
Locomotion and Self-reconfiguration
Autonomy for Spherical Freeform
Modular Robots

Journal Title
XX(X):1–23
©The Author(s) 2025
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Yuxiao Tu1,2, Guanqi Liang1,2, Di Wu1,2, Xinzhuo Li1,2, and Tin Lun Lam1,2

Abstract
Modular robotic systems are multi-robot systems comprising numerous repeated modules and can transform into
different configurations. Matching system configurations to a library enables efficient automation of modular robotic
systems that have high degrees of freedom and strict motion constraints. Many previous approaches have automated
cube-oriented modular robots by mapping the predefined sequence of gaits in the library to the module controllers.
However, they can hardly drive robust three-dimensional self-reconfigurations without external sensors due to limited
gait control accuracy and docking misalignment tolerance. Freeform modular robots are a type of modular robot with
no fixed-point connectors, typically featuring continuous spherical joint connections between modules. They exhibit
higher docking misalignment tolerance and better environmental adaptability. However, existing library-driven systems
are inapplicable to freeform robots due to their redundant degrees of freedom and incompatible self-reconfiguration
approaches. This article first proposes an autonomy framework for the locomotion and self-reconfiguration of spherical
freeform modular robots. We model module connections as either spherical joints or parallel robots, employing
a unified approach for skeletal kinematics. The system achieves the target configuration through iterative inverse
kinematics and command translation to module controllers. A library with interfaces for configuration design is proposed,
defining behaviors and feasible kinematic transitions between configurations. The executable behavior can be efficiently
retrieved from the library by combining the proposed configuration matching and mapping algorithm. The system is
validated on the FreeSN system with up to 18 modules containing 48 joint motors, providing a foundation for high-level
planning and control research in freeform modular robots.

Keywords
Self-reconfigurable, cellular and modular robots, configuration recognition, skeletal kinematics, graph isomorphism.

1 Introduction

Modular self-reconfigurable robot (MSRR) systems (Liang
et al. 2024; S. Sankhar Reddy Chennareddy 2017; Yim et al.
2007; Seo et al. 2019; Brunete et al. 2017; Hayat 2020;
Bray and Groß 2023; Dokuyucu and Özmen 2023) typically
consist of numerous repeated modules that feature uniform
docking interfaces. These robot modules can connect and
rearrange themselves into various configurations based on
environmental conditions and task requirements. In the
past decades, numerous modular robotics systems (Belke
et al. 2023; Spröwitz et al. 2010; Romanishin et al.
2015; Davey et al. 2012; Tosun et al. 2016; Neubert
et al. 2014; Swissler and Rubenstein 2020; Garcia et al.
2011; Gregg et al. 2024; Veenstra et al. 2025) with
different types of connectors have been proposed, and
they have demonstrated the rich adaptability and versatility
in several aspects. However, most previous MSRRs were
designed with a fixed number of fixed-point connectors,
which requires accurate alignment between connectors
during docking. The accumulated perception and control
errors of chain configurations (Swissler and Rubenstein
2020) and the docking accuracy requirements make robust
self-reconfiguration of MSRRs in three-dimensional (3D)
difficult.

The freeform modular self-reconfigurable robot (Liang
et al. 2024; S. Sankhar Reddy Chennareddy 2017) is a

type of MSRR with no fixed-point connector. Different
from traditional MSRRs with limited connection points
and docking poses, a freeform MSRR module can connect
to another module and move freely on its surface, so
freeform MSRRs generally have better adaptability and
high docking misalignment tolerance (Brunete et al. 2017;
Eckenstein and Yim 2014). In our previous works, we
proposed several freeform modular robots (Liang et al.
2020; Zhao et al. 2024; Tu et al. 2022; Liang et al.
2023) with magnetic connectors and demonstrated (Swissler
and Rubenstein 2022; Luo and Lam 2022; Malley et al.
2020) that the freeform modular robots can better adapt
to unstructured environments and reconfigure in 3D. The
freeform connection between modules can be modeled as
a spherical joint or rolling contact joint with no physical
zero point, which enables flexible connection but also poses
challenges in motion planning and control.

1School of Science and Engineering, The Chinese University of Hong
Kong, Shenzhen, Guangdong, China.
2Shenzhen Institute of Artificial Intelligence and Robotics for Society
(AIRS), Shenzhen, Guangdong, China.

Corresponding author:
Tin Lun Lam, School of Science and Engineering, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China.
Email: tllam@cuhk.edu.cn

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

In a modular robotic system, each robot module has at
least one degree of freedom, and the system usually has more
than ten modules or even more. The high degree of freedom
makes the motion planning and control of modular robotic
systems difficult. The number of possible configurations of
the system also increases rapidly as the number of modules
increases, and it is important to find valuable configurations
among them efficiently. An approach to automate a modular
robotic system is library-driven. Rather than trying to create
configurations and perform motion planning from scratch,
the user designs a library of valuable configurations and
behaviors and the designs can be retrieved from the library
based on system configuration and task requirements. The
modular robotic system can leverage predefined gaits from
the library to coordinate module controllers, enabling the
execution of locomotion behaviors and complex tasks. Some
systems (Jing et al. 2018; Daudelin et al. 2018) demonstrated
highly automated behaviors with good performance based on
the library for cube-oriented modular robots, but the self-
reconfiguration behaviors rely on external sensors due to
limited alignment tolerance.

Configuration matching and mapping is the process of
matching a new modular robotic configuration to an existing
one in the library and finding the module mapping between
them. The configuration of most modular robot systems can
be represented as matrices or graphs. Many configuration
matching and mapping algorithms have been proposed for
specific types of modular robotic systems based on spectral
decomposition (Park et al. 2008), linear algebra (Shiu et al.
2010), and heuristic graph search (Park et al. 2008; Zhu
et al. 2012; Liu and Yim 2020). However, the previous
algorithms are mainly designed for modular robots with
fixed-point connectors, and they do not efficiently consider
the optimality among the feasible isomorphisms during
mapping.

This article introduces a novel locomotion and self-
reconfiguration framework for spherical freeform modular
robots. The framework is validated on the FreeSN (Tu
et al. 2022; Tu and Lam 2023) robotic system, which
autonomously performs locomotion and self-reconfiguration
without external sensors. The system configuration of
spherical freeform modular robots is generally redundant and
can be simplified as skeletal configuration by considering
the symmetry of module shape, which can be represented
as a directed graph with module ID and connection position
vectors as edge attributes. The module spherical joint of
different freeform modular robots or a group of modules
can be modeled as a kinematic node. The kinematic
nodes of a robotic system can form a kinematic tree. The
forward kinematics and inverse kinematics of the skeletal
configuration are derived based on the kinematic tree. Based
on the skeletal kinematics, we present a locomotion and
self-reconfiguration control strategy by moving to a set of
predefined configurations in order. Then, an isomorphism
tree searching algorithm is proposed to efficiently search the
best module mapping between two configurations with the
estimated sub-configuration distance as heuristic. Given a
set of predefined skeletal configurations and a new skeletal
configuration, the configuration that is isomorphic and
most similar to the new configuration, along with a sub-
optimal module mapping between them, can be efficiently

searched. A behavior can be a configuration sequence or
mapping between system and module motion parameters
to produce specific locomotion or self-reconfiguration.
We design a tool to design and record kinematic trees,
configurations, and behaviors. A library can be automatically
generated to store feasible kinematic transitions between
the configurations and their labeled behaviors. For a newly
constructed robotic system targeting reconfiguring to a
configuration or executing a behavior, the configuration
sequence with identical module mapping can be retrieved
from the library by combining configuration matching,
configuration mapping, and shortest path searching, which
can be executed with the locomotion and self-reconfiguration
control strategy. We demonstrate autonomous locomotion
and self-reconfiguration experiments in 3D with at most 18
modules containing 48 motors for joint motion control. The
main contributions of the article are the following:

• A skeletal kinematics modeling for spherical freeform
modular robots.

• A configuration mapping and matching algorithm for
freeform modular robots that considers the optimality
among possible isomorphisms.

• A locomotion and self-reconfiguration framework
that comprises library design, behavior retrieval, and
behavior execution.

The rest of this article is organized as follows. Section 2
reviews and summarizes the relevant work and our previous
work. Section 3 proposes a framework to model the skeletal
kinematics of freeform modular robots and introduces
an implementation of the module modeling. Section 4
presents a locomotion and self-reconfiguration control
strategy with configurations of identical module mapping
as input, and the detailed implementation of FreeSN.
Section 5 proposes our configuration matching and mapping
algorithm considering the optimal mapping among feasible
isomorphisms. Section 6 introduces the overall autonomy
framework. Section 7 demonstrates the proposed system with
a real robotic platform. Finally, Section 8 concludes this
article.

2 Related Work

2.1 Freeform Modular Robots
Freeform modular robots are a type of modular robots
focusing on connection capabilities, enabling alignment-
free connections among modules, significantly enhancing
docking misalignment tolerance and adaptability (Liang
et al. 2024). The s-bot (Gross et al. 2006) and Slimebot
(Shimizu et al. 2006) stand out as the earliest freeform
modular robots. An s-bot module contains a gripper and
a ring, enabling the gripper to connect to any position on
the ring of another module. Slimebot utilizes circular Velcro
connectors and supports module connection at any planar
position and orientation. Subsequently, several freeform
modular robots were developed (Campbell et al. 2005; Kirby
et al. 2007; Malley et al. 2020; Saintyves et al. 2024),
incorporating diverse docking mechanisms and enhanced
connector performance. Recently, a series of freeform
modular robots (Swissler and Rubenstein 2020; Liang et al.
2020; Zhao and Lam 2022; Tu et al. 2022; Swissler and

Prepared using sagej.cls

Autonomy for Spherical Freeform Modular Robots 3

(c)

(b)(a)

Figure 1. Freeform modular robots in our previous works. (a)
FreeBOT. (b) Snailbot. (c) FreeSN.

Rubenstein 2023) that can reconfigure in 3D emerged.
The systems have demonstrated (Swissler and Rubenstein
2022; Luo and Lam 2022; Malley et al. 2020) that the
freeform modular robots can better adapt to unstructured
environments and perform robust self-reconfigurations.

In our previous works, we proposed several freeform
MSRRs with magnetic connectors, which are introduced in
the following sections.

FreeBOT FreeBOT (Liang et al. 2020) is a spherical
modular robot that can connect to any point on the surface
of other modules by magnetic connection. A FreeBOT
module mainly contains a low-carbon steel spherical shell,
internal magnet, and driving mechanism. The magnet inside
FreeBOT can connect to the surface of other modules and
produce rolling contact joint motion with an internal driving
mechanism. Since a FreeBOT module contains only one
connector, the topology connection of the FreeBOT system is
a graph with at most one cycle. The point contact connection
also weakens the torsional strength of the connector.

The joint modeling of spherical rolling contact (SRC)
joint (Zong et al. 2022) is first proposed, where one body
rolls without slipping over the surface of the other. The
forward and inverse kinematics of the serial-chain SRC
manipulator are well modeled and demonstrated using
FreeBOT realization. The modeling can be extended to other
freeform modular systems that use rolling contact joints
and have tree-based connection topologies. However, it does
not apply to systems with different joint types or non-tree
connection topologies.

Snailbot To address the limitations of point connections of
FreeBOT, we proposed a series of versions of the Snailbot
(Zhao and Lam 2022; Zhao et al. 2024). The Snailbot can
move on other modules with a large contact surface as
a spherical joint and connect and disconnect freely using
magnet-embedded rocker-bogie suspension or tracks. The

𝛴𝛴𝑁𝑁𝑖𝑖
𝛴𝛴𝐻𝐻𝑖𝑖

�𝑥𝑥𝑁𝑁𝑖𝑖

�𝑦𝑦𝑁𝑁𝑖𝑖

�̂�𝑧𝑁𝑁𝑖𝑖

�𝑥𝑥𝐻𝐻𝑖𝑖

�𝑦𝑦𝐻𝐻𝑖𝑖

�̂�𝑧𝐻𝐻𝑖𝑖

�𝑥𝑥𝑆𝑆𝑗𝑗
�𝑦𝑦𝑆𝑆𝑗𝑗

�̂�𝑧𝑆𝑆𝑗𝑗𝛴𝛴𝑆𝑆𝑗𝑗

Magnetic
Sensor Array

Freeform
Magnetic
Connector

Magnet
Array

Polyurethan
Wheel

Low-carbon
Steel Spherical

Shell

DC Motor

Node Module Strut Module

Figure 2. FreeSN hardware design and coordinate definition
(Tu and Lam 2023).

𝛴𝛴𝑁𝑁0 𝛴𝛴𝑆𝑆0 𝛴𝛴𝑆𝑆1
𝛴𝛴𝑆𝑆2

𝛴𝛴𝑁𝑁1
𝛴𝛴𝑁𝑁2

𝛴𝛴𝐻𝐻1

𝑁𝑁0 𝑁𝑁1 𝑁𝑁2𝑆𝑆0 𝑆𝑆1 𝑆𝑆2

Figure 3. Example of FreeSN configuration representation.
ΣH1 is chosen as the root horizontal frame.

Snailbot can also strengthen the connection strength with a
vacuum sucker with directional polymer stalks. In this state,
the module can only rotate around the sucker with one degree
of freedom.

A connection planning method (Luo and Lam 2023)
was proposed for Multiple In-degree Single Out-degree
(MISO) modules such as FreeBOT and Snailbot, achieving
computational efficiency through polynomial-time heuristics
while preserving optimality via subsequent exponential-time
searching. The algorithm focuses solely on the connection
topology changes for MISO modules, while the poses
of modules must be considered for actual robot self-
reconfigurations.

FreeSN FreeSN is a freeform modular robot system (Tu
et al. 2022) consisting of strut and node modules. As
shown in Figure 2, the strut module contains two symmetric
magnetic connectors. The surface of the node module is a
low-carbon steel spherical shell. Each connector contains a
magnet array and two polyurethane wheels driven by DC
motors with wheel encoders. The magnet array can connect
to any position on the node module, and the magnetic
attraction force can be controlled by changing the position of
the magnet array. Two wheels and motors form a differential
driver so the connector can move on the surface of node
module freely, enabling spherical joint motion. A strut
module can connect with two node modules simultaneously,
allowing for truss-like system topologies. We use FreeSN to
illustrate the examples of the proposed system and conduct
the system autonomy experiments in this article.

To enable the closed loop control of FreeSN system,
we proposed a configuration identification system (Tu and
Lam 2023). A magnetic sensor array is installed inside

Prepared using sagej.cls

4 Journal Title XX(X)

the node module to locate the position of the connected
magnetic connectors. We define a reference horizontal
frame ΣHi at each node module, where its z-axis ẑHi is
parallel with gravity, as shown in Figure 2. By fusing the
magnetic localization result, inertial measurement unit, and
wheel odometry, the modules can estimate their orientations
relative to the horizontal frame of the adjacent node
modules, such as Hi

Ni
q̂ and Hi

Sj
q̂. For a group of inter-

connected modules, any node module can be selected as
the root node module for reference. The configuration
identification system can estimate the connection topology
graph G and the real-time poses of modules relative to the
horizontal frame ΣHr of the root node module, denoted
as Hr

Ni
q̂,HrpNi ,

Hr

Sj
q̂,HrpSj . An example of configuration

identification results is shown in Figure 3, where the node
module N1 is selected as the root node module. The poses
of modules relative to the root horizontal frame ΣH1 can be
estimated by the configuration identification system in real
time.

The FreeSN modules and a centralized computer com-
municate through a Wi-Fi router. The module identifica-
tion and local orientation filter are executed on the micro-
controllers of modules distributively while the computer
centrally estimates the system topology and configuration.
We implemented low-level controllers on the strut module.
Each strut module can control its connection position and
orientation relative to the adjacent node modules, such as
Hi

Sj
q̂,HipSj

,Ni

Sj
q̂,NipSj

, where modules Ni and Sj are adja-
cent. The centralized computer can send the control com-
mands to the controllers of strut modules, and we demon-
strated system behaviors (Tu and Lam 2023) by predefining
a set of control commands and synchronizing the controllers.
However, designing and synchronizing commands for these
behaviors can be very complex for users. The success rate
of these behaviors is also limited by the slippage between
modules, which can lead to rapid offsets between node
horizontal frames.

2.2 Configuration Matching and Mapping
Configuration matching and mapping is an algorithm that
matches and maps a given new configuration with the
existing configurations in a library and maps the modules
with the matched one, which enables an important approach
for planning and controlling modular robotic systems.

Chen and Burdick (Chen and Burdick 1993) used an
assembly incidence matrix (AIM) to represent the module
configuration and define the AIM equivalence relation based
on geometric symmetry and graph isomorphism, which is
applied to enumerate nonisomorphic configurations. Park et
al. (Park et al. 2008) proposed a method called 3DDL, where
the configuration is represented by a three-dimensional
linked list of module objects (3DLL). The heuristics graph
search approach is designed to find the mapping and achieve
impressive gains in speed, especially for large configurations.
However, different heuristics may need to be designed
for different robots, and the 3DLL is specific to cube-
oriented modules. Shiu et al. (Shiu et al. 2010) propose
to recognize isomorphisms between two configurations by
linear algebra. All isomorphisms can be found by operating
the configuration matrix, but the complexity of the method
is high. Liu and Yim (Liu and Yim 2017) propose a

new approach to solve the matching and mapping problem
simultaneously in polynomial time and demonstrate the
system using SMORES. Zhu et al. (Zhu et al. 2012) combine
the Matlab graphisomorphism function with a 3D linked
list of modules, which uses the global pose information.
However, the algorithm can only work for the system with
discrete states of pose information and cannot efficiently
solve the redundant isomorphisms.

These methods do not consider the optimality among
the possible multiple isomorphisms or match the geometric
information with all isomorphisms. Existing methods
primarily demonstrate effectiveness on individual modular
robots or specific types of modular robots, with a notable
absence of configuration matching and mapping methods
tailored for freeform modular robots.

3 Skeletal Kinematics
In this section, the general configuration representations
of spherical freeform modular robots are first explained,
including the definition of skeletal configuration. In order
to control the skeletal configuration of robots with different
kinematics, the definitions of kinematic node and kinematic
tree are introduced, and the implementations of kinematic
nodes for FreeSN in several modes are illustrated as
examples. Finally, the forward and inverse kinematics of the
skeletal configuration are introduced, forming the basis for
its configuration matching and control.

3.1 Configuration Representation
The proposed freeform modular robots contain freeform
connectors that can connect to other modules, and the
connection produces spherical or rolling contact joint
motion. We use a unified way to represent the configurations
of the spherical freeform modular robots. Generally, the
configuration of a group of inter-connected modular robots
can be estimated by a system similar to the configuration
identification system of FreeSN (Tu and Lam 2023),
containing a directed connection topology graph G and
the poses of modules relative to a reference frame. As
shown in Figure 4, the topology graph of the example
freeform modular robot systems are plotted. For FreeBOT
and Snailbot, the nodes of the topology graph represent
the modules and the edges represent the connection
relationships. For FreeSN, the nodes of the topology graph
represent the node modules and the edges represent that the
strut modules connecting the nodes. If a module connector
is not connected with other modules and the direction of the
connector is essential, a virtual node is added to the graph.
The orange circles and the blue arrows represent the nodes
and edges of the topology graph G, and the gray circle is the
virtual node.

The above configuration representation contains redun-
dant information about the module poses since the position
and orientation of modules are related. Supposing that the
connection direction of the module connector is always per-
pendicular to the spherical tangent plane of the connection
point, the position of module is decided by the connection
position vector ẑMj , and the orientation of module Mi can be
represented with the connection position vector ẑMj

and the
forward direction vector x̂Mj

. For FreeSN, the orientation of

Prepared using sagej.cls

Autonomy for Spherical Freeform Modular Robots 5

Table 1. Nomenclature.

Notation Description

G Topology connection graph
M Morphology configuration
S Skeletal configuration
K Kinematic Tree
L Behavior Library
Sj Strut module of FreeSN
Ni Node module of FreeSN
Mi Freeform robot module
Hi Horizontal frame of module
∗

∗∗R Rotation matrix of body ** relative to body *
∗

∗∗q̂ Unit quaternion of body ** relative to body *
∗p∗∗ Position of body ** relative to body *
∗ẑ∗∗ Connection direction vector of the connector of ** expressed in the frame *
∗x̂∗∗ Forward direction vector of the connector of ** expressed in the frame *
HrZ∗ Connection position vector matrix of configuration *
fnode : N∗ → N∗∗ Node mapping from graph * to graph **
fedge : E∗ → E∗∗, inv Edge mapping from graph * to graph **
f S∗→S∗∗
node,edge Module mapping from configuration * to configuration **

f I
node,edge Identical module mapping between configurations

G∗∗
S∗ Skeletal configuration S∗ represented with configuration topology G∗∗

I Identity matrix
∗∧ Hat operation that convert unit vector * to skew-symmetric matrix
∗(i) i-th element of vector ∗
∗(i, j) i-th row and j-th column of matrix ∗
◦ Hadamard product of two vectors or matrixes

node module does not change the system properties and can
be ignored since it is spherical. Generally, the configuration
can be represented by the connection topology graph with
ẑMj

and x̂Mj
of the connections as edge attributes, denoted

as morphology configuration M. The blue arrows in Figure 4
also represent the vectors ẑMj

as edge attributes, and the red
arrows are x̂Mj .

In most locomotion and reconfiguration actions in
morphology shaping applications, we aim to control only
the shape of the system, and the configuration representation
can be simplified based on the symmetry of the modules.
We define this type of configuration representation as
skeletal configuration, denoted as S. For example, the
FreeBOT module and the strut module of FreeSN are nearly
axisymmetric around its z-axis, the self-rotation around it
does not change the shape of the module. The skeletal
configuration S can be represented by the topology graph G
with ẑMj

as edge attributes.

3.2 General Kinematic Node and Kinematic
Tree

The kinematics of the above modular robotic systems are
different. We can model one or multiple interconnected
modules as kinematic nodes for each type of robot and build
a kinematic tree connecting the kinematic nodes to uniformly
model the system kinematics. This section first proposes
an abstraction of kinematic nodes, which summarizes the
common properties of a general kinematic node.

The connection topology between the modules in a
kinematic node k can be represented by a sub-topology
graph Gk, and the modules are arranged as an ordered
set, denoted as Mk. The connection position vectors and
the forward direction vectors of the modules can be
concatenated in order, denoted as Zk and Xk, where Zk =

[
... ẑMj

...
]
,Xk =

[
... x̂Mj

...
]
,Mj ∈ Mk. Then,

the following properties of the kinematic node should be
defined.

• Joint space definition. The feasible motion of modules
inside the kinematic node can be projected into a
joint space with bounds. The modules should have no
motion at the zero point of the joint space.

• Connection ports definition. The modules inside the
kinematic node that can connect with other modules
are defined as the connection ports of the kinematic
node. The relative orientations between the ports
change as the modules move.

• Kinematic node forward kinematics. The joint forward
kinematics takes ordered morphology configuration
vectors and joint space values as input, denoted
as Zinit

k , Xinit
k , and σk. Moreover, it outputs the

transformed vectors and the motion costs of modules,
denoted as Zjoint

k , Xjoint
k , and Ck. The transformed

vectors of the kinematic node also decide the control
targets of the controller. During forward kinematics
calculation, the relative orientation changes between
the ports are cached.

• Controller implementation. Each kinematic node
should have a corresponding controller implementa-
tion in the robot modules, where the controller can
ideally execute the desired motion of the kinematic
node.

The kinematic nodes can be classified into three types
based on their properties:

• Fixed kinematic node. Any subgraph of the topology
graph can be modeled as fixed modules, where
the joint space dimension is zero, and the relative
orientations between the ports are identity matrices.

Prepared using sagej.cls

6 Journal Title XX(X)

(c)

(b)

(a)
Node

Edge
& �̂�𝑧𝑀𝑀𝑗𝑗
in

�𝑥𝑥𝑀𝑀𝑗𝑗
in

�𝑥𝑥𝑀𝑀𝑗𝑗 in
&

Virtual
Node

Figure 4. Configuration representations of spherical freeform
modular robot systems. The orange circles represent the nodes
of the topology graph, and the gray circle is the virtual node.
The blue arrows represent the edges of the topology graph and
the connection position vectors, while the red arrows represent
the forward direction vectors. (a) Configuration representation of
FreeBOT. (b) Configuration representation of Snailbot. (c)
Configuration representation of FreeSN.

Fixed kinematic node Module joint kinematic node

Parallel robot kinematic node example

Figure 5. Three types of kinematic nodes and kinematic tree
examples. The modules within a rectangle, triangle, and ellipse
form a fixed kinematic node, a parallel robot kinematic node,
and a module joint kinematic node, respectively.

• Module joint kinematic node. The module joint
kinematic node models the connection of a single
module. A module can work in different modes to
better accomplish different types of tasks so that
a robot module can have multiple kinematic node
definitions. Different freeform robotic systems can
share the same kinematic nodes.

• Parallel robot kinematic node. Parallel robot kinematic
node models the subgraph of the topology graph
containing cycles. For chain-type freeform robotics,
the system topology graph has at most one loop, and
the system can only include ring-type parallel robots.
In FreeSN, the modules can form various types of
parallel robots since the topology graph is diverse.

For a freeform robotics system with a tree-structure
connection topology graph, the root node at the center of
the topology graph can be modeled as a fixed kinematic
node, and each pair of nodes and edges can be modeled
as a module joint kinematic node. The kinematic nodes
are then connected based on system topology with the port
information as edge attributes, and we have the kinematic
tree K. The forward and inverse kinematics can be inferred
based on the kinematic tree.

For the connection topology graph containing cycles, we
assume that any cycle in the topology graph should be
modeled inside a fixed kinematic node or parallel robot
kinematic node, and we can model the system kinematics as
a kinematic tree.

As shown in Figure 5, an example topology connection
graph containing a triangular cycle is plotted. The cycle of
the graph can be modeled as a fixed kinematic node and a
parallel robot kinematic node. The other three subgraphs are
modeled as module joint kinematic nodes.

Example Kinematic Node Modeling of FreeSN A strut
module contains two differential driving connectors, and the
connectors can produce spherical joint motion. If both sides
of a strut module connect with node modules, a strut module
can be modeled as two spherical joints in series. However,
the two joints are parallel and have a much redundant degree
of freedom. The strut can be simplified and modeled as
different kinematic nodes by limiting the joint motion. The
strut joint kinematic node modelings are summarized in
Figure 6.

As shown in Figure 6(a), the module joint of FreeSN can
work as a revolute joint. We define the joint space dimension
as one, representing the expected rotation angle around the
connection position vector ẑinit

Mj
. Other properties of the

kinematic node can be defined as follows:

R = rodrigues(k̂ = ẑinit
Mj

, θ = σK)

ẑjoint
Mj

= ẑinit
Mj

x̂joint
Mj

= R x̂init
Mj

C = |σK |

(1)

where rodrigues outputs the rotation matrix that trans-
forms ẑinit

Mj
to ẑjoint

Mj
based on the Rodrigues’ Rotation

Formula, as:

k̂ =
v̂ × v̂

′

∥v̂ × v̂′∥
, θ = arccos(v̂ · v̂

′
)

R = cos(θ) I3 + (1− cos(θ))k̂ k̂T + sin(θ) k̂∧
(2)

The joint produces differential driving spherical motion
if only one differential driver is activated. As shown in

Prepared using sagej.cls

Autonomy for Spherical Freeform Modular Robots 7

(a) (b) (c) (d)

Motion of module joint
(steering and then moving forward)

The morphology configuration of
the module joint kinematic node Rotation of subsequent modules

Figure 6. Module joint kinematic node examples of FreeSN. For each kinematic node, the motion of the module joint and the
rotation of subsequent modules are labeled, and the poses of the modules after rotation are shown with transparency.

Figure 6(b), the module motion is modeled by first steering
to the target position vector, then moving forward. Any
joint motion can change the poses of subsequent kinematic
nodes. We define the joint space dimension as three, and
the joint space values are ideally the difference of the initial
connection position vector zinit

Mj
and the target one zjoint

Mj
.

Then we have:

ẑjoint
Mj

=
zjoint
Mj∥∥∥zjoint
Mj

∥∥∥ , zjoint
Mj

= ẑinit
Mj

+ σk

x̂steer
Mj

=
xsteer
Mj∥∥∥xsteer
Mj

∥∥∥ ,xsteer
Mj

= σk − (σk · ẑinit
Mj

)ẑinit
Mj

C = arccos(ẑinit
Mj

· ẑjoint
Mj

) + α arccos(x̂init
Mj

· x̂steer
Mj

)

R = rodrigues
(
v̂ = ẑinit

Mj
, v̂

′
= ẑjoint

Mj

)
rodrigues (

v̂ = x̂init
Mj

, v̂
′
= x̂steer

Mj

)
x̂joint
Mj

= R x̂init
Mj

(3)

The other differential driver can be activated to produce
the opposite motion of the base one. If only the opposite
steering motion is produced, we can assume that the steering
motion does not change the poses of subsequent kinematic
nodes, as shown in Figure 6(c). The forward kinematic
property of the joint kinematic node becomes:

C = arccos(ẑinit
Mj

· ẑjoint
Mj

) + 2α arccos(x̂init
Mj

· x̂steer
Mj

)

R = rodrigues
(
v̂ = ẑinit

Mj
, v̂

′
= ẑjoint

Mj

)
(4)

Suppose all opposite motions shown in Figure 6(d) are
produced. In that case, the motion cost is twice that of the
pure differential spherical joint mode, and the transformation
matrix of subsequent kinematic nodes ideally becomes the
identity matrix.

Most simplified joint kinematic nodes can satisfy the
control demand in applications where the control target is

Equivalent
rotational axis

of the joint

Figure 7. Parallel strut kinematic node example, where the
parallel motions of two strut modules are equivalent to two
parallel revolute joints.

the skeletal configuration. We choose the kinematic node
shown in Figure 6(c) as the default joint kinematic node of
FreeSN in the rest of this article, which decouple the motion
of modules with little additional cost. Other joint kinematic
nodes can be selected if extra control demands exist.

Various parallel robot sub-structures can exist in the
FreeSN system. A parallel strut kinematic node is introduced
as example, as shown in Figure 7. The kinematic node
includes two strut modules and one node module. The central
two nodes belong to the parent of this kinematic node. The
two connectors connected with the central two nodes can
synchronously follow the circular trajectories on the nodes
and produce revolute joint motion with superimposed torque.
The other two connectors can also produce revolute joint
motion similarly, while the two connectors of a strut module
need to adjust the forward direction by producing parallel
steering motion. So, the parallel strut kinematic node can
be treated as two parallel revolute joints, and the joint space
dimension is two, then we have:

Prepared using sagej.cls

8 Journal Title XX(X)

Zinit =
[
ẑinit
M1

ẑinit
M2

]
x̂joint =

xjoint

∥xjoint∥
,xjoint = ẑinit

M1
− ẑinit

M2

R1 = rodrigues(k̂ = x̂joint, θ = σk(1))

Zjoint = R1Z
init

R = rodrigues(x̂joint,σk(2))R1

x̂steer =
xsteer

∥xsteer∥
,xsteer = ẑinit

M1
× ẑinit

M2

C =

[
2α arccos(x̂init

M1
· x̂steer) + |σk(1)|+ β|σk(2)|

2α arccos(x̂init
M2

· x̂steer) + |σk(1)|+ β|σk(2)|

]
(5)

where β is the weight parameter.

3.3 Skeletal Forward Kinematics
The forward kinematic can be defined at any morphology
configuration as the zero point of the joint space. The connec-
tion position vectors and the forward direction vectors can be
formatted in breadth-first search (BFS) order of kinematic
nodes as matrixes, denoted as Zinit and Xinit, where
Z =

[
... Zk ...

]
,X =

[
... Xk ...

]
, k ∈ K. The joint

space of the system is the union of the joint space of all
kinematic nodes in the same order, and we denote the joint
space vector as σ =

[
... σk

T ...
]T

, k ∈ K.
We have the skeletal forward kinematic algorithm shown

in Alg. 1, which outputs the transformed configuration
vectors Zrot,Xrot and the estimated motion costs C.

BFS outputs the parent and child kinematic node pairs
and the port connection via breadth-first search, except that
an empty kinematic node is set as the parent of the root
kinematic node for algorithm pseudocode simplification.
vecDim outputs the dimension of the configuration vectors
of the kinematic node, and jointDim outputs the dimension
of the joint space of the kinematic node. cacheRotMat
caches the rotation matrix from the root to the ports after
joint motion, and rotFromRoot outputs the rotation matrix
from the root module of the root kinematic node to the
input port of the input kinematic node. forward calls the
forward kinematics of the kinematic node, which outputs the
transformed configuration vectors and the motion costs with
initial configuration vectors and joint space values. ports
outputs the set of ports of the kinematic node, and portRot
outputs the rotation matrix from one port to another based on
the forward kinematics results.

3.4 Full Body Skeletal Inverse Kinematics
The skeletal forward kinematics estimate the system skeletal
configuration with an initial morphology configuration and
the joint space values. Assume that the estimated system
configuration is represented under a horizontal reference
frame of the root port of the root kinematic node, such as the
root horizontal frame of FreeSN configuration identification
system (Tu and Lam 2023), denoted as Hkroot,proot = Hr.
And the configuration vectors are denoted as HrZinit and
HrXinit. We have a target skeletal configuration Starget
with the same topology graph, but the vectors are represented

Algorithm 1 Skeletal Forward kinematics
Input: K,Zinit,Xinit,σ
Output: Zjoint,Xjoint,Zrot,Xrot,C

1: nvec = 0, njoint = 0,C =
[]

2: Zjoint =
[]

,Xjoint =
[]

3: Zrot =
[]

,Xrot =
[]

4: for kparent, kchild, pparent, pchild in BFS(K) do
5: Zinit

kchild
= (Zinit

ij)1≤i≤3,nvec≤j<nvec+vecDim(kchild)

6: Xinit
kchild

= (Xinit
ij)1≤i≤3,nvec≤j<nvec+vecDim(kchild)

7: σinit
kchild

= (σi)njoint≤i<njoint+jointDim(kchild)

8: nvec = nvec + vecDim(kchild)
9: njoint = njoint + jointDim(kchild)

10: proot
pparent

R = rotFromRoot(pparent)
11: Zjoint

kchild
,Xjoint

kchild
,Ckchild

=

forward(kchild, Zinit
kchild

, Xinit
kchild

, σinit
kchild

)
12: for p ∈ ports(kchild) do
13: proot

pR = proot
pparent

R pparent
pR

14: pparent
pR = portRot(p)

15: cacheRotMat(proot
pR)

16: end for
17: Zjoint =

[
Zjoint Zjoint

kchild

]
18: Xjoint =

[
Xjoint Xjoint

kchild

]
19: Zrot =

[
Zrot proot

pparent
R Zjoint

kchild

]
20: Xrot =

[
Xrot proot

pparent
R Xjoint

kchild

]
21: C =

[
C

Ckchild

]
22: end for

under some horizontal frame Hw. This section proposes the
full-body skeletal inverse kinematics, assuming the ground
is a horizontal plane. The two horizontal frames have a
yaw angle difference θ. The proposed inverse kinematic
algorithm estimates the yaw angle difference and the
optimum joint space variables that align the system skeletal
configuration with the target one with minimum weighted
motion cost by solving the following non-linear optimizing
problem.

min
θ,σ

∑
j∈M

w(j)
[
ζC(j)2 + γ arccos

(
3∑

k=1

(

HrXrot ◦ (RotZ(θ)
HwXtarget))(i, j)

)2
+

arccos

(
3∑

i=1

(HrZrot ◦ (RotZ(θ)
HwZtarget))(i, j)

)2

]

(6)

where w, γ and ζ are weight parameters. w can be set
based on the weight distribution of the system. If the forward
direction vectors are not part of the skeletal configuration,
γ can be simply set to zero. HrZrot and HrXrot are
the transformed connection position matrix and forward
direction matrix, and C is a vector of motion costs. These
are estimated by the skeletal forward kinematics as:

HrZrot,HrXrot,C = SFK(K,HrZinit,HrXinit,σ)
(7)

Prepared using sagej.cls

Autonomy for Spherical Freeform Modular Robots 9

Ground Model For non-tree configurations with a floating
base, the raw output of the forward kinematics algorithm may
not have stable contact with the ground. The module inside
the fixed kinematic node and parallel robot kinematic node
may not have enough degree of freedom to align with the
target one. A three-point contact model is applied to estimate
the contact points between the ground and the modules. The
matrixes are transformed again so that the modules are in
contact with the ground at three points, and the center of
mass lies in the triangle formed by the contact points.

Optimization Solving The proposed optimization problem
can be solved by modern non-linear optimization algorithms,
such as L-BFGS-B (Byrd et al. 1995) and Trust Region
Reflective (TRF). Good initial variable selection of the
optimization can significantly improve the optimization
efficiency and prevent the local minimum. The output
configuration of forward kinematics is the same as the input
if the joint space variables are zeros. Zeros are suitable initial
joint space variables if the initial configuration is not far from
the target. The yaw angle difference can be estimated by
solving the following linear optimization problem.

min
θ

∑
j∈M

w(j) [γ arccos

(
3∑

k=1

(

HrXinit ◦ (HwXtargetRotZ(θ)))(j, k)
)2

+

arccos

(
3∑

k=1

(HrZinit ◦ (HwZtargetRotZ(θ)))(j, k)

)2

]

(8)

This can efficiently estimate an initial θ that prevents local
minimum when the initial configuration is not far from the
target. However, the non-linear optimization algorithm is
possibly trapped in the local minimum or even failed to find
a feasible solution. A sampling-based approach similar to
BioIK (Starke et al. 2019) is applied to avoid trapping into a
local minimum, which samples on the joint space and solves
the optimization problems concurrently.

Iterative Inverse Kinematics The proposed inverse
kinematics algorithm cannot guarantee finding an optimal
solution within a limited time for all configurations. In real-
world applications where the joint motion consumes time, an
optimal solution is not strictly required at each time step. The
solution from the previous time step can be used as the initial
variables for the current time step, which helps accelerate
the algorithm. The iterative optimization can also help avoid
local minima, provided that the local minimum guides the
solution toward a correct motion direction.

During the initial solving phase, the algorithm continu-
ously samples candidate solutions and optimizes them until a
feasible one is found. Subsequently, a tracking thread solves
the optimization problem at each time step using the previous
solution as the initial variables. Meanwhile, an exploration
thread optimizes candidate solutions sampled globally from
the variable space. If the exploration thread finds a better
solution, the tracking thread updates its initial variables
accordingly.

Inverse
Kinematics

Configuration
Identification

System (Tu and
Lam 2023)

Reaching
Detection

Modules

Control Command
Translation

Control Commands

Action
Executed

Execute in
Real-time

Execute
Once

Require
Trigger

Figure 8. Moving action execution workflow. The green arrows
represent that data is calculated and communicated in real-time.
The purple arrows represent that the data is one-time, while the
dashed line means that a conditional trigger is required.

4 Locomotion and Self-reconfiguration
Execution

For a group of interconnected modules with an initial
configuration M and a defined kinematic tree K, we have
a target skeletal configuration Starget with identical module
mapping. The inverse kinematics algorithm can estimate
the desired joint space variables to move to the target
configuration.

We define the task to reach a target skeletal configuration
as an action. A behavior can be a mapping between system
motion parameters and module motions or the task of
reaching a sequence of skeletal configurations one by one.
In this section, an action execution framework is introduced.

4.1 Action Execution
The basic actions can be classified into four types based on
the changing of configuration topology graph.

• Moving: The system moves to a target configuration
Starget without topology changing.

• Connection: The system moves to Starget while a
module connects to some module. A node and a virtual
node of the topology graph are merged.

• Disconnection: A module disconnects with some
module, and then the system moves to the target
configuration. A node of the topology graph is split
into a node and a virtual node.

• Flow: The leaf module of some MSRRs, such as
FreeBOT and Snailbot, can move from its parent
module to the neighbors of the parent module
directly. The disconnection and connection happen
simultaneously, and the control strategy depends on
the hardware implementation.

Given the configuration of the current system and a target,
the type of action can be detected by comparing the topology
graph of the configurations. Then, the action can be executed
with the corresponding execution strategy.

Moving Action Moving action is an essential action, where
the modules are controlled in real-time until the system
configuration is close enough to the target. Assume that a
configuration identification system can estimate the system

Prepared using sagej.cls

10 Journal Title XX(X)

morphology in real-time. The inverse kinematic algorithm
can estimate target joint space variables, and the system
can ideally move to the configuration by converting the
corresponding joint vectors to the control commands of
modules. However, the kinematic model may not be accurate
due to the wheel slippage, and the reference coordinate frame
of the control relative to the root frame changes as the
modules move.

As shown in Figure 8, an example system forms the
configuration Mt at initial, estimated by the configuration
identification system in real-time. Given the kinematic tree
K and a target skeletal configuration Starget, the inverse
kinematics algorithm calculates the joint space variables in
real-time, which can be represented as joint vectors HrZjoint

relative to the horizontal reference frame Hr. All kinematic
nodes have corresponding controller implementation in the
module, controlling the kinematic node to move to the target
in the joint space. The control command of the kinematic
nodes can be translated by combining the inverse kinematic
results and module relative orientations, depending on
the controller design. The above procedures are executed
iteratively in real time to achieve robust configuration
control. The controllers are terminated if the current system
configuration is close to the target by monitoring the
estimated motion costs.

Connection Action The connection action requires accu-
rate perception and control of the chain structured MSRR
system, which is challenging for most MSRRs due to the tol-
erance stack of the chain and the limited alignment tolerance
of the connector. The freeform modular robots have a large
alignment tolerance, making robust self-reconfiguration in
3D more realizable. However, the configuration identifica-
tion error of the chain configuration accumulates with the
chain length and may exceed the alignment tolerance of the
connector. We define a strategy to ensure the robustness of
the connection action execution.

Given a target configuration Starget, we have the
corresponding configuration with the same topology as the
system configuration, as shown in Figure 9, denoted as
Sconn. An extruded configuration Sextr can be calculated
by reducing the length of the edges connecting the
merged nodes in the upcoming cycle to guarantee a robust
connection. The system is controlled to move to Sconn
without connection at first. After reaching Sconn, the
connection command is triggered by the reaching detection,
and the system is controlled to move to Sextr simultaneously.
The action is executed after the expected topology change is
detected.

Disconnection Action The topological changing required
to finish the disconnection action can be detected by
comparing the topology graphs Ginit and Gtarget. The
disconnection command of the connector can be generated
from the change, and the disconnection action can be
executed by first disconnecting the connector and then
moving to the target configuration.

As shown in Figure 10, after sending the disconnection
command to the connector and the topological change is
successfully detected, the moving action starts using the
switched target configuration. The action is executed after
moving to the target configuration.

Reaching
Detection

Reconfiguration
Detection

Connection
Command

Target
Switch

Trigger

Docking
Commands

Moving Action

Modules

Inverse
Kinematics

…
Control Command

Translation

Action
Executed

绿色持续执行，紫色一次性执行
虚线需要触发，实现直接执行

Figure 9. Connection action execution workflow. The modules
first approach the target configuration while maintaining
topological invariance and then execute the connection
command until the connection is detected.

Moving Action

Disconnection
Command

Reconfiguration
Detection

Trigger

Modules

Disconnection
Commands

Target
Switch

Inverse
Kinematics…

Reach
Detection

Action
Executed

Figure 10. Disconnection action execution workflow. The
modules first complete the disconnection command and then
move to the target configuration using a moving action.

Parallel Connection and Disconnection Action Multi-
ple connections or disconnections may be required during
one action, where the connection and disconnection of con-
nectors are executed in parallel. Such action can be executed
in the following way. The topological changes are classified
into connections and disconnections. First, the disconnection
commands are sent to the modules in parallel. After all
topological disconnection changes are detected, the system
moves to the target configuration without connections. The
connection commands are sent to the modules in parallel,
and the extruded target configuration is switched after reach-
ing Sconn. Finally, all topological connection changes are
detected, and the action is successfully executed.

The presented strategy targets executing the action but
does not consider the optimality. The optimum parallel
execution strategy of such action can be complicated, which
is out of the scope of this article.

4.2 Example Control Commands of FreeSN
As shown in Figure 11(a), the modules communicate with
the centralized computer through a Wi-Fi router. The relative
orientation filter results and docking events of the modules

Prepared using sagej.cls

Autonomy for Spherical Freeform Modular Robots 11

WiFi RouterComputer

Connection
Command

Disconnection
Command

Connection
Detected

Joint
Command

Retract
Magnet
Array

Extend
Magnet
Array

Modules(a)

(c)

Commands

(b)

(d)

Docking
Events

Figure 11. (a) The centralized computer communicates with
the modules through a Wi-Fi router. The computer coordinates
the module actions by transmitting commands to the modules,
and the modules transmit their relative orientation filter results
to the computer as feedback. (b) Joint command that controls
the connection position vector. (c) Disconnection command that
retracts the magnet array. (d) Connection command that
improves the misalignment tolerance by extending the magnet
array.

are transmitted to the computer in real time. The computer
estimates the system configuration and outputs module
commands based on action design and kinematics. The
modules execute the control commands distributively, using
the sensing feedback from the adjacent modules.

As shown in Figure 11(b), the strut module controls its
connection position vector Hi ẑSj

relative to the horizontal
frame of the adjacent node module. The joint connection
position vectors are transformed into the node horizontal
frames of the corresponding adjacent node modules. The
local controller of the strut module can finish the control
command with feedback from the local orientation filters.

The connection and disconnection of the connector can
be achieved by controlling the position of the magnet
array. As shown in Figure 11(c), when a disconnection
command is sent to the controller, the corresponding magnet
array is controlled to retract into the strut module. The
magnetic force between the magnet array and the nearby
node module becomes negligible, which can be detected
by the configuration identification system. As shown in
Figure 11(d), when a connection command is sent to the
controller, the corresponding magnet array is first controlled
to extend out of the strut module. The misalignment
tolerance of the connector can be significantly improved in
this way. After reconfiguration is detected, the magnet array
is controlled back to the origin position, where the connector
has the largest driving force.

4.3 Behavior Execution
The action execution assumes that the modules execute the
control commands in the shortest arc without cooperation

Configuration Sequence

Action SwitchAction Detection

General Action Execution
…

Inverse
Kinematics

Action

Action
Executed

Reach
Detection

Reconfiguration
Detection

Target Switch

Figure 12. Behavior execution by decomposing the
configuration sequence into actions and executing them in
order.

between modules, and moveable target configurations are
limited. By reaching a sequence of configurations, the system
can finish complicated behaviors such as locomotion and
self-reconfiguration.

As shown in Figure 12, a sequence of skeletal
configurations and the corresponding kinematic trees are
predefined, where the action from any configuration to
the next one should be feasible. Assume that the first
configuration is a feasible target of the system, the first
configuration is selected as the target, and the corresponding
kinematic tree is loaded. The action can be automatically
detected and executed based on the action type. After
executing the action, the following configuration and
kinematic tree are switched. The configuration sequences can
be executed by repeating this procedure.

5 Configuration Matching and Mapping

The action execution in Section 4 requires that the target
and system configurations have identical module mapping.
For a newly constructed system, online motion planning for
self-reconfiguration or locomotion can be time-consuming,
and optimality can hardly be guaranteed since the system
typically has a large number of degrees of freedom. The
system configuration may be isomorphic to the existing
configurations, and the system can move to the isomorphic
configuration if the isomorphic configuration is matched and
the optimal module mapping between them is searched.

In this section, a heuristic isomorphism tree search
algorithm is proposed to search the candidate mappings with
the minimum estimated distance between configurations
as heuristic. Then, a configuration matching and mapping
algorithm for the spherical freeform modular robots is
proposed, which determines a suboptimal module mapping
from a given library of kinematic trees and configurations,
prioritizing minimal inverse kinematics cost.

Prepared using sagej.cls

12 Journal Title XX(X)

Algorithm 2 Isomorphism Tree Search
Input: Ssys,Sref
Output: {ε′,f ′

node : N
sys → Nref ,

f ′
edge : E

sys → Eref , inv}

1: Ssys = undirected(Ssys),Sref = undirected(Sref)
2: if numModules(Ssys) ̸= numModules(Sref) then
3: RETURN // not isomorphic
4: end if
5: if orderedDegree(Ssys) ̸= orderedDegree(Sref) then
6: RETURN // not isomorphic
7: end if
8: Create a priority queue q // with connection position

vector matching distance ε as the key.
9: put(q, 0, (∅, ∅,

[]
,
[] [] []

))
10: while not empty(q) do
11: ε′,Λ′ = get(q) // pop the item with min distance
12: fnode

′,fedge
′,Zsys′,Zref ′,Xsys′,Xref ′ = Λ′

13: if size(fnode
′) = numNodes(Ssys) then

14: YIELD ε′,fnode
′,fedge

′ // outputs the mapping
15: CONTINUE
16: end if
17: Nsys

next = nextNode(fnode
′) // select next node

18: C = feasibleCandidates(Nsys
next,fnode

′,Ssys,Sref)
19: for Nref

next ∈ C do // multiple feasible node mappings
20: ε′′,Λ′′ = subConfigMatch(Λ′, Nsys

next, N
ref
next,

Ssys,Sref ,Ssys,Sref)
21: put(q, ε′′,Λ′′) // update priority queue
22: end for
23: end while

5.1 Isomorphism Tree Search

The topology graph isomorphism is a common subgraph
isomorphism problem in graph theory. Many algorithms
(Lueker and Booth 1979; Cordella et al. 2004; Carletti et al.
2015; Jüttner and Madarasi 2018) have been proposed to
efficiently reduce the searching space by optimizing the node
match order and the cutting rules, considering node degrees
and discrete node labels. Based on the VF2++ (Jüttner
and Madarasi 2018) subgraph isomorphism algorithm, we
propose an isomorphism tree search algorithm that takes
the current system skeletal configuration and a reference
skeletal configuration as inputs and outputs the node and
edge mappings between the two configurations in ascending
order of their distances.

As presented in Algorithm 2, the algorithm first checks
the signatures of the input configurations to reduce the
computational overhead when the input configurations are
not isomorphic. Then, it builds an isomorphism tree by
continually selecting node mapping pairs and estimating the
distance between the mapped sub-skeletal configurations.
Each node in the isomorphism tree includes the current
module mappings of configurations, cached configuration
vectors, and the estimated distance for the current mapping.
The node searching order of the configuration is predefined
based on the type and degrees of the node in the same
way as VF2++. The searching order of the isomorphism
tree is decided by the estimated distance, which is managed
by a priority queue q. If a leaf node of the isomorphism

Algorithm 3 Sub-configuration Matching

Input: Λ′, Nsys
next, N

ref
next,Ssys,Sref ,S

sys
,Sref

Output: ε′′,Λ′′

1: fnode
′,fedge

′,Zsys′,Zref ′,Xsys′,Xref ′ = Λ′

2: fnode
′′ = fnode

′ ∪ (Nsys
next → Nref

next),fedge
′′ = fedge

′

3: Zsys′′ = Zsys′,Zref ′′ = Zref ′

4: Xsys′′ = Xsys′,Xref ′′ = Xref ′

5: for Nsys
neigh → Nref

neigh ∈ neighbor(

Nref
next,fnode

′′,Ssys,Sref) do
6: Esys

neigh = (Nsys
next, N

sys
neigh)

7: Eref
neigh = (Nref

next, N
ref
neigh)

8: inv = XOR(Esys
neigh ∈ Ssys, Eref

neigh ∈ Sref)
// extend edge mapping

9: fedge
′′ = fedge

′′ ∪ (Esys
neigh → Eref

neigh, inv)

10: ẑsys, x̂sys = getVectors(Ssys, Esys
neigh)

11: ẑref , x̂ref = getVectors(Sref , Eref
neigh)

12: if inv then
13: ẑref = −ẑref

14: end if
// extend the configuration vectors

15: Zsys′′ =
[
Zsys′′ ẑsys

]
16: Xsys′′ =

[
Xsys′′ x̂sys

]
17: Zref ′′ =

[
Zref ′′ ẑref

]
18: Xref ′′ =

[
Xref ′′ x̂ref

]
19: end for

// estimate the distance of sub-skeletal configurations
20: if size(fnode

′′) <= 2 then
21: ε′′ = 0
22: else
23: ε′′ = vectorMatch(Zsys′′,Zref ′′,Xsys′′,Xref ′′)
24: end if
25: Λ′′ = fnode

′′,fedge
′′,Zsys′′,Zref ′′,Xsys′′,Xref ′′

tree is searched, the algorithm outputs the distance and the
module mapping as a candidate, which is then used by the
configuration matching and mapping algorithm.

undirected transforms the directed skeletal configuration
to the undirected graph. put and get are the priority queue
operation functions. size gets the number of items in the
mapping. numModules returns the number of each type of
module in the configuration, numNodes returns the number
of graph nodes, and orderedDegree returns the degree of
each node type for all nodes in order. nextNode decides
the next node of the system configuration that should be
mapped next based on the predefined node searching order.
feasibleCandidates finds the candidate nodes of the reference
configuration that can possibly mapped with the given node
based on the degrees of neighbor nodes. subConfigMatch
extends the isomorphism tree with a new node mapping pair,
as presented in Algorithm 3.

Algorithm 3 takes the previous mappings, cached
configuration vectors, and new node mapping pair as
inputs. The algorithm first extends the node mappings
and edge mappings. Then, it updates the vectors of
the sub-skeletal configurations and estimates the distance.
neighbor finds the node mapping pairs that have been

Prepared using sagej.cls

Autonomy for Spherical Freeform Modular Robots 13

searched and are neighbors of the new node mapping pair.
getVectors gets the connection position vector and forward
direction vector given the skeletal configuration and edge.
vectorMatch estimates the distance between two sub-skeletal
configurations by aligning the connection position vectors
based on equation (8).

For FreeSN, the node mappings represent the node module
mappings, and edge mappings represent the strut module
mappings and whether the connection directions are the
same. The node mappings represent the module mappings,
and edge mappings represent the connection direction for
other freeform modular robots. The forward direction vectors
are not included in the skeletal configuration for FreeSN, and
they can be ignored during the isomorphism tree search.

5.2 Matching and Mapping
Given the current system skeletal configuration Ssys and a
library L of kinematic trees and skeletal configurations, the
configuration matching and mapping algorithm aims to find
the kinematic tree and reference skeletal configuration Sref
in the library and the module mapping with the minimum
motion cost. The full-body inverse kinematics is used to
estimate the motion cost without motion planning.

The algorithm first finds the possible reference configura-
tions and kinematic trees from the library by indexing the
module number and the ordered degrees. The isomorphism
searching algorithm outputs the mappings with estimated
configuration distances in order for each pair of candidate
configuration and kinematic tree. The estimated distances
of the mappings have a similar order to the motion cost
of inverse kinematics if the two configurations are not far
away. If the estimated distance is much larger than the
minimum motion cost estimated by the inverse kinematics,
the isomorphism searching of candidates can be terminated.
A sub-optimum candidate and module mapping can be found
within a limited time, as shown in the algorithm below.

Algorithm 4 Configuration Matching and Mapping
Input: Ssys,L
Output: fnode : N

sys → Nref ,fedge : E
sys → Eref , inv

Kref

1: fnode = ∅,fedge = ∅,Kref = null
2: costmin = +∞
3: for Sref ′,Kref ′ ∈ subset(L, numModules(Ssys),

orderedDegree(Ssys)) do
4: for ε′,fnode

′,fedge
′ ∈ isoSearch(Ssys,Sref ′) do

5: if ε′ > costmin ∗ σ then
6: BREAK
7: end if
8: cost = inverseKin(Kref ′,Ssys,Sref ′,fedge

′)
9: if cost < costmin then

10: fnode = fnode
′,fedge = fedge

′

11: Kref = Kref ′

12: costmin = cost
13: end if
14: end for
15: end for

isoSearch is the isomorphism searching algorithm
proposed in the previous section. inverseKin is the inverse

kinematics algorithm proposed in Section 3.4. σ is the
parameter of the confidence that using the configuration
distance to estimate the motion cost of inverse kinematics,
which balances the recognition speed and the probability of
finding an optimum motion cost.

However, inverse kinematics does not consider the validity
of motion, and it only estimates the actual cost from the
system configuration to reach the reference configuration.
For the robotic system with a high degree of freedom,
the algorithm can not guarantee finding the optimum
solution within a limited time. Our proposed configuration
matching and mapping algorithm aims to find a sub-
optimal solution within limited time. The configuration
distance can generally estimate a similar mapping order
if the system configuration is not far from the reference
configuration, where the inverse kinematics is more likely to
have an accurate cost estimation without motion planning.
The configuration distance estimation is much faster than
the inverse kinematics algorithm, significantly improving
configuration matching and mapping speed.

6 Locomotion and Self-reconfiguration
Autonomy Framework

The freeform modular robot systems can finish locomotion
and self-reconfiguration tasks by executing configuration
sequences. However, real-time planning of optimum
configuration sequence is hard since the system is floating-
base and always includes high degrees of freedom and strong
constraints. This section proposes a locomotion and self-
reconfiguration autonomy framework for freeform modular
robots.

The autonomy framework is introduced from three
aspects: library design, library creation, and behavior
retrieval and execution. As shown in Figure 13(a-c), we
implement a GUI tool to design kinematic tree and skeletal
configurations and capture configurations from real robots
or simulations. Then, a library can be built from the
collected data, which hierarchically stores the behaviors
and feasible kinematic transitions between configurations,
as shown in Figure 13(d). The feasibility of configuration
sequences are evaluated using simulation during the library
build. If a sequence fails to execute in simulation, the
user should tune it until it succeeds. In this way, we can
assume that the configuration sequences defined in the
built library are feasible. The modules can move from
one configuration to the next in the sequence without
requiring synchronized module motions, while avoiding self-
collision, gravity instability, and motor torque insufficiency.
For a newly constructed robot system, if the system
topology is isomorphic to a known one in the library,
the configuration in the library that is closest to it can
be found by configuration matching and mapping. After a
target configuration or behavior is selected, the configuration
sequence with intermediate kinematic trees and module
mappings can be retrieved from the library, as shown in
Figure 13(f). As shown in Figure 13(g), the sequence can be
mapped to have identical module mappings with the system
and then executed as described in Section 4.

Prepared using sagej.cls

14 Journal Title XX(X)

Library Design GUI

Ex
ec

ut
eEvaluate

Configuration
Sequence
Record

Configuration
Sequence

DesignDesign

(e)
(f)

Real RobotSimulation

Select

Shortest
Reconfiguration
Sequence Search

Target Configuration
/ Behavior

Initial System
Configuration

Configuration
Sequences

Library Build Configuration
Matching and

Mapping

S6N3

S12N6

…

Query

Library
Creation
Behavior
Retrieval

R
et

rie
ve

d
Se

qu
en

ce

Behavior
Execution

R
et

rie
ve

(a)

(b) (c)

(d)

(g)

Se
qu

en
ce

M

ap
pi

ng

Figure 13. Locomotion and self-reconfiguration framework. (a)
A Graphical User Interface (GUI) tool for library design. (b) A
simulation environment using MuJoCo for recording
configurations and evaluating the feasibility of actions. (c) The
real robot platform for recording configurations and executing
behaviors. (d) Automatic library creation with kinematic trees
and configuration sequences as inputs. (e) The library is
created and hierarchically stored as a graph, which can be
divided into sub-libraries based on module numbers. (f)
Behavior retrieval with initial and target configurations as inputs.
(g) The retrieved configuration sequence can be mapped and
then executed on real robot.

6.1 Library Design

The library L adopts a hierarchical design. The library
is divided into many sub-libraries based on the number
of modules. Taking FreeSN as an example, as shown in
Figure 13(e), the library is divided into “S6N3”, “S12N6”,
etc. Sub-library “S6N3” contains configurations with six
strut modules and three node modules. For each sub-library,
the configurations are classified into different groups based
on the isomorphism of the topology graph. For each group, a
reference topology graph Ggroup and at least one kinematic
tree Kgroup

k and skeletal configuration Sgroupi with the same
topology as Ggroup should be defined. A sub-library can
be regarded as a directed graph, where graph nodes are
the skeletal configurations. An edge connection represents
a feasible action from one node to another, with a kinematic
tree and motion cost as edge attributes. An optimum mapping
between two nodes should also be defined as an edge
attribute for the edges crossing two groups. A sub-library
“S6N3” containing four groups is shown in Figure 14(f) as
an example. The four green circles represent four types of
isomorphism topology graphs, and each includes kinematic
trees in yellow rounded rectangles, skeletal configurations,
and behaviors in blue rounded rectangles. The feasible
actions with kinematic tree and module mapping as edge
attributes are represented with black arrows.

Configuration Matching and Mapping

Merged

Merged Merged
Inverse

Kinematics

(a)

(c)

(e)

(d)

(b)
… …

(f)

Figure 14. Example of automatic library creation. (a) Designed
kinematic trees with topology graphs. (b) Collected
configuration sequences. (c) Example configuration sequences
with intermediate configurations during topology changes. (d)
The configurations in the sequences are matched with the
library and remapped to share the same topology graph. (e)
Configurations merging by checking the costs from inverse
kinematics. (f) Example of constructed sub-library that includes
four groups with different topology graphs, utilizing structured
data from (a) and (e). Each group includes kinematic trees in
yellow rounded rectangles, skeletal configurations, and defined
behaviors in blue rounded rectangles. The feasible actions
between the skeletal configurations are defined as the edges of
the directed graph, represented by black arrows.

6.2 Library Creation

We implement a GUI tool to design the library, as shown
in Figure 13(a). At least one kinematic tree and reference
skeletal configuration for each isomorphism topology graph
should be defined using the tool.

A simulation environment of FreeSN is implemented
with MuJoCo engine (Todorov et al. 2012), as shown in
Figure 13(b). The controllers of modules are implemented as
the same interface as real modules, and a simulation can be
directly launched from a configuration. The modules can be

Prepared using sagej.cls

Autonomy for Spherical Freeform Modular Robots 15

Target
Configuration /

Behavior

Wheeled
Move/Initial System

Configuration

… General Action Execution

Inverse
Kinematics

Action
Executed

Reach
Detection

Reconfiguration
Detection

Control
Command
Translation

Kinematic
Tree Mapping

Configuration
Mapping

…

Connection/
Disconnection

Command

…

Action Switch

(a)

(b)

(c)

(d)

Behavior Retrieval

…

Retrieved Sequence

Action Execution

Figure 15. Example of library behavior retrieval and execution. (a) Configuration matching and shortest reconfiguration sequence
search, using the current system configuration and a selected target configuration as inputs. (b) The retrieved configuration
sequence with kinematic trees and module mappings. (c) The kinematic trees and configurations are mapped to have identical
module mappings with the system, ensuring that the sequence is executable. (d) The sequence is executed using the framework
proposed in Section 4.

teleoperated, while the system configurations and behaviors
can be recorded from simulation and real robots.

A recorded configuration sequence or a mapping from
low-dimension behavior parameters to the high-dimension
control parameters of the system can be labeled as a
behavior that guides the self-reconfiguration or locomotion
of the system. The designed configurations and recorded
configurations may have different topology graphs. The
library can be automatically built from these data by applying
the configuration matching and mapping algorithm so that
the relationships between skeletal configurations, kinematics
trees, and behaviors are stored. During the library building
process, the feasibility of the configuration sequences and
behaviors are evaluated using the simulation. If a sequence
or behavior fails to execute in simulation, the user should
tune it until it succeeds. The connection strength of FreeSN
modules is measured and evaluated (Wu et al. 2024)
through experiments. There always exists a gap between the
simulation and real robots, so the connection strength and
torque limits in the simulation are set lower than those of
real robots to better ensure the validity of the simulation.

As shown in Figure 14, the creation of the “S6N3” library
is illustrated as an example. The designed topology graph
and kinematic trees are presented in Figure 14(a), and the
collected configuration sequences are shown in Figure 14(b).
Each sequence of configurations should have identical mod-
ule mappings, and intermediate configurations during topol-
ogy changes can be generated in the same way as described
in Section 4. As shown in Figure 14 (c), two subsequences
containing intermediate configurations {Sseq1i }, {Sseq2i }, i ∈
(1, 2) with isomorphic topology graphs are shown as exam-
ples.

The proposed configuration matching and mapping
algorithm can be applied to find the module mapping from
the sequence configurations to the reference configurations
defined in the library. For example, the optimal mapping

f
Sseq11 →SS6N3−3

1

node,edge between Sseq11 and SS6N3−3
1 are searched

by the configuration matching and mapping, and the

sequence configuration are mapped to
GS6N3−3

Sseq11 by the
mapping. Then, the sequence configurations can be mapped
to share the same topology graph as the reference ones.
Finally, the configurations with the same topology graph
are merged by checking the cost of inverse kinematics,
as shown in Figure 14(e). The feasible actions defined
in the configuration sequences and the module mapping
between configurations are calculated and stored as the edge
connection of the library. The whole library can be built
by matching, mapping, and merging all the configuration
sequences in the same way. The built “S6N3” library is
shown in Figure 14(f).

6.3 Locomotion and Self-reconfiguration
Execution

After library creation, for a newly constructed system with a
target configuration or behavior, the configuration sequence
and the behavior can be retrieved from the library, which is
then executed by the system.

As shown in Figure 15 (a), a newly constructed system
with initial configuration Ssys is presented, and a target
configuration SS6N3−4

4 or a behavior labeled as ”wheeled
move” starting from SS6N3−4

4 is selected as the target. The
isomorphic configuration SS6N3−1

1 and the corresponding
kinematic tree KS6N3−1

1 in the library are matched by

Prepared using sagej.cls

16 Journal Title XX(X)

configuration matching and mapping, and the optimal

module mapping f
Ssys→SS6N3−1

1

node,edge is searched, as described
in Figure 13(f). The shortest reconfiguration sequence as
shown in Figure 15 (b) from SS6N3−1

1 to SS6N3−4
4 can be

retrieved from the library by graph shortest path search.
The configurations in the sequence are connected by black
arrows, which mean feasible actions with the given kinematic
tree and module mapping. The configurations Ssys and
SS6N3−1
1 can be different and the feasibility of action from

Ssys to SS6N3−1
1 is not guaranteed.

Assuming that the two configurations are not far
away and the action is feasible, we have the feasible
configuration sequence from the system to the target. Then,
the configurations and the kinematic trees are mapped to
have the identical module mapping with the system in
sequence, as shown in Figure 15 (c). The system can execute
the sequence as described in Section 4. After reaching the
target configuration SS6N3−4

4 , the selected behavior can be
executed similarly, and autonomous locomotion and self-
reconfiguration are executed.

7 Experiments
In this section, the isomorphism tree search and full-body
inverse kinematics efficiency is preliminarily evaluated.
We also present case studies with FreeSN hardware to
demonstrate the capability of our system, with up to twelve
strut modules and six node modules containing 48 motors
for joints motion control and 24 motors for docking control.
The proposed autonomy framework is executed centrally on
a computer equipped with an Intel Core i9-12900H processor
and communicates with the FreeSN modules through a Wi-
Fi router at 10Hz. The communication bandwidth of the
computer is approximately 60 kbit s−1 at maximum and
increases linearly with the number of modules. The FreeSN
system can accomplish autonomous locomotion and self-
reconfiguration behaviors without external sensors using a
library. The videos of autonomous locomotion and self-
reconfiguration demonstrations can be found in the attached
multimedia files.

7.1 Isomorphism Tree Search Efficiency
The isomorphism tree search algorithm is designed to
efficiently search the candidate module mappings between
two configurations in ascending order of their distance.
Only a few candidate mappings need to be searched if
the estimated distances of the mappings have the similar
order with the motion cost of inverse kinematics. Ten
topology graphs with sixteen edges and five nodes are
designed with numerous isomorphisms from dozens to tens
of thousands. The computational times of isomorphism tree
search and brute-force sorting algorithms are compared by
generating random configuration pairs in various ways to
find the mapping that minimizes distance. As shown in
Figure 16, three types of random configuration pairs are
generated: isomorphic, near-random, and full-random. The
first configurations of the random configuration pairs are
randomly sampled from the whole joint space, and the
second configurations have the same position vectors with
random θ and module mapping for isomorphic type. The
near-random type samples the second configurations near the

Number of Isomorphisms

Ti
m

e
(s

)

Search (isomorphic pairs)
Search (near-random pairs)
Search (full-random pairs)
Brute-force (any pairs)

Figure 16. The computational times of isomorphism tree
search and brute-force sorting algorithms using three different
types of random configurations to find the mapping that
minimizes distance. The brute-force sorting time increases
nearly linearly with the number of isomorphisms using any
configuration pairs.

zero point of joint space of the first configurations, and the
root-mean-square (RMS) value of angles between generated
position vectors is about 24◦. The full-random type samples
the second configuration on the whole joint space.

The brute-force sorting time is nearly linear with the
number of isomorphisms using any random configuration
pairs. The isomorphism tree searching is much faster
and does not depend on the number of isomorphisms
using isomorphic type of random configurations pairs. The
searching times are within 25ms with the mean value of
10ms for the topology graph with 57600 isomorphism.
The distance between two configurations mainly decides
the searching time since a smaller distance leads to a more
accurate heuristic.

7.2 Full-body Inverse Kinematics Efficiency
In this section, the efficiency of full-body skeletal inverse
kinematics is evaluated, which also determines the main
computation demands of the system. To better evaluate the
inverse kinematics speed, we select tree-based topology
graphs with edge numbers ranging from 2 to 30. For each
topology graph, one thousand near-random configuration
pairs are generated. The inverse kinematics is solved using
L-BFGS-B optimization algorithm (Byrd et al. 1995), with
analytical Jacobian, zero initial variables, and threshold
value of 1× 10−5. The complexity of single L-BFGS-B
iteration is O(n), where n is the variable dimension and
is linear with the number of edges of the topology graph.
The number of iterations depends on characteristics of
objective function, and should be weakly correlated with
variable dimension in practice. As shown in Figure 17(a),
the RMS value of angles between generated position vectors
of configuration pairs for each topology graph is about 24◦,
and the inverse kinematics complexity of the numerical
approximation for the generated configurations is roughly
O(n1.35).

The inverse kinematic efficiency is also related with
the distance between the initial variables and target. One

Prepared using sagej.cls

Autonomy for Spherical Freeform Modular Robots 17

Edge Numbers of Topology Graph

Ti
m

e
(s

)
Ti

m
e

(s
)

Angles (°) between Vectors of Random Configuration Pairs
(RMS, Topology Graph with 30 Edges)

(a)

(b)

Fitted Curve
Computation Time

Fitted Curve
Computation Time

Figure 17. (a) Computational times for full-body inverse
kinematics of tree-based topology graphs with varying edge
numbers using near-random configuration pairs. (b) The
computational time versus the RMS value of the angles
between the generated position vectors of configuration pairs.

thousand near-random configuration pairs are generated
with varying variances for the topology graph with 30
edges. As shown in Figure 17(b), the x-axis represents the
RMS value of angles between generated position vectors of
configuration pairs. The inverse kinematics speed increases
roughly logarithmically with the angular distance for the
generated configurations, which also decides the efficiency
of iterative inverse kinematics.

7.3 Autonomous Locomotion Demonstration
The FreeSN system has various functions and can
accomplish locomotion in many different ways, such as
moving as wheeled and legged robots. We design the sub-
libraries and the locomotion behaviors, and the real robot
system can execute the behaviors with arbitrary isomorphic
topology connection.

We define three behaviors, where the modules move to a
target configuration and then drive the system as a wheeled
vehicle in different ways. As shown in Figure 18(a)-(c),
the system consisting of four strut modules and five node
modules moves to a standup configuration at first. Then,
the four leaf node modules are driven by the connectors
connected to them as wheels, and the system can move using
four wheels with the defined mapping between the system
speed and the target speed of the connectors.

The FreeSN system can move as a wheeled robot if
some wheels of the strut modules are in contact with the
ground. As shown in Figure 18(d)-(f), the system moves to
a morphology configuration where a wheel of each of the
four leaf strut modules contacts with the ground. The system
can move forward by driving the four wheels in the same
direction.

The FreeSN system can also move as a wheeled robot by
driving strut modules as wheels. As shown in Figure 18(g)-
(i), the system reaches a configuration where the leaf strut
modules are well in contact with the ground. Then, the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 18. (a)-(c): The modules move forward using node
modules as wheels. (d)-(f): The modules move forward using
wheels of strut modules. (g)-(i): The modules move forward
using strut modules as wheels.

system can move fast by driving the strut modules to rotate
around its z-axis simultaneously.

The FreeSN is capable of squirming forward or crawling
forward by reaching a sequence of configurations in order,
and we define the loop execution of the sequences as
behaviors. As shown in Figure 19(a)-(e), the configuration
sequence only contains a squirming-up configuration and
a squirming-down configuration. The motion of one of
the stem strut modules can be disabled by defining a
kinematic tree containing fixed nodes so that the direction
of the squirming can be controlled. The FreeSN system
successfully squirms forward by alternately reaching two
target configurations with different kinematic trees.

As shown in Figure 19(f)-(j), the configuration sequence
is designed to crawl forward with the parallel motion of
the four leaf strut modules as legs. The system successfully
crawls forward a small step for each loop of configuration
sequence execution and finally moves to the center of the
figure. Systems with similar configurations can adopt this
crawling strategy. As shown in Figure 19(k)-(o), the system
containing twelve strut modules and six node modules crawls
from the left side of the figure to the right side.

7.4 Autonomous Self-reconfiguration
Demonstration

We demonstrate autonomous self-reconfiguration of FreeSN
in 3D with up to twelve strut modules and six node modules.
We define the reference topology graphs and kinematic
trees for the “S6N3” and “S12N6” sub-libraries with the
library design tool. The configurations and behaviors for the
demonstration are also designed, and the sub-libraries are
automatically generated. The FreeSN system with a random
topology graph realizes continual self-reconfiguration with
the autonomy framework, which is rarely demonstrated in
previous modular self-reconfigurable robot systems.

The “S6N3” sub-library contains four groups, and a
reference topology graph and a kinematic tree are defined
for each group. Sequences of configurations are designed.
A newly constructed system forms the configuration in
Figure 20(a) initially, and a configuration in the library

Prepared using sagej.cls

18 Journal Title XX(X)

(a) (b) (c)

(f)

(k)

(g)

(l)

(h)

(m) (n)

(i)

(d) (e)

(j)

(o)

Figure 19. (a)-(e): The modules squirms forward. (f)-(j): The modules crawl forward with the parallel motion of the four leaf strut
modules as legs. (k)-(o): The modules with twelve strut modules and six node modules crawl forward using the same approach.

(a) (b) (c) (d)

(e)(f)(g)(h)

Target 1

Target 2

Figure 20. (a): The modules initially form a triangle configuration with three legs, aiming to first reach the configuration in (d) and
then reconfigure back to the initial skeletal configuration. (b)-(d): The configuration sequence is retrieved from the library, and the
system reaches the first target. (e)-(h): The system successfully reconfigures back to the initial skeletal configuration.

(a) (b) (c) (d)

(e)

(f)(g)(h)(i)

Target 1

Target 2

Figure 21. (a): Twelve strut modules and six node modules form a hexagonal star configuration, targeting reconfiguring to a tree
configuration and finally reconfiguring back to the hexagonal star. (b)-(e): The modules automatically reconfigure to the tree
configuration. (f)-(i): The modules successfully reconfigure back to the hexagonal star configuration.

is chosen as the target, which is isomorphic to the
configuration in Figure 20(d). As shown in Figure 20(a)-(d),
the reconfiguration sequence is retrieved and then executed
by the system. Then, the initial skeletal configuration is
chosen as the new target, and the system autonomously

reconfigures back to the initial skeletal configuration, as
shown in Figure 20(d)-(h).

A sub-library “S12N6” is also designed, which is
generated from many designed kinematic trees with parallel
robot kinematic nodes, skeletal configurations, and recorded
configuration sequences from simulation. As shown in

Prepared using sagej.cls

Autonomy for Spherical Freeform Modular Robots 19

(a)

(h)

(i)

(p)

(b)

(g)

(j)

(o)

(c)

(f)

(k)

(n)

(d)

(e)

(l)

(m)

Wheeled
Move

Target 1

Target 3

Wheeled
Move

Target 2

Figure 22. (a): Twelve strut modules and six node modules form a octahedron configuration initially, targeting executing two
designed behaviors and finally reconfiguring back to the initial configuration. (b)-(e): The modules automatically reconfigure to the
configuration in (e) and execute the wheeled move behavior. (f)-(j): The modules continue to reconfigure to the configuration in (j)
and execute the behavior moving with node modules as wheels. (k)-(p): The system successfully reconfigures back to the
octahedron configuration.

Figure 21(e),(i), two configurations are set as the targets in
order. The system starts from Figure 21(a), reconfigures to
the configuration in Figure 21(e) by a sequence of moving
and parallel reconfiguration actions, and finally reconfigures
back to the original configuration autonomously.

As shown in Figure 22(a), the system forms a octahedron
initially, which is structurally stable but has zero degree of
freedom. The system aims to finish the wheeled locomotion
behaviors in sequence and finally reconfigure back to
the octahedron. The two behaviors are defined with the
initial configuration shown in Figure 22(e),(j). The whole
skeletal configuration sequences and behaviors are retrieved
from the library and are shown in Figure 22(a)-(p), and
the autonomous execution of the self-reconfiguration and
locomotion are successfully finished in 3D with parallel
connection and disconnection actions.

8 Discussions and Future Work

This article presents a locomotion and self-reconfiguration
autonomy framework for spherical freeform modular robots.
The proposed skeletal kinematics provides a general
kinematic modeling approach for spherical freeform modular
robots, so that the system can efficiently control the
skeletal configuration without considering the redundant
kinematic parameters during self-reconfiguration. We also
proposed a configuration matching and mapping algorithm
for freeform modular robots, where the optimality among
the feasible isomorphisms is first efficiently considered
by heuristic isomorphism tree search. Based on this, a
library of relationships between kinematic trees, skeletal
configurations, and behaviors can be automatically generated
with the designs from a tool and the recorded configuration

sequences from modules. Autonomous locomotion and self-
reconfiguration are achieved by retrieving the configuration
sequence from the library with identical module mapping
with the system and then executing the sequence as a set of
basic actions.

The presented autonomy framework is only demonstrated
on FreeSN, and the configuration identification and control
modules within the framework are explained based on the
concrete implementation of FreeSN. The framework can
be generalized to other modular robotic systems, on the
condition that their configurations can be represented as
skeletal configurations, and that their joint kinematic nodes
and controllers are properly implemented. Additionally, the
accuracy of the joint sensing must be sufficient to ensure
robust execution of actions by the robot.

A limitation is that the initial system configuration should
be closed to its isomorphic configuration in the library so
that the action moving to the first target configuration can be
assumed to be feasible. Real-time self-collision avoidance is
not implemented in the current system, given the assumption
that the collected configuration sequences in the library are
self-collision free. The implementation of the control system
is relatively preliminary. The trajectory tracking controllers
and synchronization control of multiple modules should be
further researched for better control performance.

The presented autonomous framework provides the
foundation to explore and evaluate the high-level algorithms
for freeform modular robots. In future work, motion
planning and reconfiguration planning that consider self-
collision, gravity stability, and torque limitations are of
primary interest. In this context, the configurations in the
library can be planned fully automatically, and the modules
can accomplish locomotion and self-reconfiguration by
combining the library and online planning. Other promising

Prepared using sagej.cls

20 Journal Title XX(X)

research directions include decentralized relative localization
between modules and environment perception using visual
sensors on the modules, which are essential for the self-
assembly of multiple groups of modules and for solving real-
world tasks.

References

Belke CH, Holdcroft K, Sigrist A and Paik J (2023) Morphological
flexibility in robotic systems through physical polygon
meshing. Nature Machine Intelligence 5(6): 669–675. DOI:
10.1038/s42256-023-00676-8. URL https://doi.org/

10.1038/s42256-023-00676-8.
Bray E and Groß R (2023) Recent developments in self-assembling

multi-robot systems. Current Robotics Reports 4(4): 101–116.
DOI:10.1007/s43154-023-00106-y. URL https://doi.

org/10.1007/s43154-023-00106-y.
Brunete A, Ranganath A, Segovia S, de Frutos JP, Hernando

M and Gambao E (2017) Current trends in reconfigurable
modular robots design. International Journal of Advanced
Robotic Systems 14(3): 1729881417710457. DOI:10.
1177/1729881417710457. URL https://doi.org/10.

1177/1729881417710457.
Byrd RH, Lu P, Nocedal J and Zhu C (1995) A limited memory

algorithm for bound constrained optimization. SIAM Journal
on Scientific Computing 16(5): 1190–1208. DOI:10.1137/
0916069. URL https://doi.org/10.1137/0916069.

Campbell J, Pillai P and Goldstein S (2005) The robot is the tether:
active, adaptive power routing modular robots with unary inter-
robot connectors. In: 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems. pp. 4108–4115. DOI:
10.1109/IROS.2005.1545426.

Carletti V, Foggia P and Vento M (2015) Vf2 plus: An improved
version of vf2 for biological graphs. In: Graph-Based
Representations in Pattern Recognition: 10th IAPR-TC-15
International Workshop, GbRPR 2015, Beijing, China, May
13-15, 2015. Proceedings 10. Springer, pp. 168–177.

Chen IM and Burdick J (1993) Enumerating the nonisomorphic
assembly configurations of modular robotic systems. In:
Proceedings of 1993 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’93), volume 3. pp.
1985–1992 vol.3. DOI:10.1109/IROS.1993.583905.

Cordella LP, Foggia P, Sansone C and Vento M (2004) A (sub)
graph isomorphism algorithm for matching large graphs. IEEE
transactions on pattern analysis and machine intelligence
26(10): 1367–1372.

Daudelin J, Jing G, Tosun T, Yim M, Kress-Gazit H and
Campbell M (2018) An integrated system for perception-
driven autonomy with modular robots. Science Robotics
3(23): eaat4983. DOI:10.1126/scirobotics.aat4983. URL
https://www.science.org/doi/abs/10.1126/

scirobotics.aat4983.
Davey J, Kwok N and Yim M (2012) Emulating self-reconfigurable

robots - design of the SMORES system. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems.
pp. 4464–4469. DOI:10.1109/IROS.2012.6385845.

Dokuyucu Hİ and Özmen NG (2023) Achievements and future
directions in self-reconfigurable modular robotic systems.
Journal of Field Robotics 40(3): 701–746. DOI:https://doi.
org/10.1002/rob.22139. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/rob.22139.
Eckenstein N and Yim M (2014) Area of acceptance for 3d self-

aligning robotic connectors: Concepts, metrics, and designs.
In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). pp. 1227–1233. DOI:10.1109/ICRA.2014.
6907010.

Garcia RFM, Hiller JD, Stoy K and Lipson H (2011) A vacuum-
based bonding mechanism for modular robotics. IEEE
Transactions on Robotics 27(5): 876–890. DOI:10.1109/TRO.
2011.2153010.

Gregg CE, Catanoso D, Formoso OIB, Kostitsyna I, Ochalek
ME, Olatunde TJ, Park IW, Sebastianelli FM, Taylor
EM, Trinh GT and Cheung KC (2024) Ultralight, strong,
and self-reprogrammable mechanical metamaterials. Sci-
ence Robotics 9(86): eadi2746. DOI:10.1126/scirobotics.
adi2746. URL https://www.science.org/doi/

abs/10.1126/scirobotics.adi2746.
Gross R, Bonani M, Mondada F and Dorigo M (2006) Autonomous

self-assembly in swarm-bots. IEEE Transactions on Robotics
22(6): 1115–1130. DOI:10.1109/TRO.2006.882919.

Hayat A (2020) A framework for taxonomy and evaluation of self-
reconfigurable robotic systems. IEEE Access .

Jing G, Tosun T, Yim M and Kress-Gazit H (2018) Accomplishing
high-level tasks with modular robots. Autonomous Robots
42(7): 1337–1354. DOI:10.1007/s10514-018-9738-1. URL
https://doi.org/10.1007/s10514-018-9738-1.

Jüttner A and Madarasi P (2018) Vf2++—an improved subgraph
isomorphism algorithm. Discrete Applied Mathematics
242: 69–81. DOI:https://doi.org/10.1016/j.dam.2018.02.018.
URL https://www.sciencedirect.com/science/

article/pii/S0166218X18300829. Computational
Advances in Combinatorial Optimization.

Kirby BT, Aksak B, Campbell JD, Hoburg JF, Mowry TC, Pillai
P and Goldstein SC (2007) A modular robotic system using
magnetic force effectors. In: 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 2787–2793.
DOI:10.1109/IROS.2007.4399444.

Liang G, Luo H, Li M, Qian H and Lam TL (2020) FreeBOT:
A freeform modular self-reconfigurable robot with arbitrary
connection point - design and implementation. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp. 6506–6513. DOI:10.1109/IROS45743.
2020.9341129.

Liang G, Wu D, Tu Y and Lam TL (2024) Decoding
modular reconfigurable robots: A survey on mechanisms
and design. The International Journal of Robotics
Research 0(0): 02783649241283847. DOI:10.1177/
02783649241283847. URL https://doi.org/10.

1177/02783649241283847.
Liang G, Zong L and Lam TL (2023) Disg: Driving-integrated

spherical gear enables singularity-free full-range joint motion.
IEEE Transactions on Robotics 39(6): 4464–4481. DOI:10.
1109/TRO.2023.3311911.

Liu C and Yim M (2017) Configuration recognition with distributed
information for modular robots. In: IFRR International
Symposium on Robotics Research. Puerto Varas, Chile. DOI:
10.1007/978-3-030-28619-4 65.

Liu C and Yim M (2020) Configuration recognition with distributed
information for modular robots. In: Amato NM, Hager G,
Thomas S and Torres-Torriti M (eds.) Robotics Research.

Prepared using sagej.cls

https://doi.org/10.1038/s42256-023-00676-8
https://doi.org/10.1038/s42256-023-00676-8
https://doi.org/10.1007/s43154-023-00106-y
https://doi.org/10.1007/s43154-023-00106-y
https://doi.org/10.1177/1729881417710457
https://doi.org/10.1177/1729881417710457
https://doi.org/10.1137/0916069
https://www.science.org/doi/abs/10.1126/scirobotics.aat4983
https://www.science.org/doi/abs/10.1126/scirobotics.aat4983
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22139
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22139
https://www.science.org/doi/abs/10.1126/scirobotics.adi2746
https://www.science.org/doi/abs/10.1126/scirobotics.adi2746
https://doi.org/10.1007/s10514-018-9738-1
https://www.sciencedirect.com/science/article/pii/S0166218X18300829
https://www.sciencedirect.com/science/article/pii/S0166218X18300829
https://doi.org/10.1177/02783649241283847
https://doi.org/10.1177/02783649241283847

Autonomy for Spherical Freeform Modular Robots 21

Cham: Springer International Publishing. ISBN 978-3-030-
28619-4, pp. 967–983.

Lueker GS and Booth KS (1979) A linear time algorithm for
deciding interval graph isomorphism. Journal of the ACM
(JACM) 26(2): 183–195.

Luo H and Lam TL (2022) Adaptive flow planning of modular
spherical robot considering static gravity stability. IEEE
Robotics and Automation Letters 7(2): 4228–4235.

Luo H and Lam TL (2023) Auto-optimizing connection planning
method for chain-type modular self-reconfiguration robots.
IEEE Transactions on Robotics 39(2): 1353–1372. DOI:10.
1109/TRO.2022.3218992.

Malley M, Haghighat B, Houel L and Nagpal R (2020)
Eciton robotica: Design and algorithms for an adaptive self-
assembling soft robot collective. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). pp. 4565–
4571. DOI:10.1109/ICRA40945.2020.9196565.

Neubert J, Rost A and Lipson H (2014) Self-soldering connectors
for modular robots. IEEE Transactions on Robotics 30(6):
1344–1357. DOI:10.1109/TRO.2014.2344791.

Park M, Chitta S, Teichman A and Yim M (2008) Automatic
configuration recognition methods in modular robots. The
International Journal of Robotics Research 27(3-4): 403–
421. DOI:10.1177/0278364907089350. URL https://

doi.org/10.1177/0278364907089350.
Romanishin JW, Gilpin K, Claici S and Rus D (2015) 3D M-Blocks:

Self-reconfiguring robots capable of locomotion via pivoting
in three dimensions. In: 2015 IEEE International Conference
on Robotics and Automation (ICRA). pp. 1925–1932. DOI:
10.1109/ICRA.2015.7139450.

S Sankhar Reddy Chennareddy AK Anita Agrawal (2017) Modular
self-reconfigurable robotic systems: A survey on hardware
architectures. Journal of Robotics 2017: 1–19. DOI:10.1155/
2017/5013532.

Saintyves B, Spenko M and Jaeger HM (2024) A self-organizing
robotic aggregate using solid and liquid-like collective states.
Science Robotics 9(86): eadh4130. DOI:10.1126/scirobotics.
adh4130. URL https://www.science.org/doi/

abs/10.1126/scirobotics.adh4130.
Seo J, Paik J and Yim M (2019) Modular reconfigurable

robotics. Annual Review of Control, Robotics, and
Autonomous Systems 2(1): 63–88. DOI:10.1146/
annurev-control-053018-023834. URL https://doi.

org/10.1146/annurev-control-053018-023834.
Shimizu M, Mori T and Ishiguro A (2006) A development of a

modular robot that enables adaptive reconfiguration. In: 2006
IEEE/RSJ International Conference on Intelligent Robots and
Systems. pp. 174–179. DOI:10.1109/IROS.2006.282216.

Shiu MC, Fu LC and Chia YJ (2010) Graph isomorphism testing
method in a self-recognition velcro strap modular robot.
In: 2010 5th IEEE Conference on Industrial Electronics
and Applications. pp. 222–227. DOI:10.1109/ICIEA.2010.
5516792.

Spröwitz A, Pouya S, Bonardi S, Den Kieboom JV, Möckel
R, Billard A, Dillenbourg P and Ijspeert AJ (2010)
Roombots: Reconfigurable robots for adaptive furniture. IEEE
Computational Intelligence Magazine 5(3): 20–32. DOI:10.
1109/MCI.2010.937320.

Starke S, Hendrich N and Zhang J (2019) Memetic evolution for
generic full-body inverse kinematics in robotics and animation.

IEEE Transactions on Evolutionary Computation 23(3): 406–
420. DOI:10.1109/TEVC.2018.2867601.

Swissler P and Rubenstein M (2020) FireAnt3D: a 3d self-climbing
robot towards non-latticed robotic self-assembly. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp. 3340–3347. DOI:10.1109/IROS45743.
2020.9341116.

Swissler P and Rubenstein M (2022) Reactivebuild: Environment-
adaptive self-assembly of amorphous structures. In: Matsuno
F, Azuma Si and Yamamoto M (eds.) Distributed Autonomous
Robotic Systems. Cham: Springer International Publishing.
ISBN 978-3-030-92790-5, pp. 363–375.

Swissler P and Rubenstein M (2023) Fireantv3: A modular self-
reconfigurable robot toward free-form self-assembly using
attach-anywhere continuous docks. IEEE Robotics and
Automation Letters 8(8): 4911–4918. DOI:10.1109/LRA.2023.
3290796.

Todorov E, Erez T and Tassa Y (2012) Mujoco: A physics engine
for model-based control. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 5026–5033.
DOI:10.1109/IROS.2012.6386109.

Tosun T, Davey J, Liu C and Yim M (2016) Design and
characterization of the EP-Face connector. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). pp. 45–51. DOI:10.1109/IROS.2016.7759033.

Tu Y and Lam TL (2023) Configuration identification for a freeform
modular self-reconfigurable robot - freesn. IEEE Transactions
on Robotics 39(6): 4636–4652. DOI:10.1109/TRO.2023.
3303848.

Tu Y, Liang G and Lam TL (2022) FreeSN: A freeform strut-
node structured modular self-reconfigurable robot - design
and implementation. In: 2022 International Conference on
Robotics and Automation (ICRA). pp. 4239–4245. DOI:10.
1109/ICRA46639.2022.9811583.

Veenstra J, Scheibner C, Brandenbourger M, Binysh J, Souslov
A, Vitelli V and Coulais C (2025) Adaptive locomotion
of active solids. Nature 639(8056): 935–941. DOI:10.
1038/s41586-025-08646-3. URL https://doi.org/10.

1038/s41586-025-08646-3.
Wu D, Liang G, Tu Y, Zong L and Lam TL (2024)

Linear-time quasi-static stability detection for modular self-
reconfigurable robots. The International Journal of
Robotics Research 0(0): 02783649241286491. DOI:10.
1177/02783649241286491. URL https://doi.org/10.

1177/02783649241286491.
Yim M, Shen W, Salemi B, Rus D, Moll M, Lipson H, Klavins

E and Chirikjian GS (2007) Modular self-reconfigurable robot
systems [grand challenges of robotics]. IEEE Robotics
Automation Magazine 14(1): 43–52. DOI:10.1109/MRA.2007.
339623.

Zhao D and Lam TL (2022) SnailBot: A continuously dock-
able modular self-reconfigurable robot using rocker-bogie sus-
pension. In: 2022 International Conference on Robotics
and Automation (ICRA). pp. 4261–4267. DOI:10.1109/
ICRA46639.2022.9811779.

Zhao D, Luo H, Tu Y, Meng C and Lam TL (2024)
Snail-inspired robotic swarms: a hybrid connector
drives collective adaptation in unstructured outdoor
environments. Nature Communications 15(1): 3647.
DOI:10.1038/s41467-024-47788-2. URL https:

Prepared using sagej.cls

https://doi.org/10.1177/0278364907089350
https://doi.org/10.1177/0278364907089350
https://www.science.org/doi/abs/10.1126/scirobotics.adh4130
https://www.science.org/doi/abs/10.1126/scirobotics.adh4130
https://doi.org/10.1146/annurev-control-053018-023834
https://doi.org/10.1146/annurev-control-053018-023834
https://doi.org/10.1038/s41586-025-08646-3
https://doi.org/10.1038/s41586-025-08646-3
https://doi.org/10.1177/02783649241286491
https://doi.org/10.1177/02783649241286491
https://doi.org/10.1038/s41467-024-47788-2

22 Journal Title XX(X)

//doi.org/10.1038/s41467-024-47788-2.
Zhu Y, Li G, Wang X and Cui X (2012) Automatic function-

isomorphic configuration recognition and control for ubot
modular self-reconfigurable robot. In: 2012 IEEE International
Conference on Mechatronics and Automation. pp. 451–456.
DOI:10.1109/ICMA.2012.6282885.

Zong L, Liang G and Lam TL (2022) Kinematics modeling and
control of spherical rolling contact joint and manipulator.
IEEE Transactions on Robotics : 1–17DOI:10.1109/TRO.
2022.3190790.

Prepared using sagej.cls

https://doi.org/10.1038/s41467-024-47788-2
https://doi.org/10.1038/s41467-024-47788-2
https://doi.org/10.1038/s41467-024-47788-2

	1 Introduction
	2 Related Work
	2.1 Freeform Modular Robots
	FreeBOT
	Snailbot
	FreeSN

	2.2 Configuration Matching and Mapping

	3 Skeletal Kinematics
	3.1 Configuration Representation
	3.2 General Kinematic Node and Kinematic Tree
	Example Kinematic Node Modeling of FreeSN

	3.3 Skeletal Forward Kinematics
	3.4 Full Body Skeletal Inverse Kinematics
	Ground Model
	Optimization Solving
	Iterative Inverse Kinematics

	4 Locomotion and Self-reconfiguration Execution
	4.1 Action Execution
	Moving Action
	Connection Action
	Disconnection Action
	Parallel Connection and Disconnection Action

	4.2 Example Control Commands of FreeSN
	4.3 Behavior Execution

	5 Configuration Matching and Mapping
	5.1 Isomorphism Tree Search
	5.2 Matching and Mapping

	6 Locomotion and Self-reconfiguration Autonomy Framework
	6.1 Library Design
	6.2 Library Creation
	6.3 Locomotion and Self-reconfiguration Execution

	7 Experiments
	7.1 Isomorphism Tree Search Efficiency
	7.2 Full-body Inverse Kinematics Efficiency
	7.3 Autonomous Locomotion Demonstration
	7.4 Autonomous Self-reconfiguration Demonstration

	8 Discussions and Future Work

