitative comparisons between our method and other approaches for active room semantic segmentation.

Fig. 4: The mean coverage-time curve and confidence interval of each exploration method on 4 test scenes.
TABLE II

EXPLORATION PERFORMANCE COMPARISON.

Coverage ratio.(%) Coverage area.(m2) Time(s)
Gomez 69.2 22.10 312
WFD 94.6 31.83 463
FFD 93.5 31.29 315
ANS 94.9 31.30 229
Ours 93.7 31.33 363

mance of ANS degrades as the size of the scenes grows.
On the other hand, our method particularly yields superior
performance for exploring large scenes with multiple rooms,
as shown in Fig. 4, where results of ”Cantwell,” ”Eastville,”
”Swormville,” and ”Scioto” are selected for visualization.
On these four scenes, we achieved average coverage rates
of 96.5%, 99.5%, 98.6%, and 88.1% respectively, compared
to 84.6%, 87.2%, 92.6%, and 91.4% for ANS [29], 94.2%,
98.2%, 97.8%, and 95.5% for WFD [25], and 84.2%, 95.2%,
97.1%, and 90.0% for FFD [25]. These results conclusively
illustrate that our exploration strategy not only preserves the
original WFD’s performance across almost all test scenes but
also exhibits markedly enhanced efficiency, demonstrating
the possibility of exploiting room segmentation results to

facilitate the exploration process.

V. CONCLUSION

In this study, we have proposed an active room seg-
mentation framework that enhances the robustness and au-
tonomy of room segmentation by leveraging visual input
and topological representation. Experimental results on the
Gibson dataset have shown substantial improvement over
previous methods in room segmentation and also demonstrate
comparable performance in active exploration within clut-
tered indoor environments. However, this framework still has
several limitations. The proposed topological representation
is static and its quality highly depends on the door detection
algorithm. Besides, choosing doors as the cue for room
segmentation also makes the framework not generalizable to
scenes where no obvious geometric boundaries exist between
different functional areas. We acknowledge these limitations
and are planning to solve all these issues in future research.
Despite all these limitations, this framework represents a
significant step forward in constructing and leveraging topo-
logical representations for room segmentation.
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