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Abstract— The object navigation task requires robots to
understand the semantic regularities in their environments.
However, existing modular object navigation frameworks rely
on instance segmentation models trained at fixed camera
height viewpoints, limiting generalization performance and
increasing labeling costs for new height viewpoints. To tackle
this issue, we propose a semi-supervised method that trans-
fers knowledge from a source height to a target height,
minimizing the need for additional labels. Our approach
introduces three key innovations: i) a projection policy to
enhance the teacher model’s detection capabilities at the tar-
get height, ii) a dynamic weight mechanism that emphasizes
high-confidence pseudo-labels to reduce overfitting, and iii)
a prototype contrast transferring method to transfer knowl-
edge effectively. Experiments on the Habitat-Matterport 3D
(HM3D) dataset show our method outperforms state-of-the-
art semi-supervised techniques, improving both segmentation
accuracy and navigation performance. The code is available
at: https://github.com/FreeformRobotics/TransferKnowledge.

I. INTRODUCTION

Embodied visual navigation enables robots to navigate
the physical world using visual inputs [1]. A key task
in this domain is object navigation, where an agent must
locate a specific object category from a random starting
point in an unfamiliar indoor environment [2]. In modular
object navigation methods, instance segmentation is crucial
for extracting segmentation masks and labels to generate
semantic maps.

Previous works [3] [4] show that recognition errors sig-
nificantly contribute to navigation failures, particularly when
visual detection modules are deployed on robots with differ-
ent height configurations. As illustrated in Fig. 1, instance
segmentation models trained at fixed heights struggle with
varying viewpoints, leading to reduced navigation success
rates when applied to new height configurations. However,
supervised learning requires costly and time-consuming data
collection and annotation for different camera heights. To
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(a) Working at source height (0.88 m, success)

(b) Working at target height (0.28 m, failure)
Fig. 1: The source model operates at different heights using
the Peanut method [5]. The target object (Chair) is high-
lighted in red boxes, and the navigation stop point is blue. At
the target height, the agent mistakenly identifies the sofa as a
chair due to the change in viewpoint, resulting to navigation
failure.

address this, we adopt a semi-supervised approach, leverag-
ing existing labeled data and unlabeled data from different
heights to enable efficient knowledge transfer.

In this work, we tackle the poor generalization perfor-
mance of instance segmentation models in object naviga-
tion caused by viewpoint differences across varying camera
heights. We propose a semi-supervised method that uses la-
beled data only at the source height and unlabeled data at the
target height. Our approach employs a teacher-student train-
ing paradigm, where the teacher model generates pseudo-
labels for unlabeled target height data, and the student model
learns from these pseudo-labels to transfer knowledge across
height domains. We introduce three key innovations: i) a
projection policy that maps RGB-D images from the source
to the target height, enabling the teacher model to gain
initial recognition at the target height; ii) a dynamic weight
mechanism that prioritizes high-confidence pseudo-labels to
reduce noise and overfitting; and iii) a prototype contrast
transferring method that uses a prototype memory bank [6]
[7] [8]. The memory bank stores and updates prototype
centers to facilitate knowledge transfer.

To evaluate our method, we conduct experiments on the
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Fig. 2: Framework of our semi-supervised instance segmentation for knowledge transferring. In the pre-training stage,
we project RGB-D sensor inputs and ground truth instance labels from source height to target height viewpoint through
transformation matrix Tp

s . The projected Dp
s and raw Ds data are used to train the teacher model. In the knowledge transfer

stage, the teacher model generates the feature qtu of Du image and set the pseudo-labels. The student model produces the
feature qu and qps of Du and Dp

s images, respectively. After annotating qu and qps with the corresponding pseudo-labels
and projection ground truth labels, a dynamic weight mechanism allocates weights for each feature during the prototypical
contrast transfer process.

HM3D household indoor scenes benchmark [9]. Using an
RGB-D dataset with varying camera heights, we demonstrate
that our method outperforms state-of-the-art semi-supervised
approaches in transferring knowledge to target height view-
points and significantly improves the navigation success rate
of modular object navigation methods at the target height.

Our contributions are summarized as follows:
• We highlight a key limitation of current modular nav-

igation methods: their effectiveness is restricted to ho-
mogeneous platforms. Variations in camera heights on
heterogeneous robots degrade recognition accuracy and
decrease navigation success rate and efficiency.

• We propose a novel semi-supervised method that uti-
lizes a teacher-student paradigm, featuring a projection
policy, a dynamic weight mechanism, and a proto-
type contrast transferring method address the viewpoint
knowledge transferring problem.

• Our approach outperforms existing semi-supervised
methods in mask-AP and navigation success rates.

• We collected and released an instance segmentation
dataset for HM3D household scenes, including RGB-
D images with instance masks and semantic maps
collected at different camera heights.

II. RELATED WORK

A. Object Goal Navigation

Object navigation is a challenging area in embodied AI,
primarily divided into end-to-end and modular approaches
[10]. End-to-end methods use a single neural network to
encode visual and location information, generating low-level
actions without explicit 2D maps. This enables navigation
in complex multi-floor environments but relies on large
datasets [11] and struggles with generalization. Recently,

ResNet [11] [12], ViT [13] [14], and CLIP-based [15] visual
encoders have been integrated into navigation networks with
some methods employing graph neural networks (GNNs) to
improve success rate and search efficiency [16] [17].

In contrast, modular methods segment the system into spe-
cialized modules, promoting adaptability to diverse datasets
and real-world conditions. This structure enhances general-
ization during sim-to-real transitions compared to end-to-end
methods. However, both explicit [18] [19] [5] and implicit
prediction policies [20] [21] [4], as well as those using
large language models (LLMs) as prediction policies [22]
[23], rely on visual recognition modules that are sensitive to
changes in height and viewpoint. Therefore, modular meth-
ods often face recognition errors due to varying viewpoints.
Our proposed semi-supervised method aims to transfer the
performance of the modular approach to robots of different
heights in a low-cost manner.

B. Semi-supervised Instance Segmentation

Instance segmentation combines object detection and se-
mantic segmentation, utilizing single-stage or two-stage de-
tectors. Single-stage methods [24] [25] [26] [27] offer faster
processing but lower precision due to the absence of a fine
processing step. For two-stage methods, Mask R-CNN [28],
a typical work, added a mask head into Faster R-CNN
[29] to segment objects. Recent advancements include the
vision transformer (ViT) [30], which has shown effectiveness
in image classification, and [31] [32] demonstrate strong
performance in instance segmentation.

Semi-supervised learning techniques leverage both labeled
and unlabeled data, commonly using a teacher-student frame-
work for instance segmentation [33] [34] [35] [36] [37]. In
this framework, a teacher model annotates unlabeled images,



enabling a student model to learn from both labeled and
pseudo-labeled data. Guided [33] applies the framework to
vision transformer architectures and uses bipartite matching
for pairing student proposals with pseudo instances, while
PAIS [37] uses mask head scores as loss weights for taking
advantage of object masks with different qualities. However,
these methods frequently neglect the challenges of height
viewpoint changes in unlabeled data, leading to inadequate
knowledge transfer. Our work aims to bridge this gap through
a cost-effective semi-supervised approach, enhancing robot
performance at the target height.

C. Contrastive Learning

Contrastive learning [38] [39] [8] is a self-supervised
strategy that maximizes similarity between positive samples
while minimizing it for negative ones. This approach is
commonly employed to enhance the differentiation between
various feature categories [40] [7] [41]. However, the appli-
cation in instance segmentation models remains limited. Our
method integrates the principles of contrastive learning with
soft labels to facilitate more effective knowledge transfer.

III. METHOD

Formally, let Ds = {xs
n, d

s
n, y

s
n}Nn=1 as a labeled set with

N samples collected for training an instance segmentation
model at source height where xn, dn, and yn denote an im-
age, depth map, and ground truth instance label, respectively,
and Du = {xu

m}Mm=1 as an unlabeled set with M samples at
target height. We aim to learn a model that can accurately
perform instance segmentation at the target height.

Our semi-supervised instance segmentation framework in-
cludes i) a teacher pre-training stage and ii) a teacher-to-
student knowledge transfer stage, as shown in Fig. 2. In the
first stage, we project data from the source height to the
target height to mitigate significant viewpoint differences
when training the teacher model. In the second stage, we
use the dynamic weight mechanism to assign weights for
pseudo-labels, and the weights will mitigate the impact of
wrong pseudo-labels on the student model during prototyp-
ical contrast transferring progress.

A. Teacher Per-training Stage

To mitigate the significant viewpoint difference, we first
propose projecting Ds from the source height to the target
height, assuming the camera remains consistent at both
heights. Using the known intrinsic parameters K of the
camera and depth images, we map annotated image pixels
into the source height camera coordinate system as 3D point
Ps. The projection policy is defined as follows:

Pp = Tp
sP

s (1)
where Pp represents the 3D projection point with its

annotation in the target height camera coordinate system,
and Tp

s denotes the relative pose between the two coordinate
systems. We then map Pp to the target height viewpoint
image using K, resulting in Dp

s , the data after projection.
An example of this projection is shown in Fig. 2.

Then, we train the teacher model using both Ds and Dp
s

following the training loss of Mask R-CNN [28].

B. Knowledge Transfer Stage
In this stage, we adopt the teacher-student framework for

semi-supervised learning. The student model initializes with
parameters from the pre-trained teacher model. Initially, the
teacher model remains fixed but is gradually unfrozen during
training, with its parameters updated via an exponential
moving average (EMA) of the student model. During this
stage, we only utilize the datasets Dp

s and Du. In each
iteration, the teacher model generates and refines pseudo-
labels for Du dataset, then the dynamic weight mechanism is
applied for prototype memory bank updates and prototypical
contrast transferring.

The knowledge transfer process centers on a prototype
memory bank, which stores prototype centers for C cate-
gories. These prototype centers dynamically shift to facilitate
knowledge transfer from the source to the target height
viewpoint. Prior to semi-supervised training, we initialize
the prototype memory bank using Dp

s dataset to ensure the
prototype centers align closer to the target height domain.
The class prototype center Qc is initialized as:

Qc =

∑B
b=1 1[yb = c]qb∑B
b=1 1[yb = c]

(2)

where qb is the b-th extracted proposal feature vector, c
is the category index, and B is the total number of qb, and
1[yb = c] is an indicator function checking if the label yb of
qb matches c.

1) Dynamic Weight Mechanism: During semi-supervised
training, many semi-supervised instance segmentation meth-
ods use a threshold to filter the teacher model’s outputs,
which may retain incorrect labels. Therefore, we first re-
fine the pseudo-labels generated by the teacher model for
unlabeled data in the following two steps:

• Filter step: The teacher model selects candidate in-
stances with maximum class probability exceeding 0.6
and the predicted mask pixel size greater than 200.
Meanwhile, the ratio of the mask pixel size to the
bounding box size, as well as the aspect ratio of the
bounding box, must be within a reasonable range.

• Merging step: Overlapping candidate instances are
fused based on mask-IOU and box-IOU. The fused
instances are defined as the k-th instance pseudo-label
yuMk

= (yuMscore
k

, yu
Mbox

k

, yu
Mmask

k

) in the image, where
yuMscore

k
contains normalized confidence scores of all

fused instances, yu
Mmask

k

is the binary mask after fusion,
and yu

Mbox
k

is the bounding box of yu
Mmask

k

.
To further mitigate the impact of erroneous pseudo-labels,

we introduce weight allocation based on confidence scores.
The minimum value of yuMscore

k
is mapped to a range

of [wmin, 1] to determine the pseudo-label weight Wu
Mk

,
which is also applied in the prototypical contrast transferring
method. The value wmin increases over training epochs,
while ground truth label weights are fixed at 1. During train-
ing, these weights are applied to their respective proposal



features. The prototype memory bank is updated using the
following equation:

Qne
c = αQne−1

c + (1− α)Qne

c(mini batch) (3)

where ne represents the current iteration, Qne
c is the

current prototype center for class c and α is a hyperparameter
representing the constant update rate. Qne

c(mini batch) denotes
the current mini-batch prototype centers, calculated using
equation (2), which uses both labeled and unlabeled data
features with weights greater than 0.85.

2) Prototypical Contrast Transferring: For Dp
s dataset,

we adopt the InfoNCE loss [42] to enhance the distinc-
tiveness of instance features across different classes. The
InfoNCE loss LinfoNCE is represented as:

LinfoNCE = − 1

Ns

Ns∑
ns

log

[
e⟨q̂ns ,Qns ⟩/τ1∑C
c=1 e

⟨q̂ns ,Qc⟩/τ1

]
(4)

where Ns represents the total number of prediction propos-
als q̂ns

of Dp
s in the mini-batch. Qns

is the corresponding
prototype center of the proposal feature q̂ns

. ⟨·, ·⟩ denotes
cosine similarity between features, with the temperature
coefficient set to τ1 = 0.5.

For Du dataset, we compute the similarity between fea-
tures and each prototype center, forming the similarity vector
Fmu

= [f1
mu

, . . . , fC
mu

] of the mu-th prediction proposal
feature q̂mu

, where C is the number of classes, f c
mu

is
defined as follows, with τ2 the temperature coefficient set
to 0.8:

f c
mu

=
e⟨q̂mu ,Qc⟩/τ2∑C
c=1 e

⟨q̂mu ,Qc⟩/τ2
(5)

Furthermore, we construct a similarity matrix S using the
prototype memory bank, where each element is defined as
Sij = ⟨Qi, Qj⟩, representing the cosine similarity between
the prototype center of classes i and j. Then, we calculate the
soft labels for both feature cross-entropy loss and classifica-
tion cross-entropy loss using S. The feature soft pseudo-label
F̃mu and class soft pseudo-label ỹmu

of q̂mu are defined as:{
F̃mu

= ϵ1ymu
+ (1− ϵ1)ymu

S

ỹmu
= ϵ2ymu

+ (1− ϵ2)ymu
S

(6)

where ymu
is the one-hot label for the class with the

highest confidence score in yuMscore
k

. The values ϵ1 and ϵ2
are hyperparameters. The weights Wu

Mk
assigned to q̂mu

makes the model prioritize the more reliable pseudo-labels.
The feature cross-entropy loss Lcontra and the classification
loss Lu

ce are given as:

Lcontra = − 1

Mu

Mu∑
mu

Wu
mu

F̃mu
logFmu

(7)

Lu
ce = − 1

Mu

Mu∑
mu

Wu
mu

ỹmu
log ŷmu

(8)

where Mu represents the number of proposals for unla-
beled images in the mini-batch, Wu

mu
is the corresponding

Fig. 3: The changing trend of AP and navigation success rate
of source model (0.88 m) at different viewpoints.

weight of mu-th proposal, and ŷmu denotes the prediction
classification probability.

3) Loss: In the section III-B.2, the supervised loss Ls for
dataset Dp

s and the unsupervised loss Lu for dataset Du are
improved based on the training loss of Mask R-CNN [28]
and defined as:

Ls = Ls
ce + λLinfoNCE + Lbox + Lmask (9)

Lu = Lu
ce + λLcontra + Lbox + Lmask (10)

where Ls
ce is the classification cross-entropy loss, Lbox is

the bounding-box loss and Lmask is the average binary cross-
entropy loss, as defined in [28]. The λ is the hyperparameter.

Our optimization objective is to minimize the loss defined
as:

L = λsLs + λuLu (11)

where λs and λu are determined by the ratios of labeled
and unlabeled batch sizes to the total batch size.

IV. EXPERIMENTS

In this section, we compare our method with two previ-
ous state-of-the-art semi-supervised baselines [37] [33] and
evaluate the performance of instance segmentation models
trained by these semi-supervised methods on different mod-
ular object navigation methods [5] [20] [21].

A. Experimental Setup

1) Dataset: We conduct experiments on a dataset with
instance-level segmentation for 21 categories of common
household objects, manually collected from the HM3D
dataset [9] which is one of the most widely used datasets,
and covering as many objects as possible. At each height,
we gather 5,548 RGB-D images from 80 training scenes and
991 from 20 validation scenes, spanning heights from 0.28
m to 1.18 m, with increments of 0.1 m. The image size is
480×640. Images captured at 0.88 m serve as labeled source
data, while images at target heights are set as unlabeled.

2) Implementation Details: We implement our method
using the Detectron2 [43] on a single NVIDIA RTX 3080
GPU with 10 GB. Experiments are tested on Mask R-CNN
[28] with R101-FPN backbone. We also evaluate our model
on various object navigation modular frameworks [5] [20]
[21] using Habitat platform [44]. We adopt a Stochastic
Gradient Descent (SGD) optimizer with a base learning rate
of 0.0005, a weight decay of 0.05, and early stopping. The
learning rate is multiplied by 0.95 per epoch.



Fig. 4: Visualization results of Peanut navigation method [5] in a scene from HM3D (val). The top row shows the agent’s
RGB observations with various detection outcomes for the goal object (toilet). The bottom row presents the corresponding
semantic maps at the end of episode, indicating navigation end positions (red arrow) and target object positions, along with
the number of steps taken for each instance segmentation model training method.

3) Evaluation Metrics: To assess instance segmentation
performance, we use the mask-AP metric [28]. For the
object navigation task, we follow the evaluation method [2],
employing Success Rate (SR) and Success weighted by Path
Length (SPL).

B. Analysis of The Influence of Height Viewpoint Variation

We evaluate the source height model (0.88 m) from various
viewpoints. As shown in Fig. 3, the average precision (AP)
reaches its maximum near the source height and gradually
decreases as the height moves away from it. Similarly, the
navigation success rates of SemExp [20], Peanut [5], and
Frontier [21] exhibit this trend. Notably, at lower heights,
changes in viewpoint significantly impact the navigation
success rate.

C. Main Results

1) Semi-supervised Instance Segmentation Results: In Ta-
ble I, we present results from a dataset collected from HM3D
scenes, comparing the knowledge transfer performance of
two semi-supervised approaches: PAIS [37] and Guided [33].
We also include a lower bound model trained solely on the
Ds dataset and an upper bound model trained on both Ds

and D′
u (which consists of Du with ground truth labels).

The results indicate that our method surpasses the other
semi-supervised techniques across various transfer heights.
For example, at the target height of 0.68 m, our method
achieves an impressive improvement in AP50, rising from
38.66 to 42.07 (+3.41), significantly outperforming the PAIS
method which scored 40.97 and the Guided method with
40.89.

A closer analysis of performance across different target
heights reveals that as the transfer height increases, the
improvement in model accuracy becomes more pronounced.
Notably, at the 0.28 m target height, our method records

21.10 points AP and 34.15 points AP50, indicating a sub-
stantial capability for knowledge transfer.

2) The Results of Transfer Model on Object Navigation
Method: Table II presents the results of various modular ob-
ject navigation methods [20] [5] [21] across different transfer
target heights (0.28 m, 0.48 m, and 0.68 m). Additionally,
we apply ground-truth object segmentation (GT) in these
navigation methods.

The data demonstrate that our approach enhances both
the navigation success rate and efficiency across all three
object navigation methods and three specified target heights.
For instance, within the Peanut [5], our method achieved
an increase in the success rate from 0.514 to 0.544 and
improved the SPL from 0.261 to 0.265 at the height of
0.68 m, outperforming both the lower bound and other semi-
supervised techniques.

Similarly, in the Frontier [21] at a height of 0.68 m, our
method maintained a competitive success rate of 0.434 and
an SPL of 0.204, demonstrating its effectiveness in improv-
ing navigation outcomes through the transfer of knowledge
from source to target heights. Notably, as the distance of
transferring height increases, the success rate of our method
shows significant improvement, with a maximum enhance-
ment of 0.128 for the SemExp [20], rising from 0.234 to
0.362.

These results indicate the potential of our semi-supervised
approach in enhancing object navigation performance across
varying target heights. The navigation visualization results
are shown in Fig. 4.

D. Ablation Study

In this section, we conduct ablation experiments on the
model that transfers knowledge from the height of 0.88 m
to 0.28 m. To evaluate the significance and functionality
of the different sub-methods, we consider the following
configurations:



TABLE I: Results of Semi-supervised model, the source height is 0.88 m. D′
u denotes the labeled version of Du.

Method Dataset
Transfer Target Height

0.28m 0.48m 0.68m
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Mask-RCNN [28], lower bound Ds 15.34 25.18 15.97 20.09 32.42 21.46 24.74 38.66 26.03
Mask-RCNN [28], upper bound Ds

⋃
D′

u 23.57 37.54 24.30 25.10 39.75 26.23 26.26 41.62 27.38
PAIS [37] Ds

⋃
Du 16.75 28.07 17.68 21.29 35.53 22.19 25.71 40.97 27.11

Guided [33] Ds
⋃

Du 16.57 27.79 17.04 21.35 35.08 22.93 25.83 40.89 27.52
Our Method Ds

⋃
Du 21.10 34.15 22.02 23.53 38.34 24.57 26.66 42.07 27.99

TABLE II: Results on object navigation.

Navigation Method
Target Height

0.28m 0.48m 0.68m
SR SPL SR SPL SR SPL

SemExp [20]

GT 0.368 0.187 0.392 0.197 0.350 0.177
lower bound 0.234 0.119 0.252 0.123 0.264 0.133
PAIS [37] 0.228 0.110 0.252 0.125 0.280 0.135
Guided [33] 0.238 0.111 0.268 0.137 0.264 0.132
Our Method 0.362 0.162 0.300 0.145 0.328 0.140

Peanut [5]

GT 0.704 0.341 0.676 0.351 0.710 0.374
lower bound 0.454 0.204 0.484 0.237 0.514 0.261
PAIS [37] 0.442 0.198 0.496 0.242 0.512 0.264
Guided [33] 0.448 0.202 0.484 0.236 0.490 0.251
Our Method 0.552 0.244 0.540 0.257 0.544 0.265

Frontier [21]

GT 0.570 0.294 0.568 0.297 0.566 0.303
lower bound 0.350 0.180 0.380 0.187 0.398 0.200
PAIS [37] 0.312 0.155 0.312 0.164 0.370 0.199
Guided [33] 0.324 0.169 0.336 0.177 0.376 0.198
Our Method 0.392 0.196 0.428 0.195 0.434 0.204

TABLE III: Results of Ablation Study.

Method Success Rate
Projection Weight Prototype Soft AP SemExp Peanut Frontier

Allocation Label

15.34 0.234 0.454 0.350
✓ 19.60 0.272 0.508 0.350
✓ ✓ 20.45 0.296 0.516 0.390
✓ ✓ ✓ 21.21 0.268 0.510 0.360
✓ ✓ ✓ ✓ 21.10 0.362 0.552 0.392

• Projection only: The model is trained solely using the
labeled images Ds and Dp

s .
• Projection + Weight Allocation: This configuration

involves pre-training the model using the labeled images
Ds and Dp

s , and only using weight allocation in the
knowledge transfer stage.

• Projection + Weight Allocation + Prototype: Add
the prototype memory bank based on the Projection +
Weight Allocation item.

• Projection + Weight Allocation + Prototype + Soft
Label: This represents our complete methodology, as
described in Section III.

The significance and functionality of each sub-method are
summarized in Table III. Results indicate that the projection
method initially transfers knowledge from the source height
to the target height and improves object navigation suc-
cess rates. Incorporating weight allocation further enhances
recognition accuracy and overall success. The model needs
to utilize the projection method to transfer the knowledge,

Fig. 5: The analysis of precision and recall rates of three
different confidence score threshold (0.7, 0.9, 0.97). We
compare the models including Lower bound, PAIS [37],
Guided [33], w.o. Soft (Projection + Weight Allocation +
Prototype) and our method model.

while weight allocation helps mitigate the effects of incorrect
pseudo-labels.

Ablation studies on the prototype memory bank and soft
label reveal that using the memory bank alone only slightly
improves Average Precision (AP). However, its combination
with soft labels is essential for significantly enhancing nav-
igation success rates.

Notably, the problem of navigation success rate tends to
decrease as mask-AP increases, a trend also observed in
the PAIS [37] and Guided [33] semi-supervised methods, as
shown in Table I and II. We analyze the precision and recall
rates across different confidence thresholds of 0.7, 0.9, and
0.97. In Fig. 5, the results reveal that PAIS, Guided, and our
method without soft labels (Projection + Weight Allocation +
Prototype) effectively improve recall rates, however, the pres-
ence of incorrect pseudo-labels reduces precision. In contrast,
our method adjusts model confidence to an optimal range
for object navigation, significantly enhancing the navigation
success rate.

V. CONCLUSIONS

In this work, we quantitatively demonstrate that changes
in camera height viewpoints impair recognition accuracy and
reduce navigation success rates and efficiency. To address
this, we propose a semi-supervised method that enables
cost-effective knowledge transfer for instance segmentation
models from a source height to a target height. Through
extensive experiments on HM3D scenes, we show that our
method significantly improves the performance of instance
segmentation models at the target height and enhances the
success rate and efficiency of modular object navigation
frameworks. Ablation studies further validate the importance
and functionality of each sub-method, highlighting the need
for vision modules with an appropriate prediction confidence
range in modular object navigation frameworks.
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